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Abstract 

Humic substances (HS) are originated from naturally decaying biomass. The main products of HS are humic acids, 
fulvic acids, and humins. HS are extracted from natural origins (e.g., coals, lignite, forest, and river sediments). However, 
the production of HS from these resources is not environmentally friendly, potentially impacting ecological systems. 
Earlier theories claimed that the HS might be transformed from lignin by enzymatic or aerobic oxidation. On the other 
hand, lignin is a by-product of pulp and paper production processes and is available commercially. However, it is still 
under-utilized. To address the challenges of producing environmentally friendly HS and accommodating lignin in val-
orized processes, the production of lignin-derived HS has attracted attention. Currently, several chemical modification 
pathways can be followed to convert lignin into HS-like materials, such as alkaline aerobic oxidation, alkaline oxida-
tive digestion, and oxidative ammonolysis of lignin. This review paper discusses the fundamental aspects of lignin 
transformation to HS comprehensively. The applications of natural HS and lignin-derived HS in various fields, such as 
soil enrichment, fertilizers, wastewater treatment, water decontamination, and medicines, were comprehensively dis-
cussed. Furthermore, the current challenges associated with the production and use of HS from lignin were described.
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Introduction
Although the global population has been increasing at an 
alarming rate, agricultural land has not expanded signifi-
cantly [1, 2]. In this circumstance, improving the human 
ability to grow grains in a limited space, e.g., in small 
fields, is critical. Farmers depend on inorganic chemical 
fertilizers to keep the soil fertile for cultivation. However, 
the overused lands become unfertile and saline with a 
different pH in the long run. Soil salinity is characterized 
by high amounts of  Na+,  Mg+2,  Ca+2,  Cl–,  HCO3

–, and 
 SO4

–2, affecting plant growth [3]. Moreover, the total car-
bon content in the soil decreases daily. The organic mat-
ter of soil contains the residues of plants and animals and 

other organic compounds that form during the biomass 
decomposition processes in the soil. In this case, about 
60% of the organic matter of soil is humic substances 
(HS) [4–7], which play a vital role in the health of soil for 
cultivation.

HS are mainly composed of humic acids (HAs), fulvic 
acids (FAs), and humins [8]. Structurally, although HA 
and FA share similar functional groups, FA has a lower 
molecular weight than HA does. As HS are the oxidized 
products of degraded biomass (e.g., lignin), they contain 
many oxygen-containing functional groups, such as ali-
phatic/phenolic hydroxyl groups, carboxylic acid groups, 
and quinones [9, 10]. These materials can probably be 
fabricated from other materials.

HS can play a vital role in managing the actual organic 
content of the soil. However, their complicated chemical 
structures are not easily degraded by the soil’s microor-
ganisms. Moreover, their close interaction with soil min-
erals helps them remain intact for an extended period. 
Organic fertilizers, such as composts and cattle manures, 
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are primarily used to balance the humus and mineral 
content and act as natural pesticides [11]. Like organic 
fertilizers, humic substances (HS) are used in a few coun-
tries to improve soil quality [3]. It is well documented 
that the HS play a vital role in atmospheric nitrogen 
management by increasing the soil’s exchangeable  NH4

+ 
and available  NO3

−, thus preventing nitrogen leaching 
and stimulating nitrifying bacteria [12–14]. Moreover, 
complexation reactions by HS hinders the precipitation 
of soil minerals, such as iron and aluminum [15–18]. Pre-
vious studies also claimed that HS could form complexes 
with soil minerals (including toxic metals), hydroxides, 
and organic compounds [19–22]. However, the sources 
of natural HS are limited. Thus, the incentives for gen-
erating HS artificially from natural biopolymers, such as 
lignin, are high.

Lignin is the most abundant aromatic biopolymer on 
earth, containing many active functional groups, e.g., 
aliphatic and phenolic moieties. Lignin is a three-dimen-
sional, highly cross-linked macromolecule composed of 
three substituted phenols of coniferyl, sinapyl, and p-cou-
maryl alcohols generated by enzymatic polymerization, 
yielding a vast number of functional groups and link-
ages [23, 24]. The primary source of lignin is plant bio-
mass [24–27], mainly produced as the by-product of the 
pulping processes of wood and other plant resources. The 
chemical characteristics of lignin differ depending on the 
pulping processes and the origin of the lignin resources. 
Although unmodified lignin has a limited application 
today, many applications have been proposed for chemi-
cally modified lignin derivatives, such as fine chemicals, 
emulsifiers, flocculants, synthetic floorings, sequestering, 
binders, thermosets, paints, adhesives, and fuels [28–34]. 
There are various ways to modify lignin for valorization, 
such as pyrolysis [35–37], hydrolysis [38, 39], hydrog-
enolysis [40–42], gasification [43, 44], hydrothermal 
conversion [45], and oxidation [46–48]. Oxidation is the 
most popular route for lignin modification and depolym-
erization for vanillin and organic acid production [49, 
50]. Oxidation can be conducted using different oxidizing 
agents or various catalysts and enzymes [47–49, 51–53]. 
Alkaline aerobic oxidation could be an efficient chemical 
process to convert lignin and lignocellulosic biomass into 
HS.

Earlier studies reported a direct connection between 
natural humification and lignin due to aromatic struc-
tures and other common functional groups found in HS 
and lignin [54, 55]. It was also illustrated that artificial 
humification by alkaline oxidation or oxidative ammonol-
ysis/ammoxidation of technical lignin would be possible 
[56–61]. This review article describes the complete his-
torical origin of HS and the similarities between HS and 
lignin comprehensively. Also, the natural humification 

process and recent approaches to transforming lignin 
into HS-like materials are extensively discussed. Further-
more, this review article extends the discussion on the 
application of lignin-derived HS.

Origin of humic substances: historical review
Humic substances were first defined in 1761 by Wallerius 
as a decomposed organic matter [62]. In 1786, Achard 
extracted a brown substance from soil and peat using a 
KOH solution and named it humic acid [63, 64]. Humus, 
a Latin word suggesting a soil-like substance, was first 
introduced by de Saussure in 1804, referring to dark soil 
organic matter [62]. In 1837, Sprengel developed several 
methods for preparing humic acid by pretreating soil 
with dilute mineral acids before alkaline extraction [62]. 
Sven Oden (1919) postulated that HS are the light to 
dark-brown substances of unknown materials, which are 
formed in nature by the decomposition of organic mat-
ter through the actions of microorganisms or in a labora-
tory by oxidizing chemical reagents. Alternatively, it was 
suggested that humus is the product of the condensation 
reaction between carbohydrates and amino acids in a 
microorganism-free environment [65]. It was also stated 
that phenol, quinone, and hydroquinone oxidation in 
an alkaline solution yields compounds similar to humic 
acids [66].

