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Abstract 

Background High‑throughput metabolomics analytical methodology is needed for population‑scale studies of 
bioenergy‑relevant feedstocks such as poplar (Populus sp.). Here, the authors report the relative abundance of extract‑
able aromatic metabolites in Populus trichocarpa leaves rapidly estimated using pyrolysis‑molecular beam mass spec‑
trometry (py‑MBMS). Poplar leaves were analyzed in conjunction with and validated by GC/MS analysis of extracts to 
determine key spectral features used to build PLS models to predict the relative composition of extractable aromatic 
metabolites in whole poplar leaves.

Results The Pearson correlation coefficient for the relative abundance of extractable aromatic metabolites based 
on ranking between GC/MS analysis and py‑MBMS analysis of the Boardman leaf set was 0.86 with R2 = 0.76 using a 
simplified prediction approach from select ions in MBMS spectra. Metabolites most influential to py‑MBMS spectral 
features in the Clatskanie set included the following compounds: catechol, salicortin, salicyloyl‑coumaroyl‑gluco‑
side conjugates, α‑salicyloylsalicin, tremulacin, as well as other salicylates, trichocarpin, salicylic acid, and various 
tremuloidin conjugates. Ions in py‑MBMS spectra with the highest correlation to the abundance of extractable aro‑
matic metabolites as determined by GC/MS analysis of extracts, included m/z 68, 71, 77, 91, 94, 105, 107, 108, and 122, 
and were used to develop the simplified prediction approach without PLS models or a priori measurements.

Conclusions The simplified py‑MBMS method is capable of rapidly screening leaf tissue for relative abundance of 
extractable aromatic secondary metabolites to enable prioritization of samples in large populations requiring com‑
prehensive metabolomics that will ultimately inform plant systems biology models and advance the development of 
optimized biomass feedstocks for renewable fuels and chemicals.

Keywords Pyrolysis‑molecular beam mass spectrometry, Populus trichocarpa, High‑throughput analysis, 
Metabolomics

Background
The analysis of metabolites in lignocellulosic biomass 
is important for the production of sustainable feed-
stocks that will serve as a renewable source of fuels 
and chemicals. Metabolite content and composi-
tion in biomass are impacted by and provide insights 
related to genetics, carbon flux, environmental stress 
responses, and disease resistance. For example, Populus 
species, a promising woody feedstock for the produc-
tion of renewable materials whose genome has been 
fully sequenced [1], produce secondary metabolites in 
leaves that vary genetically and according to stresses 
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and environmental responses [2–5]. A comprehensive 
understanding of Populus leaf metabolomics can pro-
vide meaningful insight regarding plant biology and 
physiology and be leveraged for the domestication and 
rational design of Populus feedstocks to ensure crops 
with highest biomass yield and optimal composition, 
as well as disease resistance and environmental stress 
tolerance.

In order to perform genome-wide association stud-
ies (GWAS), develop systems biology models and pro-
duce superior biomass feedstocks with many favorable 
characteristics, large sample populations of naturally 
varying genotypes and phenotypes must be studied. 
The measurement of certain phenotypes in large sam-
ple populations can be cumbersome if high-throughput 
methodologies are not available. High-throughput meth-
ods using unmanned aerial vehicles (UAV) have been 
developed for the measurement of growth traits in plants 
and rapid biomass characterization methods have been 
established for estimation of lignin and sugar content and 
enzymatic recalcitrance [6, 7]. Comprehensive second-
ary metabolite profiles of biomass samples are difficult to 
achieve in high-throughput pipelines due to the number 
of steps required to prepare, extract and analyze samples. 
Typically, biomass samples are homogenized, extracted 
with solvent, with metabolites potentially needing to 
then be derivatized prior to undergoing chromatogra-
phy prior to detection, identification, and quantitation 
of individual metabolite components. While comprehen-
sive metabolomics relies on highly resolved and unbi-
ased methods capable of distinguishing and quantifying 
specific metabolites, these methods are not necessarily 
conducive to large sample set analysis in a reasonable 
timeframe, particularly if there are many metabolites 
present in the extracts. There have been a number of 
high-throughput metabolic screening methods devel-
oped for plant metabolomics, particularly involving the 
use of NMR [8] advanced mass spectrometry [9] and col-
orimetric [10] approaches to analyze extracts. Also, the 
rapid determination of biomass cell wall polymer content 
and composition has been achieved using minimal sam-
ple preparation followed by analysis using near-infrared 
spectroscopy or pyrolysis-Molecular Beam Mass Spec-
trometry [7]. However, high-throughput methods used 
to screen or estimate plant metabolite profiles prior to 
in-depth metabolite characterization, particularly with 
minimal sample preparation or without extraction meth-
odology, are lacking. Rapid screening techniques for 
plant metabolomics could provide insight that would 
alleviate pressure on comprehensive pipelines by provid-
ing down-selection criteria and prioritization of samples 
for analysis. High-throughput metabolite screening may 
also provide data that could be used directly to develop 

plant biology systems models and advance genomics 
research.

