
Liu et al. 
Biotechnology for Biofuels and Bioproducts            (2023) 16:8  
https://doi.org/10.1186/s13068-023-02258-7

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Biotechnology for Biofuels
and Bioproducts

Efficient biosynthesis of (R)‑mandelic acid 
from styrene oxide by an adaptive evolutionary 
Gluconobacter oxydans STA
Fei Liu1, Junping Zhou2, Mengkai Hu1, Yan Chen1, Jin Han1, Xuewei Pan1, Jiajia You1, Meijuan Xu1, Taowei Yang1, 
Minglong Shao1, Xian Zhang1* and Zhiming Rao1* 

Abstract 

Background  (R)-mandelic acid (R-MA) is a highly valuable hydroxyl acid in the pharmaceutical industry. However, 
biosynthesis of optically pure R-MA remains significant challenges, including the lack of suitable catalysts and high 
toxicity to host strains. Adaptive laboratory evolution (ALE) was a promising and powerful strategy to obtain specially 
evolved strains.

Results  Herein, we report a new cell factory of the Gluconobacter oxydans to biocatalytic styrene oxide into R-MA 
by utilizing the G. oxydans endogenous efficiently incomplete oxidization and the epoxide hydrolase (SpEH) heter-
ologous expressed in G. oxydans. With a new screened strong endogenous promoter P12780, the production of R-MA 
was improved to 10.26 g/L compared to 7.36 g/L of using Plac. As R-MA showed great inhibition for the reaction and 
toxicity to cell growth, adaptive laboratory evolution (ALE) strategy was introduced to improve the cellular R-MA toler-
ance. The adapted strain that can tolerate 6 g/L R-MA was isolated (named G. oxydans STA), while the wild-type strain 
cannot grow under this stress. The conversion rate was increased from 0.366 g/L/h of wild type to 0.703 g/L/h by the 
recombinant STA, and the final R-MA titer reached 14.06 g/L. Whole-genome sequencing revealed multiple gene-
mutations in STA, in combination with transcriptome analysis under R-MA stress condition, we identified five critical 
genes that were associated with R-MA tolerance, among which AcrA overexpression could further improve R-MA titer 
to 15.70 g/L, the highest titer reported from bulk styrene oxide substrate.

Conclusions  The microbial engineering with systematic combination of static regulation, ALE, and transcriptome 
analysis strategy provides valuable solutions for high-efficient chemical biosynthesis, and our evolved G. oxydans 
would be better to serve as a chassis cell for hydroxyl acid production.

Keywords  (R)-mandelic acid, Gluconobacter oxydans, Adaptive laboratory evolution, Promoters, Styrene oxide, 
Biotransformation

Background
An important challenge in the bio-manufacturing of 
high-value natural and unnatural chemicals is to develop 
green, efficient, and promising synthetic routes from 
cheap and readily available substrates. Epoxides are 
primarily from easily obtainable petroleum-based by-
products and have broad applications in preparing phar-
maceutical and fine chemicals [1–3]. Recently, epoxides 
have attracted much attention for hydrolyzing chiral 
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vicinal diols to further synthesize unnatural compounds 
[4]. Our previous work had provided a self-sufficient cas-
cade to biocatalytic epoxides to produce 1,2-amino alco-
hols [5].

The chiral (R)-mandelic acid (R-MA), as a useful chi-
ral building block for the synthesis of aromatic drugs, is 
of crucial importance in the chemical and pharmaceuti-
cal industry [6–8]. Optically pure R-MA is an important 
intermediate for preparing many chiral drugs, includ-
ing antitumors, antiobesity agents, antibiotics [9, 10]. In 
addition, MA also can be used to synthesize chiroptical 
materials [11–13]. Nowadays, R-MA is mainly produced 
by chemical synthesis with many by-products. Con-
versely, biosynthesis is an attractive alternative way to 
produce R-MA, which is non-toxic and has mild reac-
tion conditions with high selectivity. It is an attractive 
and desirable way to produce R-MA using cheap styrene 
oxide as a substrate. However, the bioproduction of this 
valuable compound is still faced many challenges, includ-
ing the lack of suitable catalysts and host strains for effi-
cient synthesis reaction.

Recently, metabolic engineering in Saccharomyces cere-
visiae and Escherichia coli and synthetic biology of multi-
enzyme artificial cascades were used to synthesize R-MA 
[14, 15]. It is worth mentioning that they successfully 
produced R-MA from simple and readily available chem-
icals with high selectivity, whereas the yields are still not 
high. Among the cascade catalytic pathway described 
above, we noticed the accumulation of R-1-phenyl-
1,2-ethanediol (R-PEG), which is probably because of the 
low expression and insufficient activity of alditol oxidase 
used to convert R-PEG to R-MA. In addition, an alcohol 
dehydrogenase and a phenylacetaldehyde dehydrogenase 
were assembled to biocatalyze S-PEG to S-MA [16], but 
there are few aldehyde dehydrogenases for the oxidation 
to R-MA.

