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Abstract 

Background Chlorella sorokiniana FZU60 is a promising lutein producing microalga. A mixotrophy/photoautotrophy 
two‑stage strategy can achieve high biomass concentration at stage 1 and high lutein content at stage 2, leading to 
excellent lutein production efficiency in C. sorokiniana FZU60. However, the underlying molecular mechanisms are still 
unclear, restraining the further improvement of lutein production.

Results In this study, physiological and biochemical analysis revealed that photochemical parameters (Fv/Fm and 
NPQ) and photosynthetic pigments contents increased during the shift from mixotrophy to photoautotrophy, 
indicating that photosynthesis and photoprotection enhanced. Furthermore, transcriptomic analysis revealed that 
the glyoxylate cycle and TCA cycle were suppressed after the shift to photoautotrophy, leading to a decreased cell 
growth rate. However, the gene expression levels of photosynthesis,  CO2 fixation, autophagy, and lutein biosynthesis 
were upregulated at the photoautotrophy stage, demonstrating that microalgal cells could obtain more precursor to 
synthesize lutein for enhancing photosynthesis and reducing reactive oxygen species.

Conclusions The findings help to elucidate the molecular mechanisms for high lutein production efficiency of C. 
sorokiniana FZU60 under the mixotrophy/photoautotrophy strategy, identify key functional genes responsible for 
lutein biosynthesis, and shed light on further improvement of lutein production by genetic or metabolic engineering 
in future studies.
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Introduction
Lutein, a primary xanthophyll carotenoid, has many 
beneficial effects on human health, such as protection 
of ocular health, anti-inflammatory, beneficial effects 
in the development of infant brain, and inhibition of 
adipogenesis [1]. Thus, it has been widely used in food 
additives, cosmetics, and drugs [2]. The lutein market 
was valued at USD 135 million in 2015 and is expected 
to have an annual growth rate of 6% by 2024 [1]. Mari-
gold flowers are the traditional lutein source, while 
lutein production from them has the disadvantages of 
high labor intensity, low lutein content, occupation of 
arable land, and susceptible to climate [3]. In recent 
years, microalgae have been considered an alternative 
lutein source due to the advantages of a fast growth 
rate, high lutein production, and independence of ara-
ble land and fresh water resources [2, 4].

The production of microalgae-based lutein can be 
manipulated in photoautotrophic, mixotrophic, and 
heterotrophic modes [1, 5]. Among them, photoau-
totrophy and mixotrophy involve  CO2 fixation [6], 
and thus are relatively cost-effective if flue gas is used 
as the  CO2 source [7]. To date, photoautotrophy is 
the most widely used cultivation mode for microal-
gae as it is easy to operate and enables the utilization 
of freely available sunlight [8]. Besides, the biosynthe-
sis of light-induced lutein enhances under this culti-
vation mode [9]. However, photoautotrophy is limited 
by light penetration due to the self-shading effects of 
microalgal cells when cell density increases, leading to 
a low biomass production [10]. Microalgae cultivated in 
mixotrophic mode can use both inorganic and organic 
carbon sources for photosynthesis and aerobic respira-
tion; therefore, the cell growth rate is much higher than 
that of photoautotrophic mode [11]. However, lutein 
biosynthesis reduces under the mixotrophic mode 
[12]. Based on these phenomena, a two-stage strategy 
with semi-batch mixotrophic cultivation in stage 1 and 
photoautotrophic induction in stage 2 was explored 
to initially improve cell growth and then induce lutein 
accumulation in Chlorella sorokiniana MB-1, achieving 
a high lutein productivity of 7.62 mg/L/d [13]. Likewise, 
a multi-operation integrated strategy with semi-batch 
and fed-batch mixotrophic cultivation in stage 1 and 
photoinduction in stage 2 was applied in C. sorokini-
ana FZU60 to achieve an excellent lutein content, pro-
ductivity, and production of 9.57  mg/g, 11.57  mg/L/d, 
and 17.35  mg/L, respectively [9]. Moreover, the mixo-
trophy/photoautotrophy two-stage strategy could be 
scaled in a 50 L column photobioreactor in C. sorokini-
ana FZU60 [12]. Nevertheless, the molecular mecha-
nisms for high lutein production efficiency under the 

mixotrophy/photoautotrophy two-stage strategy have 
not been elucidated.

