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Abstract 

Background Metabolic engineering for hyperaccumulation of lipids in vegetative tissues is a novel strategy 
for enhancing energy density and biofuel production from biomass crops. Energycane is a prime feedstock for this 
approach due to its high biomass production and resilience under marginal conditions. DIACYLGLYCEROL ACYLTRANS-
FERASE (DGAT ) catalyzes the last and only committed step in the biosynthesis of triacylglycerol (TAG) and can be 
a rate-limiting enzyme for the production of TAG.

Results In this study, we explored the effect of intron-mediated enhancement (IME) on the expression of DGAT 1 and result-
ing accumulation of TAG and total fatty acid (TFA) in leaf and stem tissues of energycane. To maximize lipid accumulation 
these evaluations were carried out by co-expressing the lipogenic transcription factor WRINKLED1 (WRI1) and the TAG pro-
tect factor oleosin (OLE1). Including an intron in the codon-optimized TmDGAT 1 elevated the accumulation of its transcript 
in leaves by seven times on average based on 5 transgenic lines for each construct. Plants with WRI1 (W), DGAT 1 with intron 
(Di), and OLE1 (O) expression (WDiO) accumulated TAG up to a 3.85% of leaf dry weight (DW), a 192-fold increase compared 
to non-modified energycane (WT) and a 3.8-fold increase compared to the highest accumulation under the intron-less 
gene combination (WDO). This corresponded to TFA accumulation of up to 8.4% of leaf dry weight, a 2.8-fold or 6.1-fold 
increase compared to WDO or WT, respectively. Co-expression of WDiO resulted in stem accumulations of TAG up to 1.14% 
of DW or TFA up to 2.08% of DW that exceeded WT by 57-fold or 12-fold and WDO more than twofold, respectively. Consti-
tutive expression of these lipogenic “push pull and protect” factors correlated with biomass reduction.

Conclusions Intron-mediated enhancement (IME) of the expression of DGAT  resulted in a step change in lipid accumu-
lation of energycane and confirmed that under our experimental conditions it is rate limiting for lipid accumulation. IME 
should be applied to other lipogenic factors and metabolic engineering strategies. The findings from this study may be 
valuable in developing a high biomass feedstock for commercial production of lipids and advanced biofuels.
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Background
Production of biofuel from perennial crops will increase 
energy security by reducing the need for fossil fuels while 
increasing carbon sequestration for combating climate 
change [1, 2]. Therefore, many countries have imple-
mented government policies and subsidies promoting the 
production and consumption of bioenergy [3].

Energycane, is one of the most promising bioenergy 
feedstocks. Both energycane and sugarcane are highly 
polyploid, interspecific hybrids between Saccharum 
officinarum and Saccharum spontaneum, but energy-
cane has a higher proportion of Saccharum spontaneum 
in its genome. This contributes to greater biomass yields, 
elevated resilience under marginal conditions, lower 
sugar, and higher fiber content in the stems of energy-
cane relative to sugarcane [4–7]. Energycane’s superior 
resilience and biomass accumulation are supported by a 
more vigorous root system and higher light interception 
efficiency than sugarcane. The elevated light interception 
efficiency is associated with a higher tiller density and 
leaf inclination angles, contributing to the greatest pho-
tosynthetic efficiency among crops [8]. Photosynthesis, 
which transforms sunlight into stored chemical energy 
creates biomass that can be converted to renewable bio-
fuel. Plant oil, consisting mainly of triacylglycerol [TAG; 
(98%)] and other fatty acids [9, 10] has more than twice 
the energy content of carbohydrates [11, 12]. Oil is typi-
cally produced from seeds of palm and oilseed crops such 