The gram-negative obligate aerobic bacteria, acetic 
acid bacterium Gluconobacter oxydans, is famous for 
its stereo-selective incomplete oxidate sugars, alcohols, 
and polyols to the corresponding ketones and acids. As a 
wildly used industrial bacteria, G. oxydans has been suc-
cessfully used to produce vitamin C, dihydroxyacetone, 
gluconic acid, and miglitol [17, 18]. Furthermore, it was 
reported that G. oxydans also was applied in oxidating 
R-PEG to R-MA by resting cells [19–22]. The conversion 
of the overwhelming majority of substrates and release of 
products do not need to transport the cell membranes, 
because the reactions typically occur in the periplasm 
using membrane-bound dehydrogenases, considerably 
improving the biosynthesis efficiency [23–25]. Hence, we 
selected G. oxydans as a host cell to construct a catalytic 
system for producing R-MA from styrene oxide.

However, studies have demonstrated that R-MA is 
toxic to G. oxydans and strongly inhibits to the oxida-
tion reaction [19]. It may be a promising way to acceler-
ate the catalytic efficiency and production by improving 
the R-MA tolerance of G. oxydans. Adaptive laboratory 
evolution (ALE) as an accessible and powerful approach 
in microbial engineering has become much more popular 
to obtain specially evolved strains with increased ability 
to survive under extreme conditions, inhibited metabo-
lites, and toxic substrates or products [26–31]. Further-
more, ALE also successfully selected thermotolerant 
strains with improved growth and ethanol production in 
S. cerevisiae [32]. Recently, a 420-day adaptive laboratory 
evolution of G. oxydans was applied, resulting in a highly 
improved conversion efficiency of non-glucose sugars 
to sugar acids [33]. All the cases indicated that ALE is a 
powerful and efficient strategy to push microbe break-
through the limit to synthesize toxic compounds.

In this study, we initially constructed an efficient cata-
lytic system for producing R-MA from styrene oxide by 
heterologous expression of SpEH with a new screened 
endogenous strong promoter in G. oxydans (Fig. 1). Fol-
lowed by the ALE strategy, an evolved G. oxydans named 
STA with enhanced R-MA tolerance ability was isolated 
and characterized. Then, we used transcriptome analysis 
of wild-type strain and STA to study their genetic mecha-
nisms of the STA’s improved R-MA tolerance. Multiple 
vital genes involved in transcript levels changes were 
investigated, among which AcrA was confirmed to be 
essential for R-MA tolerance, STA-ΔacrA cannot even 
survive under a low concentration of R-MA. The evolved 
G. oxydans STA showed great potential for highly effi-
cient R-MA production.

Results and discussion
Developing a biocatalytic cascade and screening new 
strong promoters for R‑MA production in G. oxydans
To construct a biosynthesis cascade to product R-MA 
from styrene oxide, epoxide hydrolase (SpEH, GenBank 
ID: ANJ44372.1) from Sphingomonas sp. HXN-200 [5, 
34] was chosen as the first step for hydrolysis of styrene 
oxide into R-PEG. In addition, G. oxydans, a famous non-
pathogenic and safe microorganism, has shown strong 
incompletely oxidize capacity to produce alcoholic acid 
including R-MA. Thus recombinant G. oxydans with het-
erologous expressing SpEH was constructed for highly 
efficient R-MA production from bulk chemical styrene 
oxide.

In synthetic biology, promoters and ribosome binding 
site are critical in controlling protein expression and gene 
regulation [35–37]. As strong promoters are essential for 
enhancing the expression of specific genes, employing a 
suitable and strong promoter is very important for spEH. 
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However, the alternative constitutive strong promoters 
applied in G. oxydans 621H are still constrained. Thus, 
we aimed to screen out and identify strong endogenous 
promoters from G. oxydans to optimize the expression of 
SpEH.

Nowadays, numerous biological promoter engineers 
have been developed to model and design promoter 
libraries or screen strong endogenous promoters directly 
from the genome [38]. A range of studies have clarified 
that it is an accessible strategy to mine strong constitu-
tive promoters based on RNA sequencing data. 25 genes 
with constitutive strong promoters in Methylotuvimicro-
bium buryatense 5GB1 were identified, relying on whole 
genome and RNA-sequencing experimental data [39]. 
It was also reported that in G. oxydans WSH-003, a few 
strong promoters were obtained through RNA-sequenc-
ing data, and with the strongest promoter P2703 express-
ing SDH, the titer of 2-keto-l-gulonic acid increased 
distinctly [40].