Microalgal lutein is connected to light-harvesting com-
plexes (LHCs), presented as a “structural form” for light-
harvesting; besides, it functions to dissipate excess light 
energy for protecting microalgae from photo-oxidative 
damage by non-photochemical quenching [14, 15]. 
Hence, the accumulation of lutein is highly associated 
with photosynthesis. It was found that photosynthesis 
was shut off by reducing the expression of photosynthetic 
apparatus protein, including core proteins D2 and CP43 
of photosystem II (PSII), core protein PsaA of photo-
system I (PSI), and large subunit cytochrome b6 of the 
cytochrome b6f (Cyt b6f) complex, when the microalga 
Chromochloris zofingiensis was transferred from photo-
autotrophic to mixotrophic cultivation [16]. In addition, 
the transcriptional level analysis showed that non-pho-
tochemical quenching and photorespiration of C. zof-
ingiensis were significantly decreased under mixotrophic 
condition, compared with that under photoautotrophic 
condition [17]. Thus, the shift from mixotrophy to photo-
autotrophy may enhance photosynthesis and photopro-
tection, resulting in an increase in lutein accumulation 
due to its functions in light-harvesting and non-photo-
chemical quenching. However, the underlying molecular 
mechanisms need to be studied.

The present study investigated the growth, physiologi-
cal, and biochemical parameters of C. sorokiniana FZU60 
under the mixotrophy/photoautotrophy two-stage strat-
egy. Furthermore, transcriptomic analysis was used to 
reveal the features of photosynthesis, carbon fixation, 
autophagy, and lutein biosynthesis under this trophic 
transition. The findings shed light on the molecular 
mechanisms for high lutein production efficiency of C. 
sorokiniana FZU60 under the mixotrophy/photoauto-
trophy strategy and will provide a foundation for future 
studies on further improvement of lutein production by 
genetic or metabolic engineering.

Results and discussion
Changes in growth, lutein accumulation, 
and photochemical parameters under the mixotrophy/
photoautotrophy two‑stage strategy
As shown in Fig. 1a, biomass concentration raised rapidly 
from -24 to 0 h, when acetate was replete (Fig. 1b). Then, 
the growth rate decreased after acetate was depleted 
(0–72  h). Consistently, nitrate was consumed quickly 
from -24 to 0 h, and then the consumption rate decreased 
from 0 to 72  h (Fig.  1c). Hence, microalgal cells grew 
faster under mixotrophic condition, compared with that 
under photoautotrophic condition. This result is similar 
to the studies in C. zofingiensis[16], C. sorokiniana MB-1 
[13], and Scenedesmus obliquus KGE-17 [18]. The higher 
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growth rate under mixotrophic condition might be due 
to the fact that microalgal cells could simultaneously uti-
lize inorganic and organic carbon sources under lighting 
condition for photosynthesis and aerobic respiration [11].

On the other hand, lutein content raised significantly 
from 0 to 48  h, and then plateaued at 72  h (Fig.  1d), 
indicating that photoautotrophy can stimulate lutein 
accumulation. Lutein accumulation is highly associ-
ated with photosynthesis due to its function in light-
harvesting and photoprotection [14, 15]. Hence, the 
photochemical parameters of Fv/Fm and NPQ repre-
senting photosynthesis performance were analyzed. 
As shown in Fig.  1e, the value of Fv/Fm fluctuated 
from -24 to 0  h, and then gradually increased from 0 

to 30  h. The increase in Fv/Fm value during the shift 
from mixotrophic to photoautotrophic conditions indi-
cated that the photosynthetic capacity improved [19]. 
Besides, the value of NPQ decreased initially, followed 
by a steady increase under mixotrophic condition, and 
then continuously increased after the transfer to pho-
toautotrophic condition (Fig. 1f ). The sharp increase in 
NPQ value under photoautotrophic condition revealed 
that the dissipation of light energy increased, which 
could be a result of the microalgal photoprotection 
mechanism [20]. Hence, the shift from photoautotro-
phy to mixotrophy improved photosynthetic capacity 
and photoprotection, leading to an increase in lutein 
accumulation.

Fig. 1 Time‑course profiles of growth, lutein accumulation, and photochemical parameters of C. sorokiniana FZU60 under the mixotrophy/
photoautotrophy strategy. a Biomass concentration; b Acetate concentration; c Nitrate concentration; d Lutein content; e Fv/Fm; f NPQ. The culture 
time at the onset of acetate depletion was denoted as 0 h
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Variations of biochemical and pigmental compositions 
under the mixotrophy/photoautotrophy two‑stage 
strategy
Biochemical compositions reveal the physical metabo-
lism of microalgal cells. Thus, the variations in biochemi-
cal compositions of C. sorokiniana FZU60 under the 
mixotrophy/photoautotrophy strategy were investigated. 
As shown in Fig.  2a, the cellular composition consisted 
mainly of protein, carbohydrate, fatty acid, carotenoid, 
and chlorophyll. Protein was the major component of 
microalgal cells. Its content decreased at 0  h, and then 
increased at 12 and 24  h. The changing trend of carbo-
hydrate content was opposite to protein content, which 
increased at 0  h, and then declined at 12 and 24  h. No 
significant difference was observed in fatty acid con-
tent. Protein is a primary metabolite, which is accumu-
lated under the optimal conditions for cell growth, while 

carbohydrate is classified into structural and storage 
types, the latter of which (such as starch) is largely accu-
mulated under stressed conditions as short-term energy 
reserve [21]. An increase in carbohydrate content, espe-
cially starch content, under stressed conditions has been 
observed in many microalgae, such as Chlorella species 
[22] and Neochloris oleoabundans HK-129 [23]. Thus, the 
sudden increase in carbohydrate content and decrease 
in protein content at the onset of acetate depletion indi-
cated that the shift from mixotrophy to photoautotrophy 
might course transient stress to microalgal cells. Subse-
quently, carbohydrate content decreased, and protein 
content increased, when microalgal cells adjusted to the 
photoautotrophic condition.