In 1936, Waksman proposed the “Lignin-protein the-
ory” and stated that HS could be generated from the 
microbial attack of lignin [64]. According to this theory, 
the incomplete microbial attack of lignin molecules 
fragments lignin into smaller units and residues, which 
become part of the soil humus. In the degradation pro-
cess, the methoxyl groups of lignin decompose into 
o-hydroxy phenols, and the oxidation of the aliphatic side 
chain converts into carboxylic acid groups. Moreover, 
Waksman reported that the presence of nitrogen com-
pounds in the HS might result from the condensation 
of lignin with the microbial protein and other nitrog-
enous compounds. However, the final transformation of 
modified lignin residues to humic acids followed by ful-
vic acids was unclear in theory. Although the concept 
of Waksman’s theory is controversial to many research-
ers, scientists agree with the theory that HS originate 
from plant residues and lignin-based materials. In 1982, 
Stevenson proposed the polyphenol theory of HS gen-
eration, as presented in Fig. 1. According to this theory, 
lignocellulosic biomass decomposes into lignin, cellulose 
and other non-lignin compounds (tannins, flavonoids, 
carotenoids, etc.). The lignin is fragmented into phenolic 
aldehydes and acids by the action of soil microorgan-
isms. Some parts of these phenolic compounds (mainly 
phenolic acids) may oxidize to carbon dioxide by dif-
ferent enzymes. Later, these phenolic and non-lignin 
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compounds are attacked by soil microorganisms and 
transformed into polyphenols. By enzymatic oxidation, 
the polyphenols convert to quinones. Finally, condensa-
tion occurs between animal protein amino compounds/
acids in the soil and the quinones to transform into the 
natural HS in the soil [55].

In 1988, Flaig proposed a model reaction scheme for 
a natural humification process (Fig. 2). According to the 
model, the lignin macromolecule would fragment into 

precursors (1). Through microbial action and demeth-
ylation, the lignin units and other phenolic compounds 
from non-lignin parts (2, 3) would convert to catechols 
(4, 5). Further aerobic or enzymatic oxidation of those 
compounds would lead to quinone formation. Follow-
ing condensation reactions, the amino acids from pro-
teins and ammonia (degraded from protein by anaerobic 
digestion) would react with the quinones to transform 
into dark-brown HS polymers containing nitrogen [68]. 

Fig. 1 Polyphenol theory of HS formation from biomass adapted and redrawn from [67]

Fig. 2 Reaction scheme for natural humification adapted and redrawn from [68]



Page 4 of 20Sutradhar and Fatehi  Biotechnology for Biofuels and Bioproducts           (2023) 16:38 

It is also postulated that lignin’s carbon and methoxyl 
contents would degrade, and other functional groups, 
such as hydroxyl, carbonyl, and carboxylic acid, would 
increase due to oxidation reactions. It was reported that 
when oxidized under pressure, lignin is converted to 
humic acid-like compounds and finally to aromatic com-
pounds containing acid groups [50, 59].

Properties of HS
The origin, location, and extraction methods are the main 
factors that are responsible for the different chemical 

properties of HS [69]. The main constituents of HS are 
humin, HA, and FA. Figure  3 represents the tentative 
structures of HA and FA, while Table  1 describes the 
physicochemical properties of these compounds.

Humins are the insoluble fractions of HS, whereas HA 
and FA are the soluble fractions. The solubility of HA is 
pH dependent (Table  1). When the HA is dispersed in 
alkaline solutions, deprotonation happens, and the ani-
onic hydrophilic groups, such as carboxylate and phe-
nolates, dissociate in the solutions. On the other hand, 
in acidic media, due to protonation, HA precipitates 

Fig. 3 Chemical structures of Humic acid (HA) and fulvic acid (FA); adapted and redrawn from [67]

Table 1 Chemical properties of humin, HA, FA, and different types of lignin

Type of lignin Solubility Carboxylic acid 
group, mmol/g

Phenolic OH, 
mmol/g

Aliphatic OH, 
mmol/g

Molecular weight 
(Mw, g/mol)

C/N Refs.

Humin Not soluble 3–4 2 NA > 300,000 NA [69, 73–75]

HA pH > 2 2–5 2–6 1–4 2000–1,000,000 8–61 [69, 73–76]

FA soluble 8–9 3–6 3–5 600–900 6.7–9.2 [69, 73–75]

Kraft lignin (KL) pH > 7 0.3 2.6 2.45 1000–15,000 135 [51, 77, 78]

Lignosulfonate (LS) soluble 0.1–0.53 1.5–2 1.9–4 1000–50,000 240 [51, 78–80]

Organosolv lignin pH > 7 0.05–0.25 2.6–5.1 1.3 500–5000 203 [53, 78, 79, 81]

Soda lignin pH > 7 0.9–1 2.5–3.7 2.4 800–3000 68 [53, 78, 79, 82]
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[69, 70]. FA has a smaller degree of polymerization, less 
organic carbon, more oxygen contents, and high acidity; 
consequently, their solubility is higher compared to HA 
[71].

Depending on the source, HA has a wide range of 
functional groups, such as carboxylic, hydroxylic (both 
aliphatic and aromatic), quinones, amino acid groups, 
and carbohydrates [72]. Due to the significant amounts 
of carboxylic and phenolic OH, HA and FA show acidic 
behavior (Table  1), and HA has comparatively higher 
molecular weights than FA (Table 1).

The carbon-to-nitrogen ratio (C/N) is one of the essen-
tial properties of HS. Due to microbial action, degrada-
tion, and condensation with the amino compounds in the 
soil, natural HS are enriched with nitrogen. Therefore, 
the nitrogen content is higher in HA and FA than that 
in lignin (Table 1). Also, a smaller C/N is better for plant 
habitat applications, including agricultural land.

Humification of waste biomass and non‑lignin biomass 
materials
Table 2 describes recent developments in the transforma-
tion of waste biomass and non-lignin biomass materials 
into HS by hydrothermal (HT) and alkali pre-treatment 
[83–90]. A two-stage HT process (200 ℃) was developed 
and successfully generated 28 wt.% of HA from corn 
stalks [83]. The study reported that transforming bio-
mass to HA by HT depends on the pH of the solution. 
In the first stage of acidic HT, the corn stalks generated 
precursors, such as carbohydrates, furans, phenols, and 
different organic acids. Later, the alkaline HT process 
converted these precursors into artificial HA. An earlier 
study also reported that, under acidic conditions (pH 1 to 

5), the carbohydrates (i.e., glucose or saccharides) would 
be converted to 5-hydroxymethyl-furfural-1-aldehyde 
(HMF) through dehydration [84]. A condensation reac-
tion would combine organic acids with the HMF to gen-
erate branched HS-like products (HA and FA) [84].