as soybean (Glycine max), sunflower (Helianthus annus) 
and canola (Brassica napus) [13]. Vegetative plant tis-
sues including leaves, stems and roots are able to produce 
lipids and TAG in small quantities [14, 15]. The genes 
involved in the fatty acid and TAG synthesis, and hydrol-
ysis have been identified [14, 16]. This enables metabolic 
engineering of high biomass crops including sugarcane 
and energycane for the hyperaccumulation of lipids in 
their vegetative biomass and has the potential to exceed 
oil yields of traditional oilseed crops [12, 17–20]. Ectopic 
expression of individual lipogenic factors led to modest 
lipid accumulation in vegetative tissues. A step change in 
accumulation of vegetative lipids has been reported fol-
lowing multigene engineering termed “push–pull-protect 
strategy” including genes involved in fatty acid biosyn-
thesis (‘push’), TAG assembly (‘pull’), and suppression of 
lipid turnover (‘protect’) [21]. This approach optimized 
the flux of carbon into TAG at multiple metabolic levels, 
leading to hyperaccumulation of TAG in the vegetative 
tissues of model [22–25] and high biomass crops such 
as ryegrass [26], sugarcane [18, 20], sorghum [27], and 
potato [28]. WRI1 is a transcription factor of the family 
of APETALA2/ethylene-responsive element binding pro-
teins involved in the regulation of fatty acid biosynthesis 
[29–33]. DGAT 1 catalyzes the only committed step in 
the biosynthesis of TAG by catalyzing the transfer of an 
acyl group from acyl-CoA to diacylglycerol [34]. DGAT 
1 has been classified into three types; two endoplasmic 



Page 3 of 15Cao et al. Biotechnology for Biofuels and Bioproducts          (2023) 16:153  

reticulum (ER)-localized forms of DGAT 1 (type-1) and 
DGAT 2 (type-2) and a cytosolic form of the DGAT  fam-
ily (Type-3) [35, 36–38]. Overexpression of DGAT 1 alone 
has been reported to increase the TAG content in the 
transgenic leaves by 20-fold compared to control [39]. 
Protection of TAG from turnover by lipases has been 
achieved by coating oil bodies with oleosin [22]. OLEO-
SIN1 (OLE1) is a structural protein that protects oil 
bodies from coalescing and reduces lipid breakdown by 
lipases [40, 41]. Previous research has shown increased 
fatty acid content of Arabidopsis vegetative tissues 
through the engineering of OLE1 (CysOLE1) by the sub-
stitution of six cysteine residues for their native equiva-
lents within the N- and C-terminal hydrophilic domains 
[42].

We earlier reported that in the monocot Lemna japon-
ica, co-expression of WRI1, DGAT 1 and OLE1 had a 
much larger effect on TAG accumulation than co-expres-
sion of WRI1 and OLE1 without DGAT 1, suggesting that 
the elevated FA synthesis due to ectopic WRI1 expression 
exceeds the capacity of the native DGAT  to transfer FA to 
TAG [43]. Elevating the expression of DGAT  is therefore 
a promising approach for hyperaccumulation of TAG 
in vegetative tissues. Various optimizations including 
stronger promoters or enhanced UTR’s, codon optimi-
zation or the presence of intron(s) have been described 
to elevate transgene expression in plants [44]. Introns 
can have a surprisingly large effect on gene expression, 
revealing a gap in our understanding of the molecular 
basis underlying this phenomenon [45–47].

In this study, we found that the addition of an intron 
from the predicted 5-methyltetrahydropteroyltriglu-
tamate-homocysteine methyltransferase 1 of Sorghum 
bicolor into a codon-optimized TmDAGT 1 from nastur-
tium dramatically increased the gene expression under 
control of the strong constitutive Panicum virgatum 
ubiquitin promoter (pPvUbiII). The elevated TmDGAT 
1 expression displayed strong synergy in TAG and TFA 
accumulation following the co-expression of WRI1, 
DGAT 1, and OLE1 in energycane.

Results
Cis‑regulatory elements in the 110‑bp intron
A putative GT1 consensus and CAAT box were identi-
fied at the position of 52  bp and 93  bp, respectively, in 
the 110-bp-long intron that we inserted into DGAT 1 
and which originated from the predicted 5-methyltet-
rahydropteroyltriglutamate-homocysteine methyltrans-
ferase 1 of Sorghum bicolor (NCBI accession number: 
NC_012877.2) (Figure S1). Sequences with similarity 
to motifs that were earlier reported in IME including 
YATCN, the reverse complement of NGATY and similar 

sequence to TTNGAT YTG  and its reverse complement 
CAY ATC NAA were also identified.