The contents of pigments (including carotenoid and 
chlorophyll) were not significantly different from − 12 to 
0 h, while their contents increased sharply from 0 to 24 h 
(Fig. 2a). It can be observed explicitly in Fig. 2b that the 
contents of carotenoids, including lutein, violaxanthin, 
neoxanthin, antheraxanthin, zeaxanthin, α-carotene, 
and β-carotene, significantly enhanced after microalgal 
cells were shifted to photoautotrophic condition. Simi-
larly, the contents of chlorophylls, including chlorophyll 
a and b, significantly increased under photoautotrophic 
condition (Fig. 2c). Both carotenoid and chlorophyll are 
photosynthetic pigments [24]. The capture of light by 
PSII was achieved by a macromolecular complex consist-
ing of major pigments (chlorophyll a and b) and minor 
pigments (carotenoids of lutein, neoxanthin, and violax-
anthin) [25]. The significant increase in their contents 
indicated that photosynthesis might be greatly enhanced 
during the shift from mixotrophy to photoautotrophy.

Global gene response at the transcriptional level 
during the shift from mixotrophy to photoautotrophy
To further investigate the underlying molecular mecha-
nisms of high lutein production efficiency in C. soro-
kiniana FZU60 under the mixotrophy/photoautotrophy 
two-stage strategy, a transcriptomic analysis was per-
formed based on de novo assembly methods. The 
obtained unigenes mainly distributed between 150 and 
1000  bp (Additional file  1: Fig. S1a). The annotation 
results indicated that there were 14,677 unigenes anno-
tated in all four databases of KEGG, KOG, Nr, and Swis-
sprot (Fig. 3a). According to the results of Nr annotation, 
the unigenes were most aligned to C. sorokiniana (10,616 
unigenes) (Additional file 1: Fig. S1b), confirming that the 
newly isolated microalga is a species of C. sorokiniana. 
The principal component analysis demonstrated that all 
transcriptomes were highly corelated with each other 
within each group (Fig.  3b). DEGs analysis showed that 
the number of DEGs was distinct between treatment 
groups (Additional file 1: Fig. S2). Compared with F-12 h 

Fig. 2 Time‑course profiles of biochemical (a), carotenoid 
(b), and chlorophyll (c) compositions of C. sorokiniana FZU60 under 
the mixotrophy/photoautotrophy strategy. The culture time at the 
onset of acetate depletion was denoted as 0 h
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group, there was 2323 unigenes were upregulated and 
2254 unigenes were downregulated for F0h group (Fig. 3c 
and Additional file  1: Fig. S2); besides, 12,267 unigenes 
were upregulated and 2287 unigenes were downregu-
lated for F12h group (Fig.  3d and Additional file  1: Fig. 
S2). Moreover, the unigenes involved in the pathways 
of acetate metabolism, photosynthesis,  CO2 fixation, 
autophagy, and carotenoid biosynthesis were manually 
identified and their dynamic changes in transcriptional 
levels were analyzed.

Suppression of glyoxylate cycle and TCA cycle during the shift 
from mixotrophy to photoautotrophy
Acetate is the organic carbon source used by microalgal 
cells at the mixotrophy stage, and it was exhausted at the 

photoautotrophy stage. Thus, the metabolism of acetate 
might be changed completely during the shift from mixo-
trophy to photoautotrophy. After uptake in microalgae, 
acetate is converted into acetyl-CoA at the action of ACS 
[26]. Results of the transcriptomic analysis showed that 
the expression level of ACS gene was significantly down-
regulated after acetate was depleted (Fig.  4), indicating 
that acetate metabolism was sharply suppressed. This 
result is consistent with the findings in Chlamydomonas 
reinhardtii that the expression level of ACS gene was sig-
nificantly upregulated when microalgal cells were shifted 
from autotrophic to mixotrophic conditions [27].