The reaction conditions affect the characteristics of 
HA production greatly. Generally, insoluble HS (humins) 
formations would be dominant under acidic conditions, 
while soluble HA would be formed under alkaline condi-
tions [90]. The yield of HS (HA or FA) in HT processes 
also depend on the reaction temperature. An earlier 
study reported that increasing temperature increased the 
HS formation. In this context, increasing the temperature 
from 184 to 220 ℃ in the HT treatment of broccoli stem 
resulted in HA yield elevation from 30.9 to 50.7 g/kg [89]. 
Moreover, alkaline HT processes toward the formation 
of HA depend on the strength of the alkali. The effect of 
different alkalis, such as KOH and  NH4OH, was studied 
to observe the HA formation from cabbage leaves and 
reported that a strong alkali increased the HA yield due 
to the higher delignification rate [87]. The main drawback 
of the direct alkali HT process (Table 4) is the lower yield 
(1.8–2.3%), which might hinder the formation of HMF 
in a high alkaline environment. Few studies reported 
the neutral HT treatment (water) of waste biomass (i.e., 
wheat straw, sugarcane exocarp and food wastes) and 
reported a significant yield of HA (15–44%) [86, 88, 91]. 
Due to the self-ionization at a high temperature, water 
can generate  H+ ions that hydrolyze the macromolecules 
(i.e., cellulose, hemicellulose, lignin, and protein) of bio-
mass to their monomers (i.e., glucose, xylose, HMF, phe-
nolic monomers, formic acid, lactic acids, amino acids, 
etc.) [86, 91]. Furthermore, under the acidic environment 

Table 2 Humification of biomass and non-lignin materials by alternative methods

Raw material Chemical processes Conditions Yield Refs.

Corn stalk Two-stage Hydrothermal 180 ℃, 4 h, pH 1
180 ℃, 4 h, pH 13

HA-28.7% [83]

Wheat straw Hydrothermal 220 ℃, 4 h HA-30.2% [88]

Broccoli stem Hydrothermal 204–220 ℃, 10 min HS-198 g/kg
HA-50.7 g/kg
FA-28 g/kg

[89]

Sugarcane exocarp Hydrothermal 200 ℃, 1 h HA-14.85% [86]

Cabbage leaf Alkali- Hydrothermal KOH (25%), NH4OH (20%), 
195 ℃, 4 h

Not available [87]

Glucose, saw dust, tulip tree leaves Alkali-Hydrothermal KOH HA-1.8% [84]

Food wastes (rice, meat, cabbage, potatoes) Hydrothermal 215 ℃, 1 h HA-43.5 [91]

Fermented Furfural Alkali dissolution and acidification KOH (8%)
70 ℃, 2.5 h

HA-49% [85]

Carbohydrates monomer Hydrothermal ([BMIM]Cl) (10 g)
CrCl3 (0.74 g)
110 ℃, 4 h

HA-56.6% [92]
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(generated organic acids), amino acids, phenolic com-
pounds, and the HMF derivatives may polymerize to 
form HS [91]. The HT process is carried out at a high 
operating temperature (Table  2) to generate the HMF, 
which is considered one of the essential precursors for 
HS formation.

In addition to those acidic and alkaline HT, carbohy-
drates monomers (i.e., glucose, fructose) can be con-
verted to HS through HMF formation in the presence 
of different ionic liquids, such as 1-butyl-3-methylimi-
dazolium chloride ([BMIM]Cl), with transitional metal 
salts as catalysts (i.e.,  CrCl3) [92] at a comparatively 
lower temperature. Xu et al. reported the production of 
water-soluble humins (HA) could be achieved by 56.6% 
at 110 ℃ [92]. The alkali treatment (8% KOH solution) 
of pre-fermented furfural (FR) residue could also be uti-
lized for artificial humification, which would be followed 
by acidification to achieve a material with 49% HA [85]. 
However, the formation of humins from carbohydrates 
would be considered an undesirable by-product that 
reduces the yield of HMF [92].

Lignin: types, properties, and applications
The plant biomass contains cellulose, hemicellulose, 
lignin, and a small number of extractives. Lignin is the 
most abundant natural aromatic compound. The func-
tional groups of lignin include methoxyl, carbonyl, 

carboxyl, and hydroxy, linking to aromatic or aliphatic 
moieties in various amounts and proportions, which 
make lignin with different chemical structures [93, 94]. 
Up to 30% of the organic carbon on earth is sourced 
from lignin [95]. The typical lignin content of softwood is 
24–33%, hardwood is 19–28%, and grasses is 15–25% [53, 
96]. Various linkages in lignin molecules are shown in 
Fig. 4. The three-dimensional heterogeneous lignin struc-
ture is formed in plants by the radical polymerization of 
three aromatic precursors, such as p-coumaric, coniferyl, 
and sinapyl alcohols [97]. During the biosynthesis of 
lignin in plants, these monolignols are radically coupled 
with each other to form different inter-unit linkages, 
such as β-O-4 (45–50%), 5–5 (18–25%), β-5 (9–12%), β-1 
(7–10%), α-O-4, (6–8%), and β–β (0–3%) [98, 99]. Due 
to its high content of phenolic precursors, lignin could 
potentially be a renewable source for aromatic chemical 
production [100, 101].

The most widely produced technical lignins are kraft, 
lignosulfonates, soda, and organosolv lignin. Some 
chemical properties of different lignins are presented 
in Table  1. Kraft lignin (KL) is produced by the sulfate 
pulping process, which accounts for nearly 85–90% of 
the world’s total lignin production and is mostly burnt 
on-site for steam generation [102, 103]. In this process, 
the wood biomass is delignified by an aqueous solution 
of sodium hydroxide and sodium sulfide at 140–170 ℃ 