In RNA-sequencing data, the promoters of genes with 
high fragments per kilobase million (FPKM) values may 
be potentially strong. First, we performed RNAseq analy-
sis on G. oxydans 621H, relying on transcriptome results 
of G. oxydans, the 10 top FPKM values of genes were 
chosen (Fig.  2a, Additional file  1: Table  S3). To evalu-
ate the strength, all the 10 putative promoters (500-bp 
upstream fragments), as well as the reported strong pro-
moters Pdnak and PtufB from G. oxydans [41, 42] fused 
with egfp gene (GenBank ID: AAK08507.1) were ligated 
to pBBR1MCS-2 and transferred into G. oxydans. By 
assaying the fluorescence intensity, seven strong pro-
moters were identified compared to the control, includ-
ing P02805, P09400, P04650, P12780, P04000, P04750, and P10190. 
Furthermore, the green fluorescence also was observed 

(Fig.  2b). Then, we heterologous expressed SpEH in G. 
oxydans 621H with these new promoters. The expres-
sion results of SpEH were displayed by SDS–PAGE and 
their crude enzyme activities (obtained from the same 
growth and cell density) also were detected (Fig.  2c, d). 
It can be clearly seen that P12780 had the highest expres-
sion and the activity was higher than P02805 and P04650 
for 5.5 and 1.8 times, respectively. The results indicated 
that the fluorescent protein’s intensity can only illustrate 
the strength of promoters to a certain extent and cannot 
accurately represent the expression level of a specific pro-
tein [43, 44]. As P12780 was the most suitable promoter for 
the expression of SpEH in G. oxydans (WT-speh), it was 
used for the transformation of styrene oxide into R-MA 
and the original promoter of pBB vector was used as con-
trol (WT-control-speh). Compared to 7.36 g/L R-MA of 
the control, WT-speh got better production of 10.26 g/L 
(Fig. 2e).

ALE of G. oxydans and phenotypic characterization 
of the evolved strain
As it was reported that R-MA was toxic to G. oxydans, 
we then verified its survivability to R-MA. By analyz-
ing the growth curve, the tolerance of G. oxydans 621H 
to different concentrations of R-MA was determined. 
The growth rate delayed obviously with 3 g/L R-MA and 
the cells cannot grow when cultured with 4  g/L R-MA 
(Fig.  2f ). Apparently, G. oxydans was very sensitive to 
R-MA. Typically, the capacity to tolerate high-concen-
tration product is a prospective characteristic for high 
production of target compounds [45]. To further improve 
the production of R-MA, the ALE strategy, an efficient 
approach to generating strains with desired phenotypes 
under selection pressure, was performed to enhance 

Fig. 1  Scheme of bioproduction of R-MA from styrene oxide with recombinant G. oxydans 621H expressing epoxide hydrolase (SpEH) from 
Sphingomonas sp. HXN-200
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R-MA tolerance in G. oxydans. As shown above, the cell 
growth of G. oxydans was affected even with very low 
R-MA concentration. Thus, we determined the starting 

point for ALE in a much lower concentration of 0.25 g/L 
R-MA. The wild-type G. oxydans were cultured for 24 h, 
then transferred into a fresh medium with 0.25 g/L R-MA 

Fig. 2  a FPKM value of 10 top strongly transcribed genes of G. oxydans 621H. b Strength of screened promoters evaluated with eGFP as reporter 
and the microscope pictures of P02805, P09400, P04650 and P12780. c Relative activity of SpEH. SpEH were expressed with screened and reported 
promoters. The enzyme activity of SpEH controlled by Plac was set to 100% and its enzyme activity was 5.69 ± 0.26 U/mL. ****P < 0.0001. d SDS–
PAGE of SpEH expression strains with the screened promoters. Lane M: protein marker; Lane 1: whole cell protein of G. oxydans 621H without 
overexpressing SpEH; Lanes 2–11: whole cell protein of recombinant G. oxydans strains with SpEH expressed by Plac, Pdnak, PtufB, P12780, P04000, P04750, 
P10190, P09400, P02805, P04650. e Biotransformation time course of styrene oxide to R-MA of WT-speh and WT-control-speh cells. f Growth curves for G. 
oxydans 621H under 0, 1, 2, 3 and 4 g/L R-MA
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and 5% inoculation volume. After incubation of 24–48 h, 
at log phase, these bacteria were transferred into a fresh 
medium containing 0.5 g/L R-MA. Repeat these transfers 
every time with 0.25 g/L R-MA increased (Fig. 3a). As the 
increase of the concentration, adapted G. oxydans strains 
need much more time to grow to log phase, at that time, 
we cultured the strains in the same R-MA concentration 
more times to improve the cell stability. The final concen-
tration of R-MA was 6 g/L; after screening, the evolved 
strain named STA was isolated. To assess the genetic sta-
bility of STA, we transferred log-phase cells into a fresh 
medium without R-MA every 24 h for 30 days. At the last 
time of transfer, 6 g/L R-MA was contained in the culture 
medium and STA can grow as before which indicates that 
the R-MA tolerance of STA can be stably inherited (data 
not shown).

To probe the phenotypic characterization, the sur-
vival assay was used between G. oxydans WT and STA. 
STA can remain viable in the plate with 6 g/L R-MA but 
the wild-type strain had no capacity to survive (Fig. 3b). 
As P12780 was the most suitable promoter for express-
ing SpEH, we then transformed the recombinant plas-
mid pBB-P12780-speh into STA (STA-speh). Recombinant 
strains were subsequently used to transform styrene 
oxide into R-MA (Fig.  3c). It can be clearly seen that 
STA-speh showed better catalytic ability, which can 
produce14.06  g/L R-MA but WT-speh 10.26  g/L. Most 
importantly, conversion rate increased from 0.366 to 
0.703 g/L/h. In addition, the expression levels of SpEH in 

these two strains were comparable and their enzymatic 
activities were almost the same (Additional file 1: Fig. S1).