Acetate can enter the glyoxylate cycle or TCA cycle, 
which exists in glyoxysome and mitochondria, respec-
tively [28, 29]. The glyoxylate cycle and TCA cycle share 

Fig. 3 Global analysis of transcriptomes and DEGs. a Venn diagram of annotation results in four databases; b Score plot of principle component 
analysis; c Volcano plot of changes in gene expression between F‑12 h and F0h groups; d Volcano plot of changes in gene expression between 
F‑12 h and F12h groups
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similar enzymes, except for two special enzymes (MLS 
and ICL) in the glyoxylate cycle [28]. As shown in Fig. 4, 
the expression levels of ACO, IDH, OGDH, DLST, LSC, 
FUM, and MDH genes, presenting in both the glyoxy-
late cycle and TCA cycle, were significantly downreg-
ulated. Besides, the expression levels of ICL and MLS 
genes, existing in the glyoxylate cycle, were upregulated 
and downregulated, respectively. Hence, the transcrip-
tomic analysis showed that most genes in the glyoxylate 
cycle and TCA cycle were downregulated, indicating 
that these two pathways were suppressed. The glyoxy-
late cycle or TCA cycle can provide carbon skeletons 
and energy (ATP and NADPH) for microalgal cells, 
which are important for cell growth [30]. Hence, the 
decrease in cell growth rate during the shift from mixo-
trophy to photoautotrophy (Fig. 1a) could be due to the 
suppression of glyoxylate cycle and TCA cycle.

Enhancement of photosynthesis and  CO2 fixation 
during the shift from mixotrophy to photoautotrophy
Since photosynthesis and  CO2 fixation are closely related 
to lutein biosynthesis, the changes of them in tran-
scriptomic level were investigated in this study. Photo-
synthetic apparatus mainly consists of five complexes, 
including PS I, PS II, Cyt b6f complex, photosynthetic 
electron transport, and F-type ATPase [31]. As shown 
in Fig.  5a, the expression levels of PsbO gene in PSII, 
PetC gene in Cyt b6f complex, as well as gamma, delta, 
and a genes in F-type ATPase were significantly upregu-
lated at 0 and 12 h. In addition, the expression of Lhca1, 
Lhcb1 (Unigene0032698), and Lhcb2 genes in LHCs were 
upregulated after the shift to photoautotrophy. Lutein is 
combined with LHCs and functions in light-harvesting 
and photoprotection [14, 15]. The enhanced gene expres-
sion of PSII and LHCs indicated that photosynthesis 

Fig. 4 Transcriptional response of glyoxylate cycle and TCA cycle of C. sorokiniana FZU60 under the mixotrophy/photoautotrophy strategy. ACO: 
aconitate hydratase; ACS: acetyl‑CoA synthetase; CS: citrate synthase; DLST: dihydrolipoamide succinyltransferase; FUM: fumarate hydratase; 
ICL: isocitrate lyase; IDH: isocitrate dehydrogenase; LSC: succinyl‑CoA synthetase; MDH: malate dehydrogenase; MLS: malate synthase; OGDH: 
2‑oxoglutarate dehydrogenase; SDH: succinate dehydrogenase. The red, blue, and black arrows indicate the upregulation, downregulation, and 
invariability of gene, respectively
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increased, which might require more lutein and thus 
stimulated lutein accumulation. Besides, F-type ATPase 
is responsible for the generation of energy molecule ATP 
using  H+ produced by the PS II and Cyt b6f complex [32]. 
The increase in gene expression of the F-type ATPase 
and Cyt b6f complex indicated that the ATP synthesis 
enhanced, which could be used as energy for  CO2 fixa-
tion and carotenoid accumulation. Hence, the upregula-
tion of genes coding photosynthetic apparatus was in line 
with the increase in Fv/Fm value and the content of pho-
tosynthetic pigments.

Similar to some other microalgae, such as Chromo-
chloris zofingiensis [31] and Thalassiosira weissflogii [33], 
both the  C4 cycle and Calvin–Benson cycle for  CO2 fixa-
tion exist in C. sorokiniana FZU60. As shown in Fig. 5b, 
the expression level of RBCS gene in the Calvin–Benson 
cycle, responsible for fixing  CO2 into glycerate, was sig-
nificantly upregulated after the shift to photoautotrophy 
(0 and 12 h). Besides, the expression levels of SBP, TKL, 
RPI, PRK, and RPE genes were all upregulated at 0 and 
12  h. Meanwhile, the expression level of some isoforms 
of GAPDH, PGK, FBA, and FBP was upregulated at 0 
and 12 h. Thus,  CO2 fixation in the Calvin–Benson cycle 
was significantly enhanced. Glyceraldehyde-3-phosphate, 
an essential product of the Calvin–Benson cycle, can be 
converted into pyruvate, which is the substrate for bio-
synthesizing the precursor (IPP) of carotenoid [21, 31]. 
Therefore, the enhanced Calvin–Benson cycle might help 
to provide more precursor for carotenoid accumulation.