Overexpression of WRI1, DGAT 1 and OLE1 altered TAG 
and TFA production in leaves and stems of transgenic 
energycane
WRI1, DGAT 1, and OLE1 expression was analyzed from 
leaf and stem tissues by qRT-PCR with primers shown in 
Table  S1. To determine potential intron-mediated regu-
lation of gene expression, we analyzed the expression in 
five PCR-positive lines for DGAT 1 with intron (DGAT 
1 (In)) and compared this with the expression of in five 
PCR-positive lines for DGAT 1 without intron (DGAT 1 
(W)). DGAT 1 (In) elevated expression in leaves by seven 
times on average of 5 transgenic lines compared to DGAT 
1 (W) (Table 1). Expression in stem was two times higher 
for DGAT 1 (In) compared to DGAT 1 (W) (Table 2).

As shown in Table  1, 8 out of 10 transgenic lines co-
expressed all three lipogenic factors with significant dif-
ferences in transgene expression between the lines. Two 
of the transgenic lines (L4; L10, Table 1) expressed DGAT 
1 and OLE1 but not WRI1. Among the three transgenes, 
WRI1 expression showed the lowest variation rang-
ing from 0.01 to 0.05 relative to GAPDH and averaged 
0.02 across the five DGAT 1 (W) or DGAT 1 (In) lines 
(Table  1). In WDO combination, TAG accumulated up 
to 1.01% of leaf DW and 0.22% of stem DW, which was 
50-fold and tenfold of that of WT, respectively (Tables 1, 
2). The highest TAG accumulation was observed in 
WDiO combination with up to 3.85% of leaf DW and 
1.14% of stem DW, which was 192-fold and 56-fold of 
that of WT, respectively (Tables 1, 2). Similarly, TFA was 
the highest in WDiO combination with up to 8.39% of 
leaf DW and 2.08% of stem DW (Tables 1, 2). In addition, 
Pearson’s correlation was evaluated for TAG accumula-
tion and lipid gene expression levels in transgenic plants. 
As shown in Table S2, TAG accumulation exhibited the 
highest positive correlation with DGAT 1(W) (r = 0.97) 
followed by OLE1 (W) (r = 0.89), DGAT 1 (In) (r = 0.88), 
and WRI1 expression (r = 0.51).

Alteration of FA accumulation in leaves and stem of high 
TAG transgenic energycane
TAG FA composition from leaf (Fig.  1) and the stem 
(Fig. 2) were analyzed from the three highest oil accumu-
lating lines (L11 – L13). Palmitic acid (PA, 16:0), oleic acid 
(OA, 18:1), stearic acid (SA, 18:0), linoleic acid (LA, 18:2) 
and α-linolenic acid (ALA, 18:3) were the major fractions. 
In both leaf and stem samples (Figs.  1 and 2), levels of 
unsaturated FA, OA (18:1), and LA (18:2) were significantly 
increased in the transgenic lines at the expense of satu-
rated FAs, PA (16:0) for TAG in leaves (Fig. 1a) and stems 
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(Fig. 2a), as well as for TFA in leaves (Figs. 1b) and stems 
(Fig.  2b). Additionally, in the leaf, ALA (18:3) accumula-
tion increased for TAG (Fig. 1a) and was reduced for TFA 
(Fig. 1b), whereas SA (18:0) accumulation was marginally 
lowered for TAG (Fig. 1a) and increased for TFA (Fig. 1b). 
In the stem, the OA (18:1) was the highest for both TAG 
(Fig. 2a) and TFA (Fig. 2b), in contrast to the FA composi-
tion of the leaves, and the SA (18:0) was reduced in both 
TAG (Fig. 2a) and TFA (Fig. 2b) of the stem. Interestingly, 
ALA (18:3) was present in transgenic lines but not in wild-
type lines (Fig. 2). 