Since SpEH was expressed intracellular, styrene oxide 
needs to be transferred to the intracellular to be hydro-
lyzed into R-PEG, while R-PEG also needs re-transmem-
brane to periplasmic space to be further oxidized by 
membrane-bound alcohol and aldehyde dehydrogenase 
to R-MA. Hydrophobic substrate styrene oxide conver-
sion to R-MA requires two transmembrane operations 
in this biotransformation cascade. Thus, it would be very 
important to study cell characteristics for the STA strain 
to understand how the catalytic efficiency was improved 
after ALE strategy. Previous studies have certified that the 
membrane properties such as permeability, hydrophobic-
ity, and integrity of evolved strains were found to be con-
tributing to the increasing tolerance [46–48]. Compared 
to the wild-type strain, the evolved carboxylic acids toler-
ant E. coli strain with increased membrane rigidity and 
decreased fluidity was proved to have a fivefold increase 
in titer [49]. Initially, their morphologies were examined 
by scanning electron microscopy. In control, STA as well 
as the wild-type strain was both grown in fresh medium, 
their cells were of short rod shape, whereas STA cells 
were much less and shorter than the parent one (Fig. 3d). 
In all probability, the membrane properties of STA have 
changed compared to the wild-type strain.

We first investigated the inner and outer membrane 
permeability of the parent strain and STA assessed by 
hydrophilic probe propidium iodide (PI) and hydropho-
bic probe N-phenyl-1-naphthylamine (NPN) uptake 

Fig. 3  Adaptive laboratory evolution of G. oxydans to improve R-MA tolerance. a Schematic diagram of adaptive evolution. The original strain was 
G. oxydans 621H (WT). b Spot assays in G. oxydans WT and STA with 0 g/L, 3 g/L and 6 g/L R-MA. c Biotransformation time course of styrene oxide to 
R-MA of WT-speh and STA-speh cells. d Measurements of cell shape and length in wild-type G. oxydans and adapted strain STA
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analysis. As shown in Fig. 4a, b, STA exhibited a decrease 
in the fluorescence intensity of NPN with almost 50% and 
its PI absorption factor was only one-quarter of the wild-
type strain, indicating that STA had a poor permeability 
membrane. PI emit a strong fluorescence signal when 

they transport into cells and bind to nucleic acids. As a 
result, PI also can serve as a probe to investigate mem-
brane integrity by flow cytometer. The ratio of PI-stained 
cells of the wild-type strain was 84.2%, much higher than 
STA (Fig. 4c), which signified that STA had increased the 

Fig. 4  Membrane integrity, permeability and hydrophobicity analysis of G. oxydans WT and the adapted strain STA. a NPN fluorescence intensity 
analyses of outer membrane permeability in WT and STA. b Inner membrane permeability change of propidium iodide (PI) uptake factor in WT and 
STA. c Flow cytometry analyses of membrane integrity in WT and STA. Cells were stained with PI. d Membrane hydrophobicity was changed in WT 
and STA. *P < 0.1. **P < 0.01. ***P < 0.001
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membrane integrity. Interestingly, improved membrane 
integrity was shown to enhance the fatty acid tolerance 
and the final titer in E. coli [50].

Membrane hydrophobicity was another critical char-
acteristic for cell viability and bioconversion activity. The 
STA strain had a percentage of adhesion of 21.0% relative 
to the control of 7.9%, which represented that the adap-
tive evolution of G. oxydans had significantly improved 
the membrane hydrophobicity (Fig. 4d). High cell surface 
hydrophobicity helped to against multi environmental 
stressors and reduce the distance of cell to hydrophobic 
substrate for the enhancement of transport rate [51, 52]. 
In summary, STA had worse membrane permeability and 
better membrane integrity, most importantly, the mem-
brane hydrophobicity had increased. These membrane 
characteristics changes provide new insights into the 
understanding of R-MA tolerance and increasement of 
catalytic efficiency by STA.

Global transcriptome analysis and whole‑genome 
sequencing of G. oxydans WT and STA
The differentially regulated genes in transcriptional 
levels were crucial factors for analyzing the cellular 
processes [53, 54]. To further explore the molecu-
lar mechanisms that accompanied R-MA tolerance of 
STA, transcriptome analysis was conducted to com-
pare global gene expression in wild-type G. oxydans 
and STA under 0 g/L or 3 g/L R-MA condition. Com-
parative transcriptome data of wild-type G. oxydans 
with/without R-MA showed that the expression levels 
of 60 genes were significantly upregulated, while 192 
genes were significantly downregulated at least two-
fold. By contrast, 58 genes upregulated and 209 genes 
downregulated at least twofold in STA (Fig.  5a, b). 
Only 143 commonly regulated genes are involved in 
wild-type G. oxydans and STA for the response to R-
MA, which indicated that there must be some impor-
tant genes regulated in STA relative to the tolerance of 
high R-MA concentration.