On the other hand, the expression level of ppc gene in 
the  C4 cycle pathway, responsible for the fixation of  CO2 
to oxaloacetate, was upregulated at 0 h (Fig. 5b). Besides, 
the expression level of NADP-MDH gene was signifi-
cantly enhanced after the switch to photoautotrophy (0 
and 12  h). The NADP-MDH catalyzes oxaloacetate into 
malate, which is further transformed into pyruvate, the 
initial metabolite of the MEP pathway for biosynthesizing 
the precursor (IPP) of carotenoid [21, 31]. Besides, the 
expression level of PPDK gene, responsible for catalyzing 
pyruvate into phosphoenol-pyruvate, was downregulated 
after the shift to photoautotrophy (0 and 12  h). Hence, 
the biosynthesis of pyruvate from oxaloacetate and 
malate increased, while the transformation of pyruvate 

into phosphoenol-pyruvate decreased, which could facil-
itate pyruvate accumulation and thus enhance carotenoid 
biosynthesis.

Enhancement of autophagy during the shift from mixotrophy 
to photoautotrophy
Autophagy is the main degradation pathway for recycling 
cellular waste components in microalgal cells, which is 
activated under stressed conditions, such as oxidative 
stress [34, 35]. It has been found that carotenoid biosyn-
thesis and autophagy genesis are induced simultaneously 
to reduce reactive oxygen species (ROS), thus provid-
ing a defense against photo-oxidative damage [36]. The 
increase in NPQ value after the shift to photoautotro-
phy (Fig. 1f ) indicated that the dissipation of light energy 
increased, which was used for the defense against photo-
oxidative damage [20]. Hence, the shift from mixotrophy 
to photoautotrophy might result in an increase in ROS 
level and photo-oxidative damage to microalgal cells, 
thus enhancing carotenoid biosynthesis and autophagy 
genesis.

The autophagy machinery consists mainly of the ATG1 
initiation complex, PI3K nucleation complex, PI3P bind-
ing complex, ATG8 ubiquitin-like system, and ATG12 
ubiquitin-like system [37]. As shown in Fig. 6, the expres-
sion levels of ATG1 gene in the ATG1 initiation complex, 
ATG6, VPS15, and VPS34 genes in the PI3K nucleation 
complex, ATG9 and ATG18 genes in the PI3P binding 
complex, ATG3, ATG4, ATG7, and ATG8 genes in the 
ATG8 ubiquitin-like system, as well as ATG10 gene in the 
ATG12 ubiquitin-like system were all upregulated after 
the shift to photoautotrophy (0 and 12  h). To be noted, 
ATG8 protein is vital for the formation and matura-
tion of autophagosome, a double membrane vesicle that 
engulfs cytosolic components [38]. The results showed 
that all five isoforms of ATG8 gene were significantly 
upregulated. Thus, autophagy was strongly activated in 
C. sorokiniana FZU60 after the shift to photoautotrophy, 
indicating that ROS level might increase in microalgal 
cells, which could induce carotenoid biosynthesis simul-
taneously [36].

Fig. 5 Transcriptional response of photosynthesis a and  CO2 fixation b of C. sorokiniana FZU60 under the mixotrophy/photoautotrophy strategy. 
a: F‑type  H+‑transporting ATPase subunit a; delta: F‑type H + ‑transporting ATPase subunit delta; FBA: fructose‑bisphosphate aldolase; FBP: 
fructose‑1,6‑bisphosphatase I; gamma: F‑type  H+‑transporting ATPase subunit gamma; GAPDH: glyceraldehyde 3‑phosphate dehydrogenase; 
Lhca1: light‑harvesting complex I chlorophyll a/b binding protein 1; Lhca2: light‑harvesting complex I chlorophyll a/b binding protein 2; Lhcb1: 
light‑harvesting complex II chlorophyll a/b binding protein 1; Lhcb2: light‑harvesting complex II chlorophyll a/b binding protein 2; ME: malic 
enzyme; NADP‑MDH: chloroplast NADP‑malate dehydrogenase; PetC: cytochrome b6f complex iron‑sulfur subunit; PGK: phosphoglycerate 
kinase; PPC: phosphoenolpyruvate carboxylase; PPDK: pyruvate orthophosphate dikinase; PRK: phosphoribulokinase; PsbO: photosystem II 
oxygen‑evolving enhancer protein 1; RBCS: ribulose‑bisphosphate carboxylase; RPE: ribulose‑phosphate 3‑epimerase; RPI: ribose 5‑phosphate 
isomerase; SBP: sedoheptulose‑1,7‑bisphosphatase; TKL: transketolase. The red, blue, and black arrows indicate the upregulation, downregulation, 
and invariability of gene, respectively