Here, we report the analysis of Populus trichocarpa 
leaves using pyrolysis-Molecular Beam Mass Spectrom-
etry (py-MBMS) as a screening technique for metabo-
lomics analysis. Two separate sets of leaves were analyzed 
where one set was used to build spectroscopic strate-
gies for metabolite predictions using GC/MS analy-
sis of extracts and the other set was ranked according 
to extractable aromatic metabolite composition and 
validated using GC/MS analysis of extracts. PLS mod-
els were also constructed from the two sets of leaves to 
demonstrate the ability to use py-MBMS data to predict 
extractable aromatic metabolite content in extract when 
a priori metabolite data are available within an analysis 
set; as well as to show differences in metabolic profiles 
across different sample sets. Greater than 250 milled and 
lyophilized whole biomass samples can be analyzed daily 
by the simplified py-MBMS screening method without 
any additional sample preparation (in comparison to GC/
MS which requires extraction of milled leaf material, dry-
down and derivatization of extract followed by dilution). 
Additionally, Py-MBMS simultaneously provided estima-
tions of lignin content and monolignol composition in 
the leaf samples.

Results
Metabolite profiles of P. trichocarpa leaves
Metabolites present in P. trichocarpa leaves as deter-
mined by GC/MS analysis of extract are detailed in 
Additional file  1: Table  S1. Over 100 metabolites were 
identified and semi-quantified relative to an internal 
standard by GC/MS analysis of extract from the set col-
lected from Clatskanie, OR and of those metabolites, 
80 were classified to be “aromatic” in nature (consist-
ing of phenolics, benzoates, salicylic acid moieties, etc.). 
Metabolites were also identified and semi-quantified in 
the second set of extracts, leaves collected from Board-
man, OR, based on GC/MS analysis, of these 49 were 
positively identified to be aromatic.

Py‑MBMS analysis of P. trichocarpa leaves
Py-MBMS analysis of the set of leaves from P. trichocarpa 
genotypes grown in Clatskanie, OR was used to analyze 
spectral features consistent with biomass composition 
that would enable estimation of the relative abundance 
of specific metabolites and metabolite classes present in 
the leaves; and is also capable of estimating relative lignin 
content and syringyl/guaiacyl (S/G) ratio. Table 1 shows 
the average lignin content and S/G ratio of the leaves 
determined by summation of mean-normalized ion 
intensities of m/z 120, 124 (G), 137 (G), 138 (G), 150 (G), 
152, 154 (S), 164 (G), 167 (S), 168 (S), 178 (G), 180, 181, 
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182 (S), 194 (S), 208 (S) and 210 (S), where G denotes pri-
marily guaiacyl-derived ions, S denotes primarily syrin-
gyl-derived ions, and other ions either derive from other 
lignin monomers or multiple sources.

The leaves in both sets exhibit significantly lower lignin 
content and S/G as is expected and compared to that typ-
ically seen in mature woody stem xylem tissue [11–14]. 
Additionally, the variation in ions and principal compo-
nent analysis (PCA) show that the lignin-derived ions 
are not the main source of spectral (and hence compo-
sitional) variance across the sets. Principal component 
analysis (PCA) loadings for the first principal component 
plotted in spectral format to demonstrate the variation in 
the Clatskanie leaf set arises primarily from ions m/z 43, 
57, 71, 85, 95, 97, which originate primarily from sugars, 
as well as m/z 77, 91, 94, 105, and 122, derived primar-
ily from aromatics [15, 16], which were generally nega-
tively correlated with the sugar-derived ions (Fig.  1a). 
Aside from these ions having generally opposing signs 
(orthogonal in other rotations) in PCA spectral loadings, 
Pearson correlation coefficients (PCC) showed negative 
correlations; for example for m/z 57 and m/z 77 in the 
Clatskanie set have PCC of − 0.64 and PCC between m/z 
85 and m/z 94 in the Boardman set is -0.60.

Additionally, most of spectral variation originates from 
similar ions derived from aromatics, including m/z 68, 
71, 91, 94, 105, 107, 108, and 122 (Fig. 1b) in the Board-
man leaf set. However, various minor differences from a 

number of sources (true biomass compositional variation, 
instrumental drift, etc.) make it difficult to directly com-
pare the two sets and develop PLS modeling approaches 
that can be used across sets without including several of 
the same standards, samples, etc. in each set. In order to 
circumvent this without requiring a priori metabolomics 
by GC/MS, and because these differences may not be 
the same for any future sets being compared, and also to 
simplify future analyses, the main source of spectral vari-
ation (being ions derived from aromatics) was used as a 
rough estimate to compare samples within the sets in the 
same way lignin content has been compared using this 
method over the last decade [7, 11, 12, 14, 17–19].