Fig. 5  Transcriptome analysis of G. oxydans WT and STA. a Left side displays the gene expression differences of G. oxydans WT under normal and 
3 g/L R-MA condition. The right side displays the gene expression differences of the adapted strain STA under normal and 3 g/L R-MA condition. 
X-axis represents the logarithmic conversion value of gene expression in wild type strain (left side) or adapted strain (right side). Y-axis represents 
the log2-transformed value of expression change folds. Classification of genes with different functions are represented by different color shapes as 
indicating. Others representative genes are not part of the indicated classification. b Venn diagrams showing the regulated gene numbers between 
G. oxydans WT and STA under 0 g/L R-MA and 3 g/L R-MA conditions (left side) and the regulated gene numbers between G. oxydans WT and STA in 
response to 3 g/L R-MA (right side). Six common regulated genes were depicted in the middle
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The regulated genes in STA relative to those in WT 
were analyzed under normal and 3  g/L R-MA treat-
ment conditions. As shown in Fig.  5b, common regu-
lated genes were identified in G. oxydans WT and STA. 
Among these regulated genes, the multiple antibiotic 
resistance regulator family (MarR) gene and fusaric acid 
resistance protein family (FUSC) gene were upregu-
lated by 7.57-fold and 6.30-fold in STA compared to the 
wild-type strain in normal condition. Similarly, these 
two genes also were upregulated when the wild-type 
strain was cultured with 3 g/L R-MA condition. Nota-
bly, MarR family transcriptional regulator is known for 
regulating diverse cellular responses and physiologi-
cal processes [55]. Another two genes, encoding AcrA 
(efflux RND transporter periplasmic adaptor) and AraC 
family transcriptional regulator, were up-regulated in 
STA under 3 g/L R-MA condition. In wild-type strain, 
AraC regulator also was upregulated when facing 3 g/L 
R-MA, while AcrA was not regulated significantly. We 
also observed GltD (NAD(P)-dependent oxidoreduc-
tase) and GltB (glutamate synthase large subunit) genes 
were upregulated in STA compared to WT without R-
MA, on the contrary, they all downregulated when STA 
was cultured with 3 g/L R-MA.

To identify genetic mutations contributing to the 
improved tolerance of R-MA, whole-genome sequenc-
ing was performed on the evolved strain STA, relative 
to the published sequence for wild-type G. oxydans 
621H. STA carrying a large number of mutations and 
all the mutations including single nucleotide varia-
tions (SNVs) and nucleotides insertion-deletion (InDel) 
were listed in Additional file 2: Table S4-1. Among the 
mutation genes, there were two nonsynonymous muta-
tions in the coding regions of GltB and MarR family 
transcriptional regulator (their mutations were further 
identified by gene sequencing and listed in Additional 
file 2: Table S4-2), which had also been reported to be 
related to cellular physiological processes, these pro-
cesses showed response to the extreme environment 
or associating with the stress or antibiotics resistance. 
Most importantly, these two genes also were upregu-
lated significantly in response to R-MA condition. 
MarR family transcriptional regulator has been shown 
to regulate diverse cellular processes, including confer-
ring resistance to antibiotics, organic solvents, and vir-
ulence [56]. The glutamate synthase GltB was proved to 
be involved in the biofilm formation as well as the oxi-
dative stress tolerance in Listeria monocytogenes [57].

Key genes that contribute to R‑MA tolerance of G. oxydans 
STA
To study the contribution of the genes mentioned above, 
single-knockout strains of marR, fusc, gltD, gltB, acrA 

and araC were constructed in STA. The cell growth was 
determined in normal medium. There are no significant 
growth differences between STA and STAΔacrA, while 
deletion of other genes was slightly detrimental to cell 
growth (Fig.  6a). The growth curves under 4  g/L R-MA 
stress were investigated afterward. STAΔacrA have no 
capacity to survive just like wild-type G. oxydans. While 
all others had a delayed log phase and declined final cell 
density compared with the control (Fig.  6b). Knock-
out GltB increased the growth ability of STA under 
4  g/L R-MA condition. To directly display the impact 
of these genes, the single-knockout strains were spot-
ted and grown on culture plates with 0, 3 and 6  g/L R-
MA. Delete marR, fusc, gltD, acrA and araC caused 
significant growth defects in the presence of 6 g/L R-MA 
compared to STA. Notably, different with other strains 
can grow normally at 3  g/L R-MA stress condition, the 
growing vitality of STAΔacrA had been greatly inhib-
ited. We overexpressed the six genes in its correspond-
ing knockout strains for further assessing their functions. 
As shown in Fig. 6c, five strains recovered the tole-rant 
phenotype, on the contrary, overexpress GltB caused a 
growth defect in 6  g/L R-MA stress. Clearly, the ability 
of STA to tolerant high-concentration R-MA required 
the interaction of multiple genes. Furthermore, as STA 
had changed the membrane properties compared to 
wild-type strain, we also explored the membrane proper-
ties of STA strains. As shown in Additional file 1: Fig. S2, 
compared to STA, STAΔgltB had better membrane per-
meability and STAΔgltD had worse membrane permea-
bility. The membrane integrity and hydrophobicity of the 
strains was nearly the same.