Fig. 4 A model structure of lignin and common lignin linkages; adapted and modified from [125]
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[51]. The recovered KL is not water soluble but highly 
soluble in an alkaline solution (Table  1). Moreover, KL 
has the highest number of phenolic hydroxyl groups due 
to the ample cleavage of β-aryl bonds. In addition, it has 
a significant amount of quinone, catechol, and carboxylic 
groups due to the delignification in the oxidative condi-
tions [104]. The sulfite pulping process produces ligno-
sulfonates (LSs), and the delignification is carried out at 
120–180 ℃ in the presence of alkali metal sulfites and 
sulfur dioxide [105]. LS contains many anionic functional 
groups (Table 1), such as carboxylic, sulfonate, and phe-
nolic hydroxylic groups [106–108]. The unique func-
tional and structural properties of lignosulfonates make 
them excellent raw materials as dispersants [109], bind-
ers [110], adhesives [111], artificial HS [59], and cement 
additives [112, 113]. Due to a lack of economic viability, 
only 2% of lignin is utilized as a value-added product, 
such as vanillin. In contrast, the remainder is burned 
as a low-grade source of energy [114, 115]. Soda lignin 
(SL) is a by-product of pulping of mainly annual plants, 
like flax, straws, bagasse, etc. [116–118]. In this process, 
biomass is delignified by 13–16 wt.% of NaOH solution 
at 140–170 ℃ [51]. Soda lignin is highly pure due to its 
production in a sulfur-free pulping process. The applica-
tions of the soda lignins are suggested in phenolic resins, 
animal nutrition, and dispersants in polymer synthesis 
[102, 119–121]. Organosolv lignin (OL) is isolated from 
the black liquor of organosolv pulping, where biomass 
is digested at temperature ranges of 100 and 190 °C with 
organic solvents, such as acetic acid and formic acid etha-
nol [51, 122]. This lignin contains minimal sulfur content 
rendering it chemically pure [123, 124]. The potential 
applications of OL were suggested in ink formulations, 
varnishes, and paints [107] due to their lower molecular 
weight (Table 1). Also, OL gained attraction toward the 
preparation of wood adhesives and fillers [30].

Structural similarities between lignin and HS
Recent studies support the similarities between lignin 
and HS. Chemically, both lignin and humic acid have 
similar functional groups, such as carboxyl, phenolic/
aliphatic hydroxyl, and methoxyl, and, most importantly, 
aromatic moieties [55, 126, 127]. In soil’s organic matter, 
polyphenols and aromatic carboxylic acids are believed to 
be formed from lignin degradation and several microbial 
syntheses [128]. Oxidized lignin-derived phenyl propane 
has also been confirmed to be present in the coal-based 
HS [129–131], suggesting that similar functional groups 
are shared between HS and lignins. Also, small aromatics 
identified by the pyrolysis of HS belong to lignin moieties 
[126, 127].

The oxidation (using CuO,  KMnO4, and  H2O2 in an 
alkaline environment) products of humic and fulvic acids 

are similar to lignin aromatic moieties [132–134]. Yan 
et al. reported that 2–3 mmol/g of phenolic OH groups 
are found in different sources of HAs [134]. It was also 
suggested that the degradation products of HS are simi-
lar to lignin-based phenolic compounds [54, 135]. Other 
studies showed that structural units and some typical 
inter-unit linkages were preserved during the transfor-
mation of lignin into HS [136, 137]. A recent survey of 
composted grass lignin and humic acids showed that 
both materials have a similar range of phenolic OH con-
tents (1.2–1.5 mmol/g) [138]. This study reported differ-
ent carboxylic acid groups of ~ 0.8 and 2.3–2.7 mmol/g in 
lignin and HAs, respectively. Also, the methoxy groups of 
lignin were found to be almost 5 times as much as that 
of HA. These results support the earlier theories regard-
ing higher carboxylic acid groups and demethylation in 
HS than in lignin. Interestingly, the alkaline nitrobenzene 
oxidation of the grass lignin and HA provided similar 
phenolic compounds, such as vanillin, vanillic acid, and 
syringyl and guaiacyl units, at varied amounts [138].

Origin and challenges of HS
Humification is a complex biochemical process. It was 
observed that the polyphenol structures of the HS orig-
inate from the plant’s lignin [139]. The sources of some 
nitrogenous bonds may be due to the protein degrada-
tion of the microorganisms and the biomass from other 
dead animals. The characteristics of HS differ depending 
on the source and their extraction methods [129, 140]. 
Currently, the primary sources of HS are peat, leonard-
ite, lignite, and river sediments, which are non-renewable 
sources [141]. Moreover, the excessive extraction of HS 
from natural sources may cause severe health hazards 
and ecological disturbance, including global warming, 
climate change, and land erosion in the long run, simi-
lar to coal mining [142]. It was reported that coal or lig-
nite mining might release harmful organic substances 
that mix with surface water and drinking those water 
may cause severe kidney failure [142]. In addition, col-
lecting HS from the river sediments would remove the 
under-water microorganisms, which can directly hin-
der the aquatic ecosystem. The helpful microorganisms 
facilitate the decomposition of dead biomass to adjust the 
ecological balance. Considering the drawbacks of natural 
HS resources, it is necessary to consider alternative ways 
for preparing HS from renewable sources, like lignin. As 
discussed, many HS are directly linked to biomass con-
version (mostly lignins), and the artificial humification 
process can open windows of opportunities for utilizing 
lignin. However, the humification of technical lignins is 
yet to commercialize because of the complexity of the 
lignin structure. There are two primary methods for 
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converting technical lignins to HS: direct oxidation [58, 
59] and oxidative ammonolysis (OA) [60, 139].

Humification of technical lignin by direct oxidation
Due to active hydroxyl groups, lignin acts as an excellent 
raw material for oxidative cracking and the production of 
various aromatic fine chemicals, including organic acids, 
aldehydes, and hydrophilic anionic lignin [37, 143–145]. 
The oxidation of lignin involves the depolymerization 
and fragmentation of the aryl ether bonds and other 
linkages [143]. Alkaline wet oxidation of lignin requires 
a high temperature (125–320  °C) and pressure (up to 
2 MPa) in the presence of air or molecular oxygen [146]. 
Moreover, the post-treatment to separate the chemicals 
from the mixture is not economically feasible. According 
to the recent approaches, the direct oxidation of techni-
cal lignin toward transformation into HS-like materials 
can be categorized mainly in three ways, such as alka-
line aerobic oxidation (AAO) of technical lignin, alkaline 

oxidative digestion (AOD) of lignocellulosic biomass by 
hydrogen peroxide, and Fenton reagent-based oxidation 
of lignin by hydrogen peroxide. Table 3 summarizes the 
different approaches of lignin and biomass oxidation 
toward artificial humification.

Alkaline aerobic oxidation (AAO) of lignin
Figure  5 demonstrates the schematic flow diagram for 
producing artificial lignohumate (ALH) from technical 
lignin by AAO [59, 144]. In this process, lignin is dis-
solved in alkaline solutions, such as KOH or NaOH (as a 
catalyst), to activate the phenolic OH groups of lignin and 
later oxidize by air/oxygen or hydrogen peroxide. After 
the reaction, the product can be used directly, either in 
liquid or in solid form. However, the AAO generated by 
NaOH treatment may need to be purified by dialysis as 
 Na+ may increase salinity and inhibit plant growth when 
applied as a fertilizer [144].

Table 3 Different oxidation approaches for lignin and biomass conversion for HS-like lignin material productions

NA not available, RT room temperature, ON overnight

Raw materials Chemical/reagents used Temperature 
(°C), time 
(min)

Carboxylic 
groups, 
mmol/g

Mw, g/mol Application remarks Refs.