Aromatic metabolite predictions using py‑MBMS
Pearson correlation coefficients were determined for 
select ions in the MBMS spectra, lignin content and 
monolignol ratios (S/G), as well as the total fractional 
abundance of extractable aromatics determined by GC/
MS from the Clatskanie set of leaves (Table 2). The select 
ions in the MBMS spectra (Table 2) and the ions chosen 
to represent the sum of extractable aromatic metabolites 
were chosen based on the correlation coefficients with 
extractable aromatic metabolites, the principal compo-
nent analyses (Fig. 1), and the loadings of the ions in the 
PLS models constructed using this data (Fig. 2). The PLS 
models used to predict the relative aromatic composition 
of extractable metabolites were primarily driven by the 
ions known to derive from aromatic species [15], primar-
ily m/z 68, 71, 77, 91, 94, 105, 107, 108, and 122, which 
were also the main source of variation in the spectra of 
the set and provided a reasonable estimation and vali-
dation of using py-MBMS to predict aromatic metabo-
lite composition in poplar leaf extracts. The sum of the 
aromatic metabolite ion intensities in the MBMS spec-
tra from the Boardman set had a correlation coefficient 

Table 1 Lignin content and composition of P. trichocarpa leaf 
sets as estimated by py‑MBMS

P. trichocarpa leaf set Lignin content (DW %) S/G

Clatskanie (n = 219) 9.7 (± 0.7) 0.6 (± 0.1)

Boardman (n = 223) 9.4 (± 0.6) 0.8 (± 0.1)

Fig. 1 Spectral loadings (PC‑1) from principal component analysis of a.) Clatskanie set and b.) Boardman set of P. trichocarpa leaves



Page 4 of 9Harman‑Ware et al. Biotechnology for Biofuels and Bioproducts           (2023) 16:41 

with the sum of the extractable aromatic metabolites 
determined by GC/MS (sum of GC/MS peak areas nor-
malized to internal standard from aromatic species, see 
Additional file 1: Table S1) of 0.87 and R2 of 0.78 (Fig. 3a). 
This simplified method of summing the ion intensities 
(m/z) 68, 71, 77, 91, 94, 105, 107, 108, and 122 to predict 
the relative abundance of aromatic metabolites in extract 

could theoretically be used in place of PLS modeling 
for ranking samples when limited a priori knowledge of 
metabolite information is available.

While many of the extractable aromatic metabolites 
had a positive correlation with the sum of the aromatic 
metabolite intensities from the MBMS, they all differed 
in value and many of the signature ions produced from 

Table 2 Pearson correlation coefficients between select ions from MBMS spectra of P. trichocarpa leaves from Clatskanie, OR 
and select metabolites as determined by GC/MS (based on area count) as well as lignin content, S/G ratios and the summation of 
metabolite‑derived ions from MBMS spectra and the total aromatic metabolites in extract determined by GC/MS