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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Enhancement of lutein biosynthesis during the shift 
from mixotrophy to photoautotrophy
Lutein biosynthesis initiates from IPP and its isomer 
DMAPP, which are biosynthesized by the MEP pathway 
[1]. The product GGPP is converted into phytoene at the 
catalyzation of PSY [39]. Phytoene is transformed into 
ζ-carotene by PDS and then lycopene by ZDS, Z-ISO, 

and CRTISO [40]. As shown in Fig. 7, the expression lev-
els of PDS and ZDS genes were significantly upregulated 
when acetate was depleted (0 h), which could lead to an 
enhanced accumulation of lycopene, a precursor of carot-
enoid, thus enhancing carotenoid biosynthesis (Fig.  2a). 
Studies in Haematococcus pluvialis indicated that the 
expression level of PDS gene was upregulated during 

Fig. 6 Transcriptional response of autophagy of C. sorokiniana FZU60 under the mixotrophy/photoautotrophy strategy. ATG1: autophagy‑related 
protein 1; ATG2: autophagy‑related protein 2; ATG3: autophagy‑related protein 3; ATG4: autophagy‑related protein 4; ATG5: autophagy‑related 
protein 5; ATG6: autophagy‑related protein 6; ATG7: autophagy‑related protein 7; ATG8: autophagy‑related protein 8; ATG9: autophagy‑related 
protein 9; ATG10: autophagy‑related protein 10; ATG12: autophagy‑related protein 12; ATG13: autophagy‑related protein 13; ATG18: 
autophagy‑related protein 18; VPS15: phosphoinositide‑3‑kinase; VPS34: phosphatidylinositol 3‑kinase. The red, blue, and black arrows indicate the 
upregulation, downregulation, and invariability of gene, respectively
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Fig. 7 Transcriptional response of carotenoid biosynthesis of C. sorokiniana FZU60 under the mixotrophy/photoautotrophy strategy. BCH: 
β‑carotene hydroxylase; CRTISO: prolycopene isomerase; CYP97A: cytochrome P450 carotenoid hydroxylase A; CYP97C: cytochrome P450 
carotenoid hydroxylase C; DMAPP: dimethylallyl diphosphate; IPP: isopentenyl diphosphate; LCYB: lycopene beta‑cyclase; LCYE: lycopene 
epsilon‑cyclase; PDS: phytoene desaturase; PSY: phytoene synthase; VDE: violaxanthin deepoxidase; ZDS: zeta‑carotene desaturase; ZEP: zeaxanthin 
epoxidase; Z‑ISO: zeta‑carotene isomerase. The red, blue, and black arrows indicate the upregulation, downregulation, and invariability of gene, 
respectively



Page 11 of 15Ma et al. Biotechnology for Biofuels and Bioproducts           (2023) 16:47  

carotenoid accumulation [41], and the overexpression of 
endogenous PDS gene significantly enhanced carotenoid 
accumulation [42].

Afterward, lycopene subsequently flows into two 
branches. For one branch, lycopene is catalyzed into 
δ-carotene and then α-carotene at the action of LCYE 
and LCYB [43]. Further, α-carotene is transformed into 
lutein through zeinoxanthin or α-cryptoxanthin at the 
action of CYP97C and BCH or CYP97A [44]. Results 
showed that LCYB gene was significantly upregulated 
at 0  h (Fig.  7), which was consistent with the increase 
in the contents of α-carotene and β-carotene (Fig.  2b). 
It should be noted that the expression levels of two iso-
forms of CYP97A gene and one isoform of CYP97C gene 
were upregulated at both 0 and 12 h (Fig. 7). CYP97A and 
CYP97C are important for catalyzing lutein biosynthesis 
[44]. Hence, the upregulation of CYP97A and CYP97C 
genes resulted in an increase in lutein content. For the 
other branch, lycopene is catalyzed into γ-carotene and 
then β-carotene by LCYB. Subsequently, β-carotene is 
converted into zeaxanthin by BCH or CYP97A [44], 
which is then transformed into antheraxanthin and 
violaxanthin, consisting of the violaxanthin cycle [45]. 
The enhanced contents of carotenoids in the violaxan-
thin cycle, including zeaxanthin, antheraxanthin, and 

violaxanthin (Fig. 2b), might be due to the upregulation 
of LCYB and CYP97A genes (Fig. 7).

Noticeably, the expression levels of PDS, ZDS, 
LCYB genes, and one isoform of CYP97C gene (Uni-
gene0019746) were downregulated at 12  h. It has been 
found that gene expression generally precedes the bio-
synthesis of metabolites [31, 46]. Microalgal cells were 
under photoautotrophic condition from 0  h. Therefore, 
the upregulation of lutein biosynthesis genes at 0 h might 
lead to the translation of sufficient enzymes for enhanced 
lutein accumulation.