LS NaOH,  H2O2/air 170–190, 180 NA NA Transformed LS to HA (77 wt.% yields) [59]

LS KOH, air/O2 NA NA NA Increased corn root dry weight and 
chlorophyll by 18% and 45%, respec-
tively at 1 mgC/L dose

[58]

KL KOH,  O2 195, 30 2.6 3500–4000 Increased fresh corn plant length, dry 
weight, and chlorophyll content by 27, 
92 and 32%, respectively at 10 mgC/L 
dose

[144]

KL FeSO4,  H2O2 RT, 120 NA NA Increased seeds germinations and two 
folds of chlorophyll contents in leaves 
at 860 ppm dose

[131]

Giant reed KOH/H202 50, ON NA NA Enhanced tomato seed germination 
and early hypocotyl growth by 10% at 
10 ppm

[157]

Giant reed and Miscanthus KOH,  H202 50, ON 1.02 Enhanced germination of maize seeds 
and root elongation increased by 50% 
at 10 ppm dose

[154]

Cardoon, Eucalyptus, and 
black poplar woods

NaOH,  H202 50, ON 0.4–1.4 NA Increased maize seedling growth by 
72% at 10 ppm dose

[158]

Fig. 5 A schematic flow diagram of alkaline aerobic oxidation for lignohumate production from lignin
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Figure 6 represents the simplified mechanism of AAO 
of lignin toward forming HA-like materials. Initially, 
lignin’s free phenolic hydroxyl groups are ionized to pro-
duce phenolates in an alkaline environment. Then,  O2− 
reacts with phenolate and forms phenoxyl radicals, i.e., 
the first oxidation product. The superoxide radical anion 
 (O2·−) attacks in the meta position and breaks the meth-
oxy groups of lignin to convert into quinones [144, 147]. 
Further oxidation leads to aromatic ring cleavage and 
the formation of dicarboxylic acid (or any orthoquinone 
compounds) [147, 148]. Route B in Fig. 6 represents the 
undesirable coupling of phenolate ions to form biphe-
nyl compounds, which leads to the repolymerization of 
lignin.

Naturally, the HS are enriched with organic acid 
groups. Therefore, the fundamental target of alkaline 
aerobic oxidation is to convert the phenolic and ali-
phatic hydroxyl groups of lignin into carboxylic groups 
[50]. Significant structural changes are observed during 
this oxidation, such as decreasing methoxyl, aliphatic, 
and phenolic hydroxyl groups, while increasing aliphatic 
and aromatic acid groups [144]. These anionic groups 

increase the hydrophilicity of the oxidized lignin materi-
als and play a significant role in mineral transportation 
toward the roots [144]. In one study, lignosulfonate was 
oxidized with hydrogen peroxide in an aerobic system, 
which increased the mass shares of HA up to 77% [59]. It 
was reported that similar to naturally occurring HS, the 
oxidized KL and LS showed positive physiological effects 
on plant growth, such as increased length, dry weights, 
carbohydrate/sugar synthesis in the plants, and chloro-
phyll contents on the leaves [58, 144]. However, the AAO 
of lignin generates a wide range of phenolic monomers 
and derivatives, which not only improve the aforemen-
tioned physiological effects but also stimulate hormonal 
activities, such as auxin (IAA) and Gibberellin (GA) [58, 
149–151]. However, depending on the structural con-
formation and concentrations, some phenolic acids may 
show inhibitory effects on plant growth and other bioac-
tivities [152–154].

Alkaline oxidative digestion (AOD) of biomass
In another pathway, lignocellulosic biomass was modified 
to water-soluble lignin via an alkaline oxidation digestion 

Fig. 6 Reaction pathways for the alkaline aerobic oxidation of lignin adapted from [144, 148, 155, 156]. Route A: degradation (simplification). Route 
B: undesired coupling)
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procedure for producing HS-like materials [157–159]. 
A schematic flow diagram of this process is presented 
in Fig. 7. In this system, biomass is allowed to digest in 
an alkaline (KOH/NaOH) oxidative environment in the 
presence of an oxidant, e.g., hydrogen peroxide. After the 
digestion, the insoluble cellulosic fibers are removed by 
filtration, and the filtrate is acidified to separate hemi-
celluloses/sugars from lignin. After that, the separated 
lignin is suspended in water and neutralized to get water-
soluble fractions, which are considered lignohumate. The 
oxidative reaction mechanism on lignin should follow a 
similar path as alkaline aerobic oxidation.

Transforming biomass through the AOD process has 
a few advantages, such as direct use of biomass for con-
version, low operating temperature (50  ℃, overnight), 
and obtaining cellulose fibers as by-products. Moreover, 
monomeric toxic phenolic compounds (also known as 
phytotoxic chemicals) can be achieved due to the acidi-
fication step (Fig.  7). The carboxylic acid groups can be 
achieved up to 1.4 mmol/g [154, 157, 158]. The bioactiv-
ity of the extracted lignin toward any plant depends on 
the hydrophilicity of lignin samples. Several studies on 
the oxidative digestion of biomass showed that non-wood 

water-soluble lignin (i.e., isolated from giant reed, mis-
canthus, cardoon, etc.) had higher hydrophilicity and 
bio-stimulating performance on plant growth [154, 157, 
158]. On the other hand, oxidized eucalyptus lignin was 
the least effective for plant stimulations following this 
oxidation method, which may be attributed to their poor 
hydrophilicity due to less hydroxylated long aliphatic 
chain, inhibiting the release of bioactive molecules to the 
aqueous environment [158].

Fenton reagent‑based oxidation of lignin
A new method was developed for the oxidation of lignin, 
e.g., kraft lignin, by hydrogen peroxide in the presence 
of a Fenton reagent catalyst at room temperature [131]. 
Figure  8 represents the schematic flow diagram of this 
method. In this process, lignin is mixed with a hydrogen 
peroxide solution. After the mixing, the solution is oxi-
dized at room temperature in the presence of iron (ii) 
sulfate heptahydrate. After the oxidation reaction, the 
solution is centrifuged and washed several times with 
deionized water to remove any unreacted chemicals 
and some toxic phenolic compounds. The solid residue 

Fig. 7 A schematic flow diagram of alkaline oxidative digestion for lignohumate production from lignin

Fig. 8 A schematic flow diagram of Fenton reagent-based oxidation for lignohumate production form lignin; RT room temperature
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(oxidized lignin) is lyophilized for further application as 
lignohumate.