Accumulation of lipid droplets in leaves of transgenic 
energycane with hyperaccumulation of TAG in comparison 
to WT controls
For the purpose of visualizing lipid droplets, leaves 
from both the transgenic line L13 and its correspond-
ing WT were subjected to boron-dipyrromethene 
(BODIPY) staining, followed by imaging using confo-
cal microscopy. Notably, the transgenic line L13, with 
the overexpression of DGAT 1 (In), demonstrated a sub-
stantial increase in the abundance of BODIPY-stained 
lipid droplets in comparison to its WT counterpart 
(Fig. 3). Intriguingly, within the transgenic line L13, the 

Table 1 Summary of TAG and TFA content and transgene expression in leaves of energycane

TAG values and gene expression are shown for each line representing leaf extracts from three replications. The leaf samples used are the first dewlap leaf. Values are 
means ± SE (n = 3). The expression of transgenes is shown relative to GAPDH. WT indicates the non-transgenic plants. WDO indicates the transgenic lines expressing 
WRI1, DGAT 1 without intron, OLE1 and nptII. WDiO indicates the transgenic lines expressing WRI1, DGAT 1 with intron, OLE1 and nptII. Bold values indicate the mean of 
all WDO or all WDiO lines, respectively. Values in the same column with different lower case letters are significantly different at p ≤ 0.05

Construct Lines TAG (% of DW) TFA (% of DW) Transgene expressions normalized to GAPDH

WRI1 DGAT 1 OLE1

None WT 0.02 ± 0.01a 1.38 ± 0.02a 0.00 ± 0.00a 0.00 ± 0.00a 0.00 ± 0.00a

WDO L4 0.33 ± 0.05bc 2.33 ± 0.05bcd 0.00 ± 0.00a 0.04 ± 0.01ab 0.25 ± 0.10abcd

WDO L5 0.45 ± 0.02bc 2.39 ± 0.05bcd 0.01 ± 0.00ab 0.06 ± 0.00ab 0.09 ± 0.01ab

WDO L6 0.56 ± 0.02bcd 2.78 ± 0.05bcde 0.03 ± 0.01c 0.09 ± 0.03abc 0.19 ± 0.04abc

WDO L7 0.65 ± 0.01bcd 2.96 ± 0.10bcde 0.03 ± 0.00c 0.10 ± 0.01abc 0.31 ± 0.03bcd

WDO L8 1.01 ± 0.01cde 3.05 ± 0.12cde 0.05 ± 0.01d 0.12 ± 0.01abc 0.49 ± 0.07d

WDO mean 0.60 2.70 0.02 0.08 0.27
WDiO L9 0.23 ± 0.03b 2.06 ± 0.08ab 0.01 ± 0.01ab 0.01 ± 0.00a 0.02 ± 0.00a

WDiO L10 0.28 ± 0.01bc 2.15 ± 0.11abc 0.00 ± 0.00a 0.06 ± 0.03ab 0.21 ± 0.05abc

WDiO L11 0.93 ± 0.09bcde 3.01 ± 0.05bcde 0.02 ± 0.01bc 0.79 ± 0.16d 1.36 ± 0.13e

WDiO L12 2.68 ± 0.53f 5.71 ± 0.64f 0.03 ± 0.01c 0.92 ± 0.10d 1.22 ± 0.24e

WDiO L13 3.85 ± 0.65 g 8.39 ± 0.92 g 0.03 ± 0.01c 1.01 ± 0.21d 1.87 ± 0.14f

WDiO mean 1.59 4.26 0.02 0.56 0.94

Table 2 Summary of TAG and TFA content and transgene expression in stems of energycane