a Metabolite ion intensities summed 68, 71, 77, 91, 94, 105, 107, 108, and 122

Trait Lignin content S/G Sum metabolite ions in 
 MBMSa

Aromatics 
by GC/MS

m/z 64 − 0.34 0.02 0.68 0.65

m/z 65 − 0.38 0.32 0.74 0.69

m/z 66 − 0.54 0.32 0.87 0.80

m/z 68 − 0.49 0.30 0.71 0.59

m/z 77 − 0.64 0.38 0.98 0.85

m/z 78 − 0.43 0.23 0.72 0.66

m/z 91 − 0.39 0.25 0.68 0.59

m/z 92 − 0.32 0.25 0.61 0.53

m/z 94 − 0.55 0.35 0.93 0.85

m/z 105 − 0.66 0.35 0.98 0.85

m/z 106 − 0.52 0.40 0.77 0.68

m/z 107 − 0.59 0.36 0.96 0.82

m/z 108 − 0.65 0.45 0.95 0.84

m/z 110 − 0.26 − 0.06 0.61 0.60

m/z 122 − 0.65 0.39 0.98 0.86

m/z 181 − 0.19 0.38 0.59 0.55

2′‑O‑salicyloylsalicin − 0.36 0.26 0.52 0.63

2,6‑cyclohexadiene‑1,2‑diol − 0.45 0.29 0.69 0.55

6‑hydroxy‑2‑cyclohexenone alcohol − 0.52 0.38 0.80 0.71

α‑salicyloylsalicin − 0.55 0.40 0.87 0.88

benzoyl‑gentisyl alcohol − 0.34 0.29 0.54 0.50

benzoyl‑salicyloylsalicin − 0.44 0.33 0.62 0.72

benzyl‑coumaroyl‑glucoside − 0.53 0.31 0.76 0.74

catechol − 0.53 0.36 0.80 0.77

coumaroyl‑tremuloidin − 0.45 0.25 0.67 0.65

phenethyl‑tremuloidin − 0.45 0.23 0.65 0.63

salicortin − 0.50 0.33 0.83 0.81

benzyl‑salicylic acid‑2‑O‑glucoside − 0.40 0.30 0.66 0.75

salicylic acid − 0.45 0.25 0.68 0.61

salicyloyl‑coumaroyl‑glucoside conjugates − 0.58 0.37 0.85 0.86

salicyltremuloidin − 0.45 0.30 0.68 0.83

salireposide − 0.42 0.26 0.68 0.67

sum metabolite ions in  MBMSa − 0.66 0.39 1.00 0.87

aromatics by GC/MS − 0.54 0.32 0.87 1.00

tremulacin − 0.52 0.38 0.77 0.85

tremuloidin − 0.40 0.24 0.56 0.55

trichocarpin − 0.43 0.32 0.68 0.67
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each metabolite overlap, making it difficult to differen-
tiate, resolve and quantify the specific species present 
(Table 2). Therefore, this method was developed to rap-
idly estimate the total relative abundance of aromatic 
metabolites present in poplar leaf extract samples. Fur-
ther deconvolution and speciation of specific metabolites 
will be the subject of future investigations.

The total aromatic fraction of secondary metabolites 
in the set from Boardman, OR, were predicted based on 
the simplified py-MBMS ion summation method and 
validated by GC/MS analysis of the extract. After GC/
MS metabolic profiles were generated, PLS models of 
the Boardman set were also built to further validate the 
use of the simplified ion method. There is a correlation 
between the total abundance of the aromatic metabo-
lites as determined by GC/MS and the sum of the aro-
matic metabolite ions determined by MBMS (Fig.  3a), 
with an R2 of 0.78 and Pearson correlation coefficient of 
0.88 (Table 3) for the Boardman set of leaves, indicating 
that this simplified method is reasonably capable of pre-
dicting the relative abundance of aromatics in poplar leaf 
extracts across data sets.

Additionally, similarities in correlations between the 
two data sets for py-MBMS ions, metabolites and other 
compositional features include positive correlations 

between aromatic-derived ions, such as 105 and 122, 
with many salicylate metabolites (Table  3). The value 
of correlation coefficients for different traits differed 
to some degree between sets though, due, in part, to 
the differences in the actual metabolites detected and 
analyzed by GC/MS in the two sets. While these dif-
ferences and metabolites themselves could not be spe-
ciated amongst these two sets, it was still possible to 
reasonably predict total extractable aromatic metabo-
lites in the two sets using the simplified py-MBMS ion 
summation method as demonstrated in Fig.  3a. Addi-
tionally, the relative abundance of aromatic metabolites 
based on ranking GC/MS abundance reasonably corre-
lates with the ranking predicted by py-MBMS (Fig. 3b).

The PLS model for the set from Boardman, OR 
(Fig. 4) was driven by similar aromatic-derived ions as 
the Clatskanie set, but was different enough that the 
PLS models developed by one set could not be used to 
accurately predict aromatics in the other set. Interest-
ingly, the PLS model for the Boardman set performed 
better than the model developed for the Clatskanie set. 
These results further validate that PLS models would 
be similar, but not directly translatable between differ-
ent data sets and hence the need for the simplified ion 
intensity summation approach for screening purposes.

Fig. 2 PLS model constructed from Py‑MBMS spectra and GC/MS data of Clatskanie set of P. trichocarpa leaves. a Spectral loadings, b calibration 
and validation for prediction of extractable aromatic metabolites in Clatskanie set of P. trichocarpa leaves using PLS model, c Py‑MBMS simplified ion 
method predictions of extractable aromatic metabolites relative to GC/MS analysis
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Discussion
The variation in sugars vs aromatics in poplar leaves is 
different, but parallel to that seen in woody tissue where 
sugar and lignin (also aromatic, primarily phenolic) 
abundances are negatively correlated and the main driv-
ers of compositional variation [11, 12]. The leaf aromat-
ics can be distinguished from lignin-derived phenolics 
because higher molecular weight, known lignin-derived 
ions, such as m/z 124, 137, 154, 167, 180, 210 [7] are oth-
erwise not strongly correlated and/or are negatively cor-
related with the aromatic ions derived from leaves, and 
therefore, m/z 68, 71, 77, 91, 94, 105, 107, 108, and 122 
were considered as primarily originating from secondary 
aromatic metabolites. The use of m/z 68, 71, 77, 91, 94, 
105, 107, 108, and 122 to estimate the relative abundance 
or ranking of aromatic components in samples across 
two different sets of almost 500 poplar leaf samples dem-
onstrates a simple and robust method to screen samples 
for rapid secondary metabolite insight and for prioritiza-
tion of samples for in-depth metabolomics pipelines .

Conclusions
We have reported a rapid technique that can be used to 
analyze and screen biomass tissue for the relative abun-
dance of total aromatic metabolites. Error associated 
with this method could result from the relative abun-
dance of different aromatic metabolites, and further stud-
ies and computational advances could potentially enable 
deconvolution of spectral features to provide resolved 
abundances of specific metabolites. If a priori metabolic 
information is available for standards or a range of sam-
ples within given data sets, PLS models specific to that 
data set could also be used to predict relative aromatic 
metabolite abundances. These methods could be used to 

screen large populations of biomass for aromatic metab-
olites to inform GWAS analyses, quantitative trait loci 
mapping, and development of metabolomic and systems 
biology models. The metabolite information obtained 
may also be used to inform sustainability metrics and 
gene x environment interactions in biomass studies. 
Rapid metabolomic analyses would ultimately enable the 
rational design of sustainable biomass used for biorefin-
ery and bioenergy applications.