The Fenton reagent-based lignin depolymerization is 
considered a nonspecific oxidation process. The Fenton 
reactions would allow lignin particles to mimic com-
mercial HA because of the presence of the oxidized iron-
based inorganics deposited on the lignin-based products. 
The primary goal of this oxidation is to increase the O/C 
ratio, which would indicate the formation of oxygenated 
functional groups, such as quinones, carbonyl, and car-
boxylic acid groups in the oxidized lignin. The outcomes 
of this process mainly depend on the organic structures 
of lignin and the ratio of hydrogen peroxide and iron (ii) 
sulfate [131, 160]. However, the Fenton-induced oxida-
tion may generate some phytotoxic phenolic compounds 
[161]. Therefore, a post-separation of the soluble frac-
tions (containing phenolics) is recommended to obtain a 
purified product.

Humification of lignin by oxidative ammonolysis (OA)
The artificial humification can be carried out by the OA 
process of lignin, which can incorporate a consider-
able amount of nitrogen in the humified lignin in differ-
ent forms. Generally, soil’s organic matter, such as HS, 
must have nitrogen for efficient biodegradation affinity. 
Research showed that a C/N ratio under 20 facilitates 
biological degradation [60], whereas a higher value than 
25 can hinder the degradation process. Natural humifi-
cation could be conducted artificially by reacting techni-
cal lignin with ammonium hydroxide/ammonia solution, 
increasing the C/N ratio and crop productivity [139].

Figure  9 demonstrates the preparation of nitrogen-
enriched lignohumates (N-ALHs) following the oxida-
tive ammonolysis (OA) process [56, 57, 162]. In this 
method, lignin is suspended in different concentrations 
of  NH4OH solution. The reaction is carried out in the 
temperature ranges of 130–150 ℃ and treated with or 
without any oxidants (air/oxygen). The water-soluble 
and insoluble parts are separated after the reaction and 
can be utilized as different grades of fertilizers [60]. 

The reaction mechanism of the OA system is shown 
in Fig. 10. It is seen that lignin fragmentation occurs at 
the aliphatic side chain during the OA process result-
ing in the cleavage of β-O-4 linkages [139]. The aro-
matic part of the lignin provides substituted acid 
derivatives, such as amide and nitrile compounds. Due 
to the oxidizing environment, some aromatic rings of 
lignin are degraded to convert into aliphatic dicarbox-
ylic acids through quinone formations. Later, these ali-
phatic acids may react with available ammonium ions 
to form their salts. In addition, as the OA is carried out 
at a fairly high temperature and pressure, the produced 
 CO2 can react with the unreacted ammonia gas to pro-
duce urea as the final product [139].

Different approaches to lignin modification by OA are 
listed in Table  4. The primary target of the OA process 
is to incorporate nitrogen into lignin molecules in the 
form of ammonium salts, amides, and urea-type struc-
tures, but not amines or heterocyclic [56, 163]. The trans-
formation of KL, LS, and OL into N-enriched fertilizers 
via the OA was exploited in the past [56, 57, 60, 61]. KL 
showed a higher reactivity toward OA among all lignin 
due to abundant phenolic hydroxyl groups [60]. Some 
studies investigated the effect of the reaction param-
eters on nitrogen incorporation in lignin [56, 57, 61]. It 
was observed that lignin’s methoxyl and carbon content 
would decrease with nitrogen incorporation during the 
OA reaction [57, 60]. Interestingly, an increase in the 
reaction solution’s pH increased the lignin oxidation 
rate and consequently increased its nitrogen incorpo-
ration [61]. It was stated that when increasing the con-
centration of ammonium hydroxide from 0.4 to 1.6  M, 
the lignin solubility in the reaction mixture increased to 
almost 75%, thus enhancing the reactivity toward OA and 
increasing the nitrogen incorporation [56, 61]. Also, the 
rate determining step of the OA reaction is the oxidative 
cleavage of the non-phenolic moieties and the oxidation 
of aromatic rings because the rate of nitrogen incorpora-
tion is directly related to these steps and directly propor-
tional to oxygen pressure [56].

Fig. 9 A schematic flow diagram of oxidative ammonolysis for N-enriched lignohumate production from lignin
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The fertilizing effects of these N-ALH were also stud-
ied earlier. In one study, up to 14% nitrogen was incor-
porated into the lignin and used as fertilizer in the pot 
experiments [60]. The earlier studies on the OA pro-
cess showed that the C/N ratio could be decreased to 
3–7 (Tables  1 and 4). Meier et  al. studied the effects 
of N-lignin (modified by OA, C/N 4–7) on Sorghum 
plants at the dose rate of 1385  kg/ha (180  kg/ha of 
nitrogen content), and the results showed a crop yield 
increase of 82%. Another study showed that applying 
artificial lignohumates (N-enriched, total N content 
10–24%) on different woody plants increased the green 
mass of the plants by more than 50% and decreased 
the nitrogen leaching by nearly 75% compared to com-
mercial urea [139]. Therefore, transforming technical 
lignin into nitrogen fertilizer through the OA could be 
a promising route in the agricultural field due to the 
available organic carbon and nitrogen. In addition, the 
N-lignin’s oxygenated part (i.e., carboxylic ends) would 
participate in mineral transportation.

Potential applications of humified lignin
Soil treatment
Although natural HS are used mainly as soil conditioners, 
there are other potential applications for HS in soil. HS 
help segregate the compactness of soil structures, reduce 
water evaporation from the soil surface, and have a role 
in transporting micronutrients from ground to plants 
[164]. Artificial humified lignin derivatives may have 
these unique properties too. The ALH with similar phys-
icochemical properties will be an excellent alternative as 
a soil stimulator [58, 144, 157, 158, 164]. As controlled 
alkaline oxidation of lignin results in increased aromatic/
aliphatic OH and carboxylic OH contents (Table 3) in the 
products, they should function similarly to natural HS 
[59, 144]. In this context, ALH may have potential appli-
cations for soil loosening, decreasing the bound water 
evaporation rate, and transporting essential nutrients to 
plants.

Figure 11 demonstrates a model mechanism of ALH in 
soil. Route A describes that the carboxylic and hydroxyl 

Fig. 10 Model reaction scheme for the oxidative ammonolysis of lignin; adapted and redrawn from [139]

Table 4 Different approaches for the modification of lignins by OA toward N-ALH

Raw materials Chemicals/reagents Temperature (℃), 
time (min)

C/N Application remarks Refs.