TAG values and gene expression are shown for each line representing stem extracts from three replications. Values shown for each line represent the mean of mature, 
mid-mature and immature stem samples from three replications. Values are means ± SE (n = 3). The expression of transgenes is shown relative to GAPDH. WT indicates 
the non-transgenic plants. WDO indicates the transgenic lines expressing WRI1, DGAT 1 without intron, OLE1 and nptII. WDiO indicates the transgenic lines expressing 
WRI1, DGAT 1 with intron, OLE1 and nptII. Bold values indicate the mean of all WDO or all WDiO lines, respectively. Values in the same column with different lower case 
letters are significantly different at p ≤ 0.05

Construct Lines TAG (% of DW) TFA (% of DW) Transgene expressions normalized to GAPDH

WRI1 DGAT 1 OLE1

None WT 0.02 ± 0.00a 0.18 ± 0.01a 0.00 ± 0.00a 0.00 ± 0.00a 0.00 ± 0.00a

WDO L6 0.20 ± 0.01b 0.55 ± 0.02ab 0.01 ± 0.00a 0.04 ± 0.00ab 0.07 ± 0.00ab

WDO L7 0.19 ± 0.03b 0.91 ± 0.12abc 0.01 ± 0.00a 0.02 ± 0.00ab 0.11 ± 0.01abc

WDO L8 0.51 ± 0.08bc 0.98 ± 0.11bc 0.04 ± 0.01bc 0.08 ± 0.01 cd 0.25 ± 0.04 cd

WDO mean 0.3 0.81 0.02 0.04 0.14
WDiO L11 0.76 ± 0.03bcd 1.59 ± 0.02 cd 0.04 ± 0.00c 0.11 ± 0.00d 0.21 ± 0.01bcd

WDiO L12 1.14 ± 0.16d 2.08 ± 0.22d 0.04 ± 0.01c 0.06 ± 0.01bcd 0.32 ± 0.05d

WDiO L13 1.09 ± 0.28 cd 1.79 ± 0.29d 0.04 ± 0.01bc 0.08 ± 0.02 cd 0.25 ± 0.07 cd

WDiO mean 1.00 1.82 0.04 0.08 0.26
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lipid droplets, encompassing both regular lipid drop-
lets (LD) and guard cell lipid droplets (GCL), exhibited 
a widespread distribution. The most prominent drop-
let size, around 8  μm in diameter, was predominantly 
situated within the stomatal guard cells. In contrast, 
the wild-type leaves exclusively exhibited lipid droplets 
within stomatal guard cells, typically measuring less 
than 5  μm in diameter. These findings correlate well 
with the triacylglycerol (TAG) data depicted in Table 1.

Impact of hyperaccumulation of TAG on plant growth
To determine the effect of hyperaccumulation of TAG 
on plant growth, biomass related traits, including plant 
height, stem diameter, and tiller number were recorded. 
Hyperaccumulation of TAG  corresponded to  a reduc-
tion in plant height, tiller number, and stem diameter 
Table 3. Line 13 with the highest TAG accumulation had 
the greatest reduction in plant height, number of tillers 
and stem diameter with 31%, 81% and 50%, respectively. 
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Fig. 1 TAG FA composition and total FA composition in leaves of different transgenic energycane lines (L11; L12; L13) compared with non-modified 
energycane (WT). A TAG composition in leaves of different transgenic lines (L11; L12; L13) and non-modified energycane (WT). B TFA composition 
in leaves of different transgenic lines (L11; L12; L13) and WT. Vertical bars are the means ± standard error (n = 3). Values with different letters are 
significantly different at p ≤ 0.05 according to a one-way ANOVA test and the Duncan’s multiple range test (MRT). TAG: triacylglycerol. FA: fatty acid. 
WT: non-modified energycane (WT)



Page 6 of 15Cao et al. Biotechnology for Biofuels and Bioproducts          (2023) 16:153 

In addition, plant height, tiller number and stem diam-
eter correlated negatively with TAG content (r = −  0.71, 
−  0.77 and −  0.50, respectively) (Additional file  2: 
Table S3).