Methods
Collection and Preparation of Leaf Samples
Leaves from 851 P. trichocarpa genotypes established in a 
common garden at Clatskanie, OR in 2009 [20, 21] were 
sampled over a 3-day period in July 2012, as described 
elsewhere [22], from which 219 samples were selected 
for inclusion in the present study and were selected as 
they varied in total and specific aromatic metabolite con-
centrations based on GC/MS analysis of foliar extracts. 
Additionally, 60 P. trichocarpa genotypes growing in 
a drought stress trial at Boardman, OR were sampled 
on July 11 and 12, 2018, including 2 replicate trees per 
genotype in a well-irrigated plot (44.7 cm in each of the 
2017 and 2018 growing seasons) and 2 replicate trees 
growing in a drought stress plot receiving 60% (26.8 cm) 
the irrigation level of the well-irrigated plot. Trees were 
established in the spring of 2016, with the irrigation 
manipulation applied during the second (2017) and third 
(2018) growing seasons. In summary, the Boardman set 
consisted of 223 P. trichocarpa similar leaf samples col-
lected from trees growing under different irrigation con-
ditions at Boardman, OR in the summer of 2018 in their 
third year. Similar to the leaves sampled at Clatskanie, 
OR, a fully expanded leaf of leaf plastochron index 9 ± 1 

Fig. 3 a Validation of Py‑MBMS analysis using the simplified ion method for sum of aromatic metabolites in Boardman set of P. trichocarpa leaves by 
GC/MS. b Correlation of ranking of aromatic metabolite abundance in Boardman set of P. trichocarpa leaves by GC/MS and py‑MBMS analysis
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Table 3 Correlations between select ions from MBMS spectra of P. trichocarpa leaves in the set from Boardman, OR and select 
metabolites as determined by GC/MS as well as lignin content, S/G ratios and the summation of metabolite‑derived ions from MBMS 
spectra and the total aromatic metabolites determined by GC/MS

a Metabolite ion intensities summed 68, 71, 77, 91, 94, 105, 107, 108, and 122

Trait Lignin content S/G Sum metabolite ions in 
 MBMSa

Aromatics 
by GC/MS

m/z 122 − 0.15 0.10 0.96 0.87

m/z 108 − 0.05 0.06 0.86 0.87

m/z 107 − 0.03 0.00 0.93 0.87

m/z 106 − 0.10 0.11 0.88 0.82

m/z 105 − 0.15 0.08 0.95 0.81

m/z 94 − 0.04 0.02 0.74 0.69

m/z 91 − 0.04 − 0.01 0.54 0.51

m/z 78 − 0.07 0.01 0.79 0.68

m/z 77 − 0.12 0.07 0.97 0.87

m/z 68 − 0.07 − 0.05 0.74 0.58

m/z 66 − 0.07 0.01 0.72 0.63

1,2,3‑benzenetriol − 0.11 0.06 0.43 0.50

1,2,4‑benzenetriol − 0.09 0.05 0.55 0.64

2,5‑dihydroxybenzoic acid‑2‑O‑glucoside − 0.01 0.00 0.48 0.51

aromatics by GC/MS − 0.13 0.09 0.88 1.00

benzoyl‑salicyloylsalicin − 0.12 0.06 0.67 0.49

catechol − 0.03 0.02 0.52 0.62

phenol − 0.06 − 0.01 0.64 0.68

salicin − 0.01 0.03 0.61 0.72

salicyl alcohol − 0.09 0.07 0.36 0.41

salicyl‑coumaroyl‑glucoside conjugates 0.04 − 0.11 0.70 0.62

salicylic acid − 0.04 0.00 0.63 0.44

salicyltremuloidin − 0.10 0.05 0.68 0.46

sum metabolite ions in  MBMSa − 0.13 0.05 1.00 0.88

tremulacin − 0.12 0.03 0.63 0.47

tremuloidin − 0.18 0.16 0.55 0.78

trichocarpin − 0.06 − 0.01 0.49 0.50

trichocarpin conjugate − 0.11 0.07 0.71 0.69

trichocarpinene − 0.09 0.00 0.50 0.48

Fig. 4 a Factor‑1 loadings for PLS model constructed using Py‑MBMS data from Boardman set of P. trichocarpa leaves. b Calibration and validation 
prediction of aromatic metabolites in Boardman set of P. trichocarpa leaves using respective PLS model
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was rapidly collected, placed on dry ice, shipped back 
to Oak Ridge National Laboratory, stored at -80ºC until 
being processed for metabolite analyses.