MarR and AraC as transcription regulators both were 
proved to regulate the expression of diverse genes related 
to stress and virulence response [58, 59]. AraC family 
regulator YdeO enhanced the acid and the multi-drug 
resistance in E. coli [60]. Another key gene was gltD, 
which altered the critical biofilm properties for environ-
mental adaptation [61]. We also noticed that only dele-
tion of AcrA led to significant growth defect with 3 g/L 
R-MA, which indicates that AcrA may play the most vital 
role in the tolerance of STA to R-MA. Consequently, we 
decided to focus on AcrA for further evaluation. AcrA 
belongs to RND efflux pumps, which have an impor-
tant contribution to antibiotic resistance and microbial 
environmental adaptability in bacteria [62, 63]. Then, 
further analysis was performed to test whether AcrA 
had associated with other phenotypes. Surprisingly, the 
evolved strain STA showed higher growth rate than the 
wild-type G. oxydans under osmotic and low-pH stress 
(Fig.  7a). The AcrA knockout strain of STA completely 
lost the ability to survive under pH 3 condition and the 
osmotic tolerance also greatly reduced with 75 mM NaCl. 
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To further verify the functions, it also was overexpressed 
in wild-type G. oxydans. Interestingly, G. oxydans/acrA 
exhibited improved tolerances in these stress conditions. 
In addition, all strains had the highest growth rate when 
none extreme factor was present, indicating that the nor-
mal growth of G. oxydans does not depend on AcrA.

Validation the role of AcrA in R‑MA production
AcrA, an RND efflux transporter, was reported to be a 
multidrug transporter for extrusion of a broad range of 
compounds in gram-negative bacteria. It also supports 
bacterial adaptation in the absence of different niches 
[64, 65]. Through inhibited RND pump, the drug suscep-
tibility of E. coli was enhanced [66]. It also reported that 
an RND transporter upregulated in ALE-derived Pseu-
domonas putida for toluene tolerance [67]. In this study, 
when G. oxydans STA suffered with 3  g/L R-MA, the 
transcriptional levels of acrA were upregulated by 2.2-
fold. In addition, compared to wild-type strain in 3  g/L 
R-MA condition, acrA was upregulated by 3.9-fold. Nev-
ertheless, it was only 1.3-fold upregulation in the case of 
normal condition as STA compared to WT. Considering 
the critical function of AcrA in STA when facing environ-
mental pressure, it could be practical to further improve 
the R-MA production by enhancing AcrA expression. 
Then, we coexpressed AcrA and SpEH in G. oxydans 
strains, and not only the final production of R-MA 
increased, the conversion rate also was improved. Most 

importantly, the R-MA production was further improved 
to 15.70 g/L by the evolved strain (Fig. 7b), which was the 
highest obtained from styrene oxide reported thus far.

Conclusions
In this study, G. oxydans was first used as a host cell for 
expressing SpEH to produce R-MA from bulk indus-
trial chemical styrene oxide. After improving the R-MA 
tolerance of G. oxydans 621H by adaptive laboratory 
evolution together with the screened new strong pro-
moter P12780 for enhancing SpEH expression, the pro-
duction increased by 1.92-fold (from 7.36 to 14.06  g/L) 
and the conversion rate greatly improved from 0.366 to 
0.703 g/L/h. We also described the membrane phenotype 
changes of the adapted G. oxydans STA, including better 
membrane integrity and increased membrane hydropho-
bicity, which may directly relate to the improved catalytic 
efficiency of organic substrate styrene oxide. Genomic 
sequencing and transcriptome analysis revealed that 
multiple key genes involved in enhancing R-MA toler-
ance. Finally, the R-MA production was further improved 
by an engineered G. oxydans STA. This study indicated 
that G. oxydans would be a promising host for the pro-
duction of α-hydroxy acids from epoxides and its excel-
lent ability to stereo-selective incomplete oxidation idols 
to the corresponding acids could be used to the maxi-
mum extent. In addition, ALE strategy combing with the 
comparative omics studies would be a valuable tool for 

Fig. 6  Growth in G. oxydans STA of different gene deletions to test their contribution for R-MA tolerance. a Growth curves of G. oxydans STA and its 
gene-deletion strains under normal condition. b Growth curves of G. oxydans STA and its gene-deletion strains in the presence of 4 g/L R-MA. c G. 
oxydans STA and its gene-deletion strains were spotted on solid medium under 0 g/L, 3 g/L and 6 g/L R-MA condition
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enhancing chassis cell characteristics and guiding further 
metabolic engineering directions for high-value chemical 
production.

Materials and methods
Strains, media, and culture conditions
The G. oxydans strains used in this study are listed in 
Additional file 1: Table S1. G. oxydans cells were grown 
in the medium containing 8% sorbitol, 2% yeast extract, 
0.1% KH2PO4, 0.05% MgSO4, 0.01% glutamine and incu-
bated at 30 °C with shaking at 200 rpm. E. coli JM109 as 
host cell was used for plasmid construction and amplifi-
cation and routinely grown at 37 °C in LB medium (0.5% 
yeast extract, 1% tryptone, 1% NaCl). 50  µg/mL kana-
mycin and 90 µg/mL gentamicin were used for selecting 
recombinant plasmids.