KL, LS, OL NH4OH,  O2 150, 120 4–7 Increased Sorghum productivity by 3 times [60]

OL NH4OH,  O2 130, 15–1455 3–5 Increased 63% nitrogen incorporation [56, 57]

OL NH4OH,  O2 100, 15–180 NA Increased 67% nitrogen incorporation at pH 11 [61]
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groups of ALH will dissociate into their ions, and the 
hydrophilic ends will exhibit the chelating behavior. 
The anionic hydrophilic ends will form unstable com-
plexes with the essential minerals available in the soil, 
such as  Na+,  K+,  Ca2+,  M2+,  Fe2+, and  Fe3+, by electro-
static attraction [165]. It was reported that the mineral 
transportation by natural HS would occur differently 
by low molecular weight (LMW, < 3500 g/mol) and high 
molecular weight (HMW, > 3500  g/mol) fractions [166]. 
The HMW fractions (HA) of HS stimulate the root 
plasma membrane and enzyme activity and increase 
plant growth, while LMW fractions (FA) are directly co-
transferred into the plant’s roots [166–168]. In addition, 
the LMW fractions were greatly responsible for  NO3

− 
uptake and nitrogen metabolism [169, 170]. The LMW 
fractions of HS have better mineral binding capacity than 
HMW, improving nutrient absorption by roots due to 
the relative abundances of oxygenated functional groups 
(carboxylic and phenolic OH groups) [166, 171, 172]. 
Nardi and co-authors reported that the LMW fractions 

stimulate hormonal activity (i.e., auxin, gibberellin, and 
cytokinin). However, the HMW fractions controlled the 
availability and activity of LMW on plant metabolism 
[169]. Therefore, the ALH that is obtained from AAO can 
be fractionated as LMW fractions and HMW fractions 
for specific applications.

Route B demonstrates the dispersion ability of ALH 
on the soil. Generally, ideal soil contains 45, 5, 25% of 
minerals, organic matter, and air, respectively; and the 
rest is water [173]. If the soil minerals increase to 69%, 
it will decrease the organic matter and air to 1 and 5%, 
respectively, resulting in a compact soil structure [173]. 
As a result, water penetration into the soil would be ham-
pered. Therefore, the dissociated minerals (positive and 
negative mineral ions) would attract each other to form 
salts. In this case, when ALH is used, the organic content 
would be increased, which would help interact with the 
positive mineral ions and possibly adsorb them due to 
the presence of strong anionic hydrophilic groups. In this 
way, ALH would restore the negative ions into the soil. 

Fig. 11 A schematic representation of mineral transportation, soil conditioning, and water retention capabilities of ALH; adapted and modified 
from [165, 175]
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Moreover, the ALH would create electrostatic repulsion 
due to the anionic hydrophilic ends, and phenolic ends 
would enhance the steric hindrance to disperse the soil 
particles resulting in untied soil [174]. The ALH derived 
from AAO should have more negative charge density due 
to having higher carboxylic acid groups (Table  3) than 
ALH from AOD. Therefore, AAO-derived ALH should 
exhibit more increased dispersibility in soil.

Route C represents the water retention capacity of 
ALH. Due to the hydrophilic anionic functional groups 
(i.e., carboxylic groups) (Table  3), the ALH would be 
adsorbed by the positively charged minerals in the soil, 
and the other ends would hold the water molecules 
because of the electrical attraction [175, 176]. Therefore, 
the ALH derived from AAO and AOD would be suitable 
for increasing the soil’s water retention capacity.

On the other hand, the N-ALH derived from the OA 
process may be appropriate as a fertilizer since it contains 
a lower C/N ratio (Table  3). The direct application of 
N-ALH has been studied for crop productivity and slow-
release fertilizing ability [60, 139]. However, other effects 
on soil, such as mineral transportation, soil texture, and 
water retention capacity, were not yet studied for the 
N-ALH.

Medicinal application
Due to their antiviral [177, 178], anticarcinogenic [179], 
antibacterial, antioxidant, anti-inflammatory, and anti-
septic properties [164, 180], the medicinal usage of HS 
has been practiced for centuries [164]. The antioxidant 
properties of lignin-derived materials have also been 
reported due to the availability of phenolic and acidic 
(aliphatic and aromatic) groups, which have chelating 
and radical scavenging properties [32, 181]. On the other 
hand, low molecular weight (i.e., 1500 g/mol) fractions of 
HS show inhibiting effects against HIV-1 in  vitro [164]. 
The anticarcinogenic properties of FA fractions were 
also reported earlier [182]. In addition, an earlier study 
reported that the oral consumption of HA by domestic 
animals could reduce the cholesterol, lipids, and glu-
cose content and increase the red blood cells and hemo-
globin in the animal bodies [183]. One recent study also 
reported the potential antiviral effects of natural HS 
against the recent COVID-19 virus [184].

In this context, the smaller molecular weight fractions 
of the ALH generated from the direct alkaline oxidation 
(both AAO and AOD) of lignin products (i.e., primar-
ily oligomeric phenolic derivatives) can be utilized for 
medicinal applications. As stated above, the ALH is capa-
ble of complexation with metals, such as iron, due to the 
abundant of phenolic and carboxylic acid groups [131]. 
Similar to FA, ALH can be a novel compound to improve 
the rate of iron adsorption in blood and increase the 

number of red blood cells [164]. Antioxidant medications 
reduce the risk of several diseases caused by oxidative 
stress, typically brought on by free radicals like reactive 
oxygen species (ROS), such as superoxide anion, hydroxyl 
free radical, and hydrogen peroxide [185]. ALH can be 
a potential substance as an antioxidant by neutralizing 
these ROS due to their heterogeneous aromatic compo-
sitions (i.e., phenolics and quinones) and supramolecular 
structure [32, 181, 185]. The reactive phenolic moieties of 
oxidized lignin might cause bacterial and microbial cell 
death [185].

Moreover, the acidic functional groups (aliphatic or 
aromatic) of the ALH would reduce the cell binding of 
different viruses (i.e., HIV) [186]. Although the chemical 
properties between natural HA and AAO/AOD-derived 
ALH are comparable, extensive studies are needed to 
examine the medicinal effects of the ALH materials. 
Finally, for medical applications, the post-purification of 
the ALH is highly recommended for removing the excess 
alkali and other toxic chemicals (i.e., phenol) generated 
from the reactions [187].