Validation of selected genes by qPCR
To validate RNA-seq data, 10 genes were selected to ana-
lyze the expression pattern by qPCR. As shown in Fig. 8, 
the expression levels of ACS and ACO genes, involved in 
acetate metabolism, were downregulated at 0 and 12  h 
compared with that at -12 h. Besides, the expression lev-
els of PsbO, NADP-MDH, and VPS34 genes, involved 
in photosynthesis,  CO2 fixation, and autophagy, were 
upregulated at 0 and 12  h. Furthermore, the expression 
levels of some lutein biosynthesis-related genes, includ-
ing PDS, ZDS, LCYB, and CYP97C, were upregulated at 
0 h but downregulated at 12 h; however, the expression 
level of CYP97A gene was upregulated at both 0 and 12 h. 

Fig. 8 Expression validation of selected genes by qPCR. The unigene number of selected genes is as follows: ACS (Unigene0013552), 
ACO (Unigene0049358), PsbO (Unigene0047650), NADP-MDH (Unigene0047650), VPS34 (Unigene0056425), PDS (Unigene0041231), ZDS 
(Unigene0024163), LCYB (Unigene0046884), CYP97A (Unigene0029479), and CYP97C (Unigene0019746)
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The expression pattern of the abovementioned genes was 
consistent with that of RNA-seq data. Hence, the RNA-
seq data are reliable and accurate.

Conclusions
C. sorokiniana FZU60 grew rapidly at the mixotrophy 
stage, while lutein accumulation enhanced at the photo-
autotrophy stage. Based on the physiological, biochemi-
cal, and transcriptomic data, the decrease in cell growth 
after the shift to photoautotrophy could be due to the 
suppression of glyoxylate cycle and TCA cycle. Besides, 
the increase in photosynthesis and  CO2 fixation at the 
photoautotrophy stage could provide more precursor 
for lutein accumulation. Moreover, the enhancement 
of autophagy indicated that ROS level might increase, 
which could induce lutein biosynthesis simultaneously. 
Hence, the increase in photosynthesis,  CO2 fixation, and 
ROS level after the shift from mixotrophy to photoauto-
trophy could trigger lutein biosynthesis (Fig. 7).

Methods
Microalgal strain and culture conditions
C. sorokiniana FZU60 is a newly isolated microalga with 
high lutein content [9]. The microalgal strain was pre-
served in a 1.5% (w/v) agar plate with BG11 medium [47].

For pre-culture, microalgal cells were inoculated into 
a 1-L photobioreactor with BG11 medium at a working 
volume of 1 L. The microalgal culture was deposited in 
a light incubator under the conditions of initial pH 7.5, 
temperature 28  °C, light intensity 250  μmol/m2/s, and 
stirring speed 300 r/min. Besides, 2.5%  CO2 was con-
stantly aerated into the microalgal culture. The cultiva-
tion lasted 3 days.

The pre-cultured microalgal cells were centrifugated at 
5000 r/min, and then inoculated into a 1-L photobiore-
actor with a working volume of 1 L. The microalgal cells 
were cultivated with a modified BG11 medium (1  g/L 
 NaNO3) adding 3  g/L  CH3COONa with an inoculation 
size of 100  mg/L. The change in initial  NaNO3 concen-
tration to 1 g/L is due to that the cell growth and lutein 
accumulation are better at this concentration under mix-
otrophic cultivation, and nitrogen is still replete after the 
shift to photoautotrophy, according to our previous study 
[9]. The cultivation conditions were similar to that of 
pre-culture except that the temperature was set at 33 °C, 
which is due to that both cell growth and lutein accumu-
lation are optimal at this temperature [48]. The culture 
time at the onset of acetate depletion was denoted as 0 h; 
thus, microalgal cells were cultivated under mixotrophic 
and photoautotrophic conditions before and after 0  h, 
respectively. The microalgal culture was collected at set 
time intervals to analyze biomass concentration, lutein 

content, chlorophyll fluorescence parameters, biochemi-
cal composition, and transcriptome.

Determination of biomass concentration
The optical density of 682 nm  (OD682) of microalgal cul-
ture was measured by a spectrophotometer (U-2001, 
Hitachi, Tokyo, Japan). The biomass concentration of 
microalgal culture was determined by the equation as 
follows:

where y is biomass concentration, and x is  OD682.

Determination of acetate and nitrogen concentrations
The microalgal culture was sampled every 12  h and fil-
tered through a 0.22 μm filter. The supernatant was col-
lected and properly diluted to determine the acetate and 
nitrogen concentrations. The acetate concentration was 
measured by a total organic carbon analyzer (TOC-L 
CPH, Shimadzu, Kyoto, Japan), as previously reported 
[9]. The nitrate concentration was analyzed using a col-
orimetric method [12].