Discussion
Energycane is among the most promising perennial 
feedstocks to contribute to the emerging bioeconomy 
due to its high biomass production, yield resilience and 
ease of biocontainment [4–6, 48]. Metabolic engineer-
ing for hyperaccumulation of lipids in vegetative tis-
sues has been proposed for enhancing energy density 
and biofuel production from high biomass crops like 

energycane [12, 17, 20, 21]. Metabolic engineering of 
energycane is still in its infancy due to the recalcitrance 
of this crop to tissue culture and genetic transforma-
tion [17]. Here we report a step change in hyperaccu-
mulation of triacylglycerol (TAG) and total fatty acid 
(TFA) in energycane using intron-mediated enhance-
ment (IME) of the expression of DGAT 1. Line-to-line 
variation in transgene expression in different transgenic 
events has been reported due to epigenetic changes [49, 
50], position of transgene insertion in the genome [51, 
52] and copy number of the transgene [53–55]. There-
fore, several transgenic events need to be analyzed per 
recombinant DNA construct to support conclusions 
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non-modified energycane (wild-type)
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on the impact of specific approach/construct. In this 
study, five lines were evaluated for each, TmDGAT 1 
with and without intron. Including an intron in TmD-
GAT 1 (TmDGAT 1 (In)) increased its expression seven-
fold compared to the intron-less variant. Combination 

of TmDGAT 1 (In) expression with SbWRI1 and SiOLE1 
expression elevated TAG accumulation 3.8-fold com-
pared to the intron-less combination. Our findings also 
confirm that DGAT 1 is a rate-limiting enzyme for TAG 
accumulation in vegetative tissues of energycane.

The potential of introns to elevate transgene expres-
sion by up to 100-fold, termed intron-mediated enhance-
ment (IME) has been described more than 30 years ago 
[45, 56–61]. IME can strongly stimulate mRNA accu-
mulation far downstream of the transcription start site, 
even in the absence of a promoter, revealing gaps in our 
understanding of the molecular mechanisms governing 
gene expression [62]. Identification of introns that con-
fer IME requires systematic evaluation in transgenic cells 
since not all introns lead to transcription enhancement 
[62]. Introns can differ in the presence of enhancers [63, 
64] or transcription factor binding sites [65]. In addi-
tion, splicing can influence transcription by affecting the 
phosphorylation state of RNA polymerase II [66]. Intron-
dependent gene looping allows physical interaction of the 
promoter and the terminator regions accelerating mRNA 

BODIPY Chlorophyll Merged
W
T

L1
3

Fig. 3 Lipid droplets within the leaf tissue of energecane. The upper panel showcases fluorescence-stained lipid droplets within guard cells 
(GCL) using BODIPY 493/503, along with the autofluorescence emanating from chloroplasts in the wild-type (WT) strain. The lower panel 
displays both the lipid droplets within guard cells and those in regular cells (LD), alongside the chloroplast autofluorescence found in leaf tissue 
of the transgenic line L13. The lipid droplets within guard cells are indicated by white arrows, while a selection of typical lipid droplets are indicated 
by blue arrows. Both the lipid droplets found within the guard cells (GCL) and those present outside of the guard cells (LD) are rendered in shades 
of green, while autofluorescence originating from chlorophyll is is seen in red. Scale bar = 50 μm

Table 3 Height, stem diameter and number of tillers of the 
transgenic energycane plants (L11; L12; L13) and non-modified 
energycane (WT) under greenhouse conditions

TAG values and gene expression are shown for each line representing stem 
extracts from three replications. Values shown for each line represent the mean 
of mature, mid-mature and immature stem samples from three replications. 
Values are means ± SE (n = 3). The expression of transgenes is shown relative to 
GAPDH. WT indicates the non-transgenic plants. WDiO indicates the transgenic 
lines expressing WRI1, DGAT 1 with intron, OLE1 and nptII

Construct Line Height (m) No. of tillers Stem diameter (cm)

None WT 1.69 ± 0.16a 16 ± 1.80a 1.01 ± 0.11a

WDiO L11 1.45 ± 0.17a 8 ± 0.66b 0.85 ± 0.08ab

WDiO L12 0.99 ± 0.07b 4 ± 0.81c 0.62 ± 0.09b

WDiO L13 0.89 ± 0.09b 3 ± 0.33c 0.57 ± 0.08b
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processing events including capping and polyadenylation 
[67–69]. Disposition of the exon junction complex pro-
teins also enhances mRNA stability, export and transla-
tion [70–72].