Construction of recombinant strains
The egfp and speh genes kept in our lab were amplified 
by PCR. All the screened potential promoters and the 
reported PtufB and Pdnak were amplified by PCR with G. 
oxydans 621H genome as the temple. The sequences of 
primers used for engineering recombinant plasmids are 
listed in Additional file  1: Table  S2. The amplified pro-
moter fragments were ligated with the corresponding 
egfp and speh genes, and inserted into the Hind III and 
Xho I site of pBBR1MCS-2. All the ligated productions 
were transformed into E. coli JM109 and followed by 
DNA sequencing to confirm the ligation results. Then, 
the engineered vectors were transformed into G. oxy-
dans. The endogenous genes marR, fusc, gltD, gltB, acrA, 
and araC in G. oxydans STA were deleted by homologous 
recombination. We amplified their upstream and down-
stream homology arm fragments from genomic DNA of 
G. oxydans STA and ligated them with the marker gene 
of KAN amplified from pBBR1MCS-2. These fusion 

Fig. 7  Contribution of AcrA for G. oxydans WT and G. oxydans STA in cell growth under different environmental stress and final R-MA production. a 
Growth characterizations of WT, STA and AcrA associated strains are represented by the maximum specific growth rates (h−1). Right bar indicates 
the color-scale of the growth rate. b Transformation of styrene oxide into R-MA by WT, STA and AcrA associated strains with SpEH or SpEH 
co-expressing with AcrA
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fragments were directedly introduced into G. oxydans 
STA, following which kan-resistant transformants were 
selected. Their genes were amplified and inserted into 
pBBR1MCS-5 using Gm antibiotics to select recom-
binant plasmids and then transformed into the corre-
sponding single-knockout strains.

Adaptive laboratory evolution experiments
A G. oxydans 621H colony was inoculated into a 10 mL 
medium to culture about 24 h to the logarithmic phase. 
Then, transferred into 50  mL fresh medium containing 
0, 1, 2, 3 and 4 g/L R-MA, respectively, monitored their 
growth by measuring the cell density at OD600. For the 
adaptive evolution experiments, the strategy of inoculat-
ing G. oxydans with gradually increasing the concentra-
tion of R-MA, and the initial concentration was 0.25 g/L. 
After cultivating to the log phase, the cultivation was 
transferred into the fresh medium with an increas-
ing concentration of R-MA by 0.25 g/L each time at 5% 
inoculation volume. After a long term of adaption, the 
adaptive strains can survive in the medium containing 
6 g/L R-MA, and we screened the single colony by plat-
ing on the plates with 6 g/L R-MA and named G. oxydans 
STA. To verify the genetic stability of G. oxydans STA, we 
cultured the single colonies of wild type G. oxydans and 
STA to log phase and then transferred them into fresh 
medium without R-MA every 24 h. After inoculating for 
30 days, the cultivations were into fresh medium contain-
ing 6 g/L R-MA to observe their growth.

Spot assays and cell growth assays
G. oxydans was cultivated to logarithmic phase then 
diluted to an absorbance at 600 (OD600) of 2.0 in fresh 
medium, then aliquots of tenfold serial dilutions (4 µL) 
were spotted onto sorbitol plates containing no R-MA or 
indicated concentrations of R-MA. The cells were incul-
cated for 3 days in 30 °C.

G. oxydans strains were inoculated into 10 mL medium 
to culture about 24 h to the logarithmic phase and then 
transferred into 50 mL fresh medium containing 0, 1, 2, 
3 and 4 g/L R-MA, respectively. We recorded the OD600 
values at regular time intervals.

Transcriptome analysis and whole‑genome sequencing
After the ALE assay, the endpoint colony of STA was 
selected for transcriptome analysis. G. oxydans WT and 
G. oxydans STA cells were cultured to a same OD600 of 
2.3, then the cells were collected, rapidly frozen by liquid 
nitrogen. RNA extraction and transcriptome sequenc-
ing were performed by GENEWIZ Biotech Co., Ltd. 
(Suzhou, China). All differentially expressed genes were 
determined GENEWIZ (Suzhou, China). All differen-
tially expressed genes were determined by q-value ≤ 0.05 

and |log2ratio| of ≥ 1 (Additional file  2: Table  S4). The 
genome of G. oxydans 621H (NC_006677.1) was used as 
the reference [68].

Then, a colony of STA was selected for whole-genome 
sequencing. 100  ng genomic DNA was randomly frag-
mented by sonication (Covaris S220) to a size of less 
than 500  bp. Then, end repairing, A-tailing and adding 
adaptors were treated to these fragments using End Prep 
Enzyme Mix. After amplification and purification, the 
products were validated using an Agilent 2100 Bioana-
lyzer. A PacBio sequencing library was constructed and 
then sequenced using the Sequel II sequencing platform. 
Based on de novo analysis, mutations of insertions, dele-
tions, and single nucleotide mutations were identified 
with the wild-type G. oxydans 621H genome sequence as 
reference.