With Clatskanie, OR, being a mesic site in the Colum-
bia River Delta with a high water table, trees were grown 
without supplemental irrigation. With Boardman, OR, 
typically only receiving approx. 18  cm of rainfall annu-
ally, trees were supplemented with irrigation water. Sur-
prisingly, there were no significant differences in the total 
metabolite concentrations between drought-stressed 
and well-watered trees within a given genotype (data not 
shown).

Extraction and analysis of leaf metabolites by GC/MS
For leaf samples collected at Clatskanie, OR, metabolite 
extraction and analysis were prepared as described previ-
ously [2, 23]. For leaf samples collected from genotypes 
at Boardman, OR, metabolite extraction and analysis 
were performed based on protocols also described previ-
ously [24]. Briefly, lyophilized samples were ground and 
extracted twice overnight with 2.5  mL portions of 80% 
ethanol. Sorbitol (75  µL; 1  mg   mL−1) was added before 
extraction as an internal standard. Following centrifuga-
tion, a 500 µL aliquot of the combined extract was dried 
in a stream of nitrogen and silylated by addition of 500 µL 
of acetonitrile (TS-20062; ThermoFisher) and 500 µL of 
N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) 
with 1% trimethylchlorosilane (TMCS) (TS-48915; Ther-
moFisher) and heating for 1  h at 70  °C to generate tri-
methylsilyl (TMS) derivatives. After 2 days, a 0.1 or 1 µL 
aliquot was injected into an Agilent Technologies Inc. 
(Santa Clara, CA, USA) 7890A gas chromatograph cou-
pled to a 5975C inert XL mass spectrometer configured 
[25], and aromatic metabolites were identified, quanti-
fied, and normalized as previously described [2, 25].

The fraction of the aromatic metabolites in the dry 
weight (DW) extract of leaves was obtained by summing 
the abundance of each aromatic metabolite (μg or ng/g 
DW internal standard equivalent) and dividing by the 
total sum of the metabolites accounted for (DW internal 
standard equivalent) in each sample.

Pyrolysis‑MBMS
A Frontier PY2020 unit pyrolyzed 4  mg of cryo-milled 
biomass at 500 °C for 30 s in 80 µL deactivated stainless 
steel cups. In comparison to the GC/MS method, the 
only preparation required for py-MBMS analysis is the 
cryo-milling of the samples and adding the leaf samples 
to the MBMS cups. Each biomass sample was analyzed 
in duplicate. An Extrel Super-Sonic MBMS Model Max 
1000 was used to collect mass spectra (m/z 30–450 at 
17  eV) which was processed using Merlin Automation 
software (V3). Spectral ion intensities were normalized 

based on summation of total ion intensities (TIC) and 
spectra were subsequently analyzed using The Unscram-
bler X v10 (Camo, Trondheim, Norway). Lignin content 
was estimated by using a single point response factor 
relative to a representative NIST standard of known Kla-
son lignin content using the same ions. Syringyl-to-guai-
acyl (S/G) ratios were estimated by dividing the sum of 
S-based ions by the sum of G-based ions using mean-
normalized ion intensities.

Based on the analysis of the Clatskanie set, ions (m/z) 
68, 71, 77, 91, 94, 105, 107, and 122 were highly corre-
lated to the abundance of aromatic metabolites and were 
used to predict the relative abundance of total aromatic 
metabolites that would have been present in the extracts 
of the Boardman set. Principal Component Analysis 
(PCA, NIPALS algorithm) was performed on mean-
centered, TIC-normalized MBMS spectra resulting in 6 
principal components for the Clatskanie samples explain-
ing 57% variance and 7 principal components for the 
Boardman samples explaining 52% variance. Partial Least 
Squares (PLS) regression models constructed from the 
GC/MS and py-MBMS data (restricted to m/z 50–250, 
mean centered) of the two different sets were gener-
ated using the Unscrambler X V.10.5 (Camo Software) 
NIPALS algorithm. PLS cross validation was performed 
using 20 random samples, all variables were weighted 
equally. 3-Factor models were used for the prediction of 
the soluble, extractable aromatics in the Clatskanie sam-
ples and 4-Factor models were used for the prediction of 
the soluble, extractable aromatics in the Boardman pop-
lar leaf samples.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13068‑ 023‑ 02287‑2.

Additional file 1. GC‑MS data from analysis of extracts from Boardman 
and Clatskanie poplar leaves.

Acknowledgements
The authors would like to thank Sean Cornell and Andrew Grewe for assis‑
tance with sample preparation, and to Brian Stanton, Katherine Haiby, and 
Richard Shuren of Greenwood Resources, Portland, OR, for establishment and 
maintenance field sites. Also, thanks to Jonathan Cumming and Stephen P. 
DiFazio for experimental assistance and design, management and insight.

Author contributions
AEW performed experiments, analyzed data, wrote text, constructed 
figures, and edited manuscript, MZM provided data analysis, NLE performed 
experiments, collected and prepared samples, provided text and editing of 
manuscript, CD performed experiments, TJT performed experiments, col‑
lected and prepared samples, provided text and editing of manuscript as well 
as oversight and poplar field experimental design. All authors reviewed the 
manuscript.