Chlorophyll fluorescence analysis
The chlorophyll fluorescence of microalgal cells was 
determined every 12 h from -24 to 36 h and every 24 h 
from 36 to 72  h. Microalgal culture of 3  mL was sam-
pled in a 5-mL quartz cuvette and kept in the dark for 
20  min to reopen PSII reaction centers and relax non-
photochemical quenching [19]. The maximum PSII 
photochemical quantum yield (Fv/Fm) and non-pho-
tochemical quenching (NPQ) were determined by a 
fluorometer (WATER-ED, EDEE0300, Walz, Effeltrich, 
Germany).

Analysis of biochemical compositions of microalgal cells
The biochemical compositions of microalgal cells were 
measured at -12, 0, 12, and 24  h. Besides, lutein con-
tent was also measured at 48 and 72 h to investigate the 
changing trend. The determination of carotenoid, chloro-
phyll, carbohydrate, and fatty acid contents was carried 
out according to a previous report [49]. A protein extrac-
tion kit (BB-3131-1, BestBio, Shanghai, China) was used 
to extract protein. The protein content was measured 
by a  Pierce® BCA protein assay kit (Thermo Scientific, 
Waltham, MA, USA).

RNA sequencing (RNA‑seq)
The microalgal culture was sampled at − 12, 0, and 12 h 
with three biological replicates for RNA extraction, 
when acetate was replete (designated as F-12  h group), 
at the onset of depletion (designated as F0h group), and 

y = 0.2440x + 0.0156

(

R2
= 0.9961

)
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completely depleted (designated as F12 group), respec-
tively. RNA extraction was carried out with a Trizol 
reagent kit (Invitrogen, Carlsbad, CA, USA), and the 
RNA quality was examined on an Agilent 2100 bioana-
lyzer (Agilent Technologies, Palo Alto, CA, USA). The 
oligo(dT) beads were used to enrich mRNA, which was 
then fragmented, and reverse transcribed into cDNA 
with random primers. Subsequently, a QiaQuick PCR 
extraction kit (Qiagen, Venlo, The Netherlands) was used 
to purify the cDNA fragments, which were then end 
repaired, A base added, and linked to Illumina sequenc-
ing adapters. Sequencing was carried out by Gene 
Denovo Biotechnology Co. (Guangzhou, China) utilizing 
Illumina novaseq 6000.

Sequence assembly and annotation
The raw reads were filtered by fastp (version 0.18.0), and 
the reads containing adapters, ploy-N, and more than 
50% of low-quality bases were removed. The reads were 
then assembled using Trinity software, and the assem-
bly integrity was assessed by BUSCO. The Unigene 
sequences were then compared to the protein databases 
NR, SwissProt, KEGG, and COG/KOG by blastx to 
obtain the protein with the highest sequence similarity, 
thus achieving the annotation information of the protein 
function of Unigene.

Analysis of differentially expressed genes (DEGs)
The DEGs between two distinct groups were analyzed 
by DESeq2 software [50] and by edgeR [51] between two 
samples. The genes with the parameters of false discovery 
rate (FDR) < 0.05 and absolute fold change (FC) ≥ 2 were 
considered DEGs [52]. The RNA-seq data are shown as 
 log2 (FC).  The data  of   log2 (FC) and FDR  for the genes 
analyzed in this study are listed in Additional file  2: 
Table S1–S4.

Quantitative real‑time PCR (qPCR) for validating 
the expression of selected genes
A total of 10 genes were selected for expression valida-
tion, including ACS responsible for converting acetate 
into acetyl-CoA, ACO presenting in both the glyoxylate 
cycle and TCA cycle, PsbO presenting in photosynthetic 
apparatus, NADP-MDH involved in  CO2 fixation, VPS34 
involved in autophagy, and PDS, ZDS, LCYB, CYP97A, 
and CYP97C involved in lutein biosynthesis. Total RNA 
of 1 μg was used for cDNA synthesis using EasyScript® 
First-Strand cDNA Synthesis SuperMix (TransGen Bio-
tech, Beijing, China). The qPCR was carried out by CFX 
Connect™ Real-Time PCR Detection System (BIO-RAD, 
Hercules, CA, USA) with SYBR® Premix Ex TaqTM II 
(TaKaRa, Japan). The program was as follows: an initial 
denaturation at 95 °C for 30 s; 40 cycles of denaturation 

at 95 °C for 5 s and annealing/extension at 60 °C for 20 s; 
a temperature ramping step for producing melting curve 
at 60  °C for 15  s. The coding gene of ribosomal protein 
L19 (RPL19) was used as the reference gene, according to 
a previous study [53]. The  2−ΔCt method was used to ana-
lyze the transcript levels of selected genes based on cycle 
threshold (Ct) values. All primers are listed in Additional 
file 2: Table S5.

Statistical analysis
The data of growth, physiological, and biochemical 
parameters as well as qPCR analysis are shown as aver-
age ± standard deviation. Duncan’s test of one-way 
ANOVA analysis was performed to find significant differ-
ences (p < 0.05) using IBM SPSS Statistics 24.
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