Wastewater treatment
Wastewater treatment by HA has been studied exten-
sively [188–192]. Similar to its action in soil, it can 
develop complexes with heavy metal ions in solution sys-
tems, reducing the toxicity of drinking water, industrial 
wastewater, and surface water. The mechanisms of HS 
for wastewater treatment depend on factors, such as the 
nature of the HS (particularly the fulvic and humic acid 
content), soil chemistry, and water’s chemical proper-
ties, such as acidic or alkaline. Like HS, ALH can be an 
alternative product to remove these heavy metals and 
other suspended particles, such as oil, grease, and certain 
organic compounds from water. The long lipophilic ali-
phatic chain and hydrophilic ends should have excellent 
surfactant properties that help remove oil and greases 
[193, 194]. The anionic characteristics of the carbox-
ylic acid groups on ALH should demonstrate their high 
cationic exchange capacity, enhancing the formation of 
insoluble complexes with the polyvalent metal cations. 
The complexation of heavy metals, such as lead (Pb), 
copper (Cu), cadmium (Cd),  nickel (Ni), cobalt (Co) 
zinc (Zn), iron (Fe), and aluminum (Al), with the ALH 
is possible if the ALH has a desired carboxylic content. 
The metal complexation is highly pH (pH 4–8) depend-
ent and forms strong chelates with the metal ions having 
oxidation states of + 2 [195]. In addition, a high molecu-
lar weight (14,000–33,700  g/mol) ALH would be more 
effective for wastewater treatment [196, 197]. Although 
the current approaches (i.e., aerobic oxidations) of trans-
forming lignin to ALH attain sufficient anionic functional 
groups, the molecular weights are significantly reduced 
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(Table  3), making them less effective for heavy metal 
removal applications. However, extensive research on 
new method development is necessary for the scope of 
wastewater treatment by ALH.

Challenges and future directions of lignin modification 
toward humification
Generally, the main drawback of lignin valorizations is 
claimed to be its complex heterogeneous aromatic struc-
tures, while it is a blessing in terms of its transformation 
toward humification. In the direct oxidative process of 
lignin, a high temperature (170–195  ℃) is required to 
break down the lignin skeleton and reduce the molecular 
weight of lignin significantly, which may limit the appli-
cation of the produced materials. This is because the high 
molecular weight fraction of HS is known to have higher 
performance for heavy metal removal and soil softening 
(dispersibility) [198]. Therefore, a milder reaction condi-
tion maintaining the lignin structure more intact would 
be preferred to help protect the linkages and oxidize the 
lignin structure selectively.

It was reported that the oxidation of lignin would pro-
duce phenolic monomers, such as protocatechuic acid, 
hydroxybenzoic acid, and p-coumaric acid. Those phe-
nolic compounds are known as potential allelopathic 
agents (phytotoxic chemicals) and inhibit plant growth 
[58, 153, 199–202]. The negative effects of those phenolic 
compounds depend on their used concentrations and 
their chemical structure and specific plant species [152, 
203]. The direct oxidation methods of lignin for humifica-
tion may require a separation process to remove the phy-
totoxic compounds (Figs. 7 and 8), which may be costly. 
Therefore, introducing new selective oxidizing catalysts 
or technological advances in the oxidation process may 
be required to reduce the production cost of such chemi-
cals in converting lignin to HS.

Naturally occurring HS are enriched in carbon and 
nitrogen [139, 204]. Few studies claim that natural 
sources of HS, such as lignite, i.e., one of the major coal 
sources for commercial HA, contain significant amounts 
of iron in polyphenol − Fe complexes [205–208]. A past 
study revealed that HS and lignin-derived HS have simi-
lar levels of carbon [144]. However, none of the other 
plant essential nutrients (K, Fe, Ca, N, P, etc.) are present 
in ALH, which is one of the main limitations of using arti-
ficial HS as organic fertilizers and soil stimulators. Incor-
porating inorganic minerals into ALH is another critical 
stage to transforming lignin into HS-like materials. Natu-
ral HS are found in complexes with different transitional 
metals, like Fe [209]. Learning from this, Fenton-based 
single-staged oxidation under mild conditions can be an 
example of converting lignin into artificial HS with Fe 
complexes. In this context, Jeong et  al. reported that a 

Fenton-based one-pot advanced oxidation was employed 
to mimic fungus-driven lignin humification and incorpo-
rate iron into the oxidized lignin samples [131]. In addi-
tion, Fenton reagent-based alkaline (KOH) oxidation can 
enhance the lignin reactivity and conversion to the HS-
derived product.

Currently, there are some challenges with lignin reac-
tivity in the OA processes. Meier et  al. reported that 
lignosulfonates and kraft lignin showed higher reactiv-
ity than any other lignins for OA [60]. In contrast, the 
ASAM (Alkaline Sulfite Anthraquinone and Methanol) 
lignin was not suitable for this process due to its high 
degree of sulfonation, low molecular weight, and high ash 
content. Moreover, current approaches of OA were car-
ried out with  NH4OH and an oxidant, such as air/oxygen 
[60]. Due to their available nitrogen, OA-modified lignins 
are generally limited to fertilizing applications. In addi-
tion to  NH4OH, KOH, and other alkalis can be used to 
improve the lignin dissolution and enhance lignin’s oxi-
dation reaction [59]. This way, the modified lignin would 
be enriched with nitrogen in different forms. KOH would 
facilitate the formation of carboxylic acid groups [144], 
which could make new routes for producing HS-like 
lignin. Moreover, the global HA market is expanding day 
by day, mainly in the agricultural sector. It was reported 
that the market value of HA in the agricultural field was 
around USD 365 million, and it is projected to reach up 
to USD 934 million by 2030 [210]. Currently, HA produc-
tion mainly depends on natural sources (i.e., coal, peat, 
lignite river sediments, etc.), which is neither a sustain-
able process nor environment friendly. Therefore, the 
chemical transformation of lignin materials toward arti-
ficial humification can be a potential route considering 
the current HA’s renewability, sustainability, and environ-
mental concerns.

Conclusion
Naturally produced HS contain insoluble humin, alkali-
soluble HA, and water-soluble FA fractions. HA has been 
widely used as a soil conditioner due to its wide range of 
oxygenated functional groups, such as phenolic hydroxyl, 
quinones, and carboxylic acid. Past research showed that 
those functional groups might have originated from lignin 
decomposition in natural HA. As several physicochemical 
properties, such as solubility, phenolic hydroxyl, and car-
boxylic acid groups, of lignin and HA are similar, the chem-
ical transformation of lignin to HS is possible. The most 
popular method to transform lignin/lignocellulosic bio-
mass into HS is alkaline oxidation (AAO and AOD). These 
processes’ primary goal is to increase the lignin materials’ 
hydrophilicity by converting aliphatic/phenolic hydroxyl 
groups to carboxylic acid groups. On the other hand, OA 
aims to incorporate nitrogen into the main lignin structure 
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in different forms, such as ammonium ion, amide, and 
nitrile. Although the AAO can be readily applied for lignin 
conversion, the costs associated with the post-purification 
of the product for eliminating phytotoxic chemicals gener-
ated during the oxidation process are challenging. Finally, 
to meet the demand for generating high-quality lignin-
derived HS for applications in soil, wastewater treatment, 
and medicine, more research is needed to mitigate the 
challenges of incorporating other inorganic mineral nutri-
ents (i.e., K, Fe, N, etc.) into lignin-based HS. Also, the post-
purification of lignin-derived HS is required for eliminating 
toxic chemicals while maintaining desired characteristics, 
such as molecular weight and carboxylic acid groups.
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