Funding
This research was supported by the U. S. Department of Energy (DOE), Office 
of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies 

https://doi.org/10.1186/s13068-023-02287-2
https://doi.org/10.1186/s13068-023-02287-2


Page 9 of 9Harman‑Ware et al. Biotechnology for Biofuels and Bioproducts           (2023) 16:41  

Office (BETO), under Award No. DE‑AC36‑08GO28308 with the National 
Renewable Energy Laboratory. Funding was also provided by the Center for 
Bioenergy Innovation (CBI), from the U.S. Department of Energy Bioenergy 
Research Centers supported by the Office of Biological and Environmental 
Research in the DOE Office of Science. This manuscript has been authored 
or coauthored by UT‑Battelle, LLC under Contract No. DE‑AC05‑00OR22725 
with the U.S. Department of Energy. The publisher, by accepting the article for 
publication, acknowledges that the U. S. Government retains a nonexclusive, 
paid‑up, irrevocable, worldwide license to publish or reproduce the published 
form of this work, or allow others to do so, for U.S. Government purposes. The 
views expressed in the article do not necessarily represent the views of the 
U.S. Department of Energy or the United States Government.

Availability of data and materials
The Department of Energy will provide public access to these results of 
federally sponsored research in accordance with the DOE Public Access Plan 
(http:// energy. gov/ downl oads/ doe‑ public‑ access‑ plan). Data not presented in 
the manuscript is available upon request from the coauthors.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing Interests
The authors declare no competing interests.

Received: 22 August 2022   Accepted: 20 February 2023

References
 1. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hell‑

sten U, Putnam N, Ralph S, Rombauts S, Salamov A. The genome 
of black cottonwood, Populus trichocarpa (Torr. & Gray). Science. 
2006;313(5793):1596–604.

 2. Tschaplinski TJ, Abraham PE, Jawdy SS, Gunter LE, Martin MZ, Engle 
NL, Yang X, Tuskan GA. The nature of the progression of drought stress 
drives differential metabolomic responses in Populus deltoides. Ann Bot. 
2019;124(4):617–26.

 3. Tsai CJ, Guo W, Babst B, Nyamdari B, Yuan Y, Payyavula R, Chen H‑Y, 
Liangjiao X, Tay K, Michelizzi V, Harding S. Salicylate metabolism in Popu-
lus. BMC Proc. 2011;5(7):I9.

 4. Tsai CJ, Harding SA, Tschaplinski TJ, Lindroth RL, Yuan Y. Genome‑wide 
analysis of the structural genes regulating defense phenylpropanoid 
metabolism in Populus. New Phytol. 2006;172(1):47–62.

 5. Chen F, Liu C‑J, Tschaplinski TJ, Zhao N. Genomics of secondary metabo‑
lism in Populus: interactions with biotic and abiotic environments. Crit 
Rev Plant Sci. 2009;28(5):375–92.

 6. Ostos‑Garrido FJ, de Castro AI, Torres‑Sánchez J, Pistón F, Peña JM. 
High‑throughput phenotyping of bioethanol potential in cereals using 
UAV‑based multi‑spectral imagery. Front Plant Sci. 2019;10:948.

 7. Decker SR, Harman‑Ware AE, Happs RM, Wolfrum EJ, Tuskan GA, Kainer 
D, Oguntimein GB, Rodriguez M, Weighill D, Jones P, Jacobson D. High 
throughput screening technologies in biomass characterization. Front 
Energy Res. 2018. https:// doi. org/ 10. 3389/ fenrg. 2018. 00120.

 8. Corol ID, Harflett C, Beale HM, Ward LJ. An efficient high throughput 
metabotyping platform for screening of biomass willows. Metabolites. 
2014;4(4):946–76.

 9. Hall R, Beale M, Fiehn O, Hardy N, Sumner L, Bino R. Plant metabolomics. 
Plant Cell. 2002;14(7):1437.

 10. Ainsworth EA, Gillespie KM. Estimation of total phenolic content and 
other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. 
Nat Protoc. 2007;2(4):875–7.

 11. Sykes R, Kodrzycki B, Tuskan G, Foutz K, Davis M. Within tree variability of 
lignin composition in Populus. Wood Sci Technol. 2008;42(8):649–61.

 12. Sykes R, Yung M, Novaes E, Kirst M, Peter G, Davis M. High‑throughput 
screening of plant cell‑wall composition using pyrolysis molecular beam 
mass spectroscopy. In: Mielenz JR, editor. Biofuels: Methods and proto‑
cols. Totowa: Humana Press; 2009. p. 169–83.

 13. Yin T, Zhang X, Gunter L, Priya R, Sykes R, Davis M, Wullschleger SD, Tuskan 
GA. Differential detection of genetic loci underlying stem and root lignin 
content in Populus. PLoS ONE. 2010;5(11): e14021.