Fluorescence intensity assay and enzyme activity assays 
of SpEH
G. oxydans strains carrying the eGFP express plasmids 
of different promoters were cultivated in the logarith-
mic phase, collected and washed with 0.2  M  PB buffer 
(pH 7.0) and resuspended in PB buffer at an appropriate 
concentration. The cell fluorescence was measured using 
Gen5 Data Analysis Software (BioTek, USA) at an excita-
tion of 488 nm and an emission of 509 nm upon meas-
uring 96-well plates. The normalized activity of eGFP 
was defined as the ratio of the fluorescence unit (RFUs) 
divided by the absorbance at 600 nm.

G. oxydans strains were cultivated to a same cell den-
sity in log phase, harvest, washed and resuspended with 
phosphate buffer (PB, 200 mM, pH 7.0) to be sonicated 
under the ice bath to obtain the crude enzyme solution 
and prepared a 0.2  M ethylene oxide substrate solution 
in methanol. 850 µL PB buffer mixed with 100 µL crude 
enzymes were placed at 35  °C for 5  min. The reaction 
started by adding 50 µL substrate solution and incubated 
for 10 min. The reaction was terminated by being treated 
in a boiling water bath for 10 min. The enzymic activity 
of SpEH was analyzed using high-performance liquid 
chromatography (HPLC). One unit of SpEH activity was 
defined as the amount of enzyme needed to hydrolyze 
ethylene oxide to produce 1  μmol 1-phenyl-1,2-ethane-
diol (PEG) per minute.

Biotransformation procedure to convert styrene oxide 
to R‑MA with resting cells of G. oxydans strains
The SpEH expression strains of G. oxydans were cul-
tured in 10 mL medium containing 50 µg/mL kanamycin 
and then transformed into 100  mL medium for 30  h to 
reach the logarithmic phase. The cells harvested by cen-
trifuge (8000  rpm, 4  °C, 5 min) and washed twice, then 
resuspended in PB buffer. The fresh cell density of the 
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biotransformation mixture is 25 of OD600 in a 10  mL 
system, and the initial concentration of styrene oxide is 
4 g/L, then added 4 g/L every 4 h until it reached 20 g/L. 
The reaction was carried out in a 50 mL shaker at 30 °C, 
200 rpm, and 100 µL aliquots of the mixture were taken 
out every 4 h before adding substrates. Then, centrifuged 
at 10,000 rpm for 1 min, 50 µL of supernatant was diluted 
with 950 µL ultrapure water and then filtered by 0.22 µm 
filter for HPLC analysis. R-MA was analyzed by HPLC 
equipped with an Aminex HPX-87H analysis column 
(Bio-Rad, 300 × 7.8 mm) and UV–Vis detector at 210 nm 
using 5 mM H2SO4 as eluent [69].

Membrane characteristics analysis
G. oxydans wild-type and G. oxydans STA cells were 
cultured to the same OD600 in log phase, then centri-
fuged and washed with PB buffer, and diluted to OD600 
of 0.5. Propidium iodide (PI) was applied to analyze 
inner membrane permeability [70]. Taking 2 mL of dilu-
tions into centrifuge tubes, 4 µL PI (1  g/L) were added 
and incubated in the dark for 5  min, harvested and 
washed twice. The controls were the same treatment 
using PB buffer replaced PI. The fluorescence inten-
sity was measured under the excitation wavelength of 
536 and emission wavelength of 617 using a fluores-
cence spectrophotometer. The inner membrane perme-
ability was indicated by the absorption factor of PI and 
analyzed by the following formula: PI absorption fac-
tor = [F(PB + cells + PI)-F(PB + cells)]/[F(PB + PI)-F(PB)]. 
N-Phenyl-α-naphthylamine (NPN) was used to analyze 
the outer membrane permeability [71]. 200 µL sample 
dilutions were mixed with 2 µL NPN (10 mM), then the 
fluorescence intensity was detected by fluorescence spec-
trophotometer (excitation at 350  nm and emission at 
420 nm).

The membrane integrity of G. oxydans strains were 
also analyzed using PI as the fluorescence dye, and the 
preparation of samples was the same as described above 
[72]. 500 µL dilutions with 3 µL PI were incubated in dark 
condition for 5 min, then measured by FACSCalibur flow 
cytometer with a rate of 500 to 800 cells/s and detected 
more than 20,000 cells. CellQuest software was used to 
collected and analyzed the results.

Membrane hydrophobicity of G. oxydans wild-type 
and G. oxydans STA cells were monitored by measur-
ing the microbial adhesion to hydrocarbons (MATH) 
[46, 73]. After being collected and washed twice, the 
cells were suspended in PB buffer with a certain optical 
density at 550 nm (A0). 2.4 mL cell suspension together 
with 0.8  mL dodecane were vortexed at 1500  rpm for 
10  min, then held for another 10  min to allow phase 
separation. Removed the organic layer and measured 

the absorbance (OD550) of the aqueous phase (A1). 
We used the following formula to calculate the percent-
age of cells into dodecane: (adhesion, %) = (A0–A1)/
A0*100%. The adhesion was used as an indicator of the 
membrane hydrophobicity [74, 75].
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