 14. Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Tuskan 
GA, Wyman CE. Lignin content in natural Populus variants affects sugar 
release. Proc Natl Acad Sci. 2011;108(15):6300–5.

 15. Evans RJ, Milne TA. Molecular characterization of the pyrolysis of biomass. 
Energy Fuels. 1987;1(2):123–37.

 16. Faix O, Meier D, Fortmann I. Pyrolysis‑gas chromatography‑mass spec‑
trometry of two trimeric lignin model compounds with alkyl‑aryl ether 
structure. J Anal Appl Pyrol. 1988;14(2):135–48.

 17. Decker SR, Sykes RW, Turner GB, Lupoi JS, Doepkke C, Tucker MP, Schuster 
LA, Mazza K, Himmel ME, Davis MF, Gjersing E. High‑throughput screen‑
ing of recalcitrance variations in lignocellulosic biomass: total lignin, 
lignin monomers, and enzymatic sugar release. JoVE. 2015;103:e53163.

 18. Mann DGJ, Labbé N, Sykes RW, Gracom K, Kline L, Swamidoss IM, Bur‑
ris JN, Davis M, Stewart CN. Rapid assessment of lignin content and 
structure in switchgrass (Panicum virgatum L.) grown under different 
environmental conditions. BioEnergy Res. 2009;2(4):246–56.

 19. Penning BW, Sykes RW, Babcock NC, Dugard CK, Klimek JF, Gamblin D, 
Davis M, Filley TR, Mosier NS, Weil CF, McCann MC, Carpita NC. Validation 
of PyMBMS as a high‑throughput screen for lignin abundance in lignocel‑
lulosic biomass of grasses. BioEnergy Res. 2014;7(3):899–908.

 20. Evans LM, Slavov GT, Rodgers‑Melnick E, Martin J, Ranjan P, Muchero W, 
Brunner AM, Schackwitz W, Gunter L, Chen J‑G, Tuskan GA, DiFazio SP. 
Population genomics of Populus trichocarpa identifies signatures of selec‑
tion and adaptive trait associations. Nat Genet. 2014;46(10):1089–96.

 21. Slavov GT, DiFazio SP, Martin J, Schackwitz W, Muchero W, Rodgers‑Mel‑
nick E, Lipphardt MF, Pennacchio CP, Hellsten U, Pennacchio LA. Genome 
resequencing reveals multiscale geographic structure and extensive 
linkage disequilibrium in the forest tree Populus trichocarpa. New Phytol. 
2012;196(3):713–25.

 22. Weighill D, Jones P, Shah M, Ranjan P, Muchero W, Schmutz J, Sreedasyam 
A, Macaya‑Sanz D, Sykes R, Zhao N, Martin MZ, DiFazio S, Tschaplinski TJ, 
Tuskan G, Jacobson D. Pleiotropic and epistatic network‑based discovery: 
integrated networks for target gene discovery. Front Energy Res. 2018. 
https:// doi. org/ 10. 3389/ fenrg. 2018. 00030.

 23. Weighill D, Jones P, Bleker C, Ranjan P, Shah M, Zhao N, Martin M, DiFazio 
S, Macaya‑Sanz D, Schmutz J, Sreedasyam A, Tschaplinski T, Tuskan G, 
Jacobson D. Multi‑phenotype association decomposition: unraveling 
complex gene–phenotype relationships. Front Genet. 2019;10:417.

 24. Abraham PE, Yin H, Borland AM, Weighill D, Lim SD, De Paoli HC, Engle 
N, Jones PC, Agh R, Weston DJ, Wullschleger SD, Tschaplinski T, Jacobson 
D, Cushman JC, Hettich RL, Tuskan GA, Yang X. Transcript, protein and 
metabolite temporal dynamics in the CAM plant Agave. Nat Plants. 
2016;2(12):16178.

 25. Tschaplinski TJ, Standaert RF, Engle NL, Martin MZ, Sangha AK, Parks JM, 
Smith JC, Samuel R, Jiang N, Pu Y, Ragauskas AJ, Hamilton CY, Fu C, Wang 
Z‑Y, Davison BH, Dixon RA, Mielenz JR. Down‑regulation of the caffeic 
acid O‑methyltransferase gene in switchgrass reveals a novel monolignol 
analog. Biotechnol Biofuels. 2012;5(1):71.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.3389/fenrg.2018.00120
https://doi.org/10.3389/fenrg.2018.00030

	Rapid screening of secondary aromatic metabolites in Populus trichocarpa leaves
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	Results
	Metabolite profiles of P. trichocarpa leaves
	Py-MBMS analysis of P. trichocarpa leaves
	Aromatic metabolite predictions using py-MBMS

	Discussion
	Conclusions
	Methods
	Collection and Preparation of Leaf Samples
	Extraction and analysis of leaf metabolites by GCMS
	Pyrolysis-MBMS

	Anchor 17
	Acknowledgements
	References