The impact of introns on transgene expression is influ-
enced by a variety of factors including position of introns 
[73–75], length of exons [76], specific intronic sequence 
elements [63, 74, 77], splicing efficiency [74, 76] and their 
ability to promote the formation of a multi-looped gene 
architecture [47, 74]. Therefore, not all introns lead to 
elevated gene expression [78]. Recent studies have identi-
fied specific cis-elements important for IME expression 
[46, 79–83]. The intron that was used in this study is con-
stitutively spliced and contains the NGATY core of the 
longer TTNGAT YTG  motif and two additional motifs 
that are similar to TTNGAT YTG  [46, 83]. These cis-ele-
ments could play a role in IME, in addition to reduced 
exon length and supporting transcript processing and 
nuclear export with the constitutive splicing mechanism. 
The online transgene design tool “Intronserter”: https:// 
bibis erv. cebit ec. uni- biele feld. de/ intro nsert er supports sys-
tematic intron insertion into transgenes for reduction of 
exon length, along with codon optimization and removal 
of undesired sequence elements. The program is fully cus-
tomizable for individual eukaryotic target organisms and 
should support the systematic design of transgenes for 
IME in support of metabolic engineering strategies [84].

In the current study, by co-expression of WRI1, DGAT 
1 (In), and OLE1, we showed an average TAG hyperac-
cumulation of 3.85% of leaf DW. This TAG content was 
192-fold higher than in WT energycane and 2.5-fold 
higher than reported recently for energycane [17]. The 
hyperaccumulation of total fatty acid was also elevated to 
8.4% of leaf DW which is almost 56 times that of WT and 
1.7-fold than in the first report of metabolic engineering 
of energycane [17]. High level of TAG and TFA accumu-
lation in vegetative tissues of plants typically requires 
co-expression of several lipogenic factors involved in 
upregulation of fatty acid biosynthesis, TAG biosynthe-
sis and its protection from degradation [18, 20, 23, 27]. 
Constitutive co-expression of WRI1, TmDGAT 1 (In), and 
OLE1 in this study led to 2.5-fold higher TAG and 1.9-
fold higher TFA accumulation in energycane than using 
ZmDGAT 1-2 without intron and OLE1 in combination 
with RNAi co-suppression of the TAG lipase sdp1 and 
tgd1, a lipid transporter from the endoplasmic reticulum 
(ER) to chloroplasts [17]. We expect the optimization of 
expression cassettes using IME for all lipogenic factors, 
codon optimization, stacking of additional lipid genes in 
combination with gene editing approaches [85–89] will 
further elevate oil accumulation in energycane.

Reported TFA contents following ectopic co-expres-
sion of WRI1, DGAT 1, and OLE1, in grain sorghum 

[27] (up to 9.7% of DW) or tobacco [24] (up to 17.7% of 
DW) exceed the levels of TFA reported here for energy-
cane (8.4% of leaf DW) by 1.16- to 2.11-fold, respectively. 
However, biomass yield for energycane are typically in 
the range of 41 to 49 t  ha−1 in the Southeastern USA [90, 
91] which is 3- to 12-fold higher than typical biomass 
yields from grain sorghum (4 to 12  t  ha−1) [92, 93] and 
3- to 9-fold higher than typical tobacco yields (5.5 to 13 
t  ha−1) [94, 95]. This should lead to higher or similar oil 
yields from the energycane described here compared to 
the alternative crops.  Biodiesel derived from lipid accu-
mulating energycane is an attractive approach to mini-
mize the use of food and feed crops in the production 
of renewable transportation fuels. Additional feedstocks 
and engineering strategies will be needed to establish a 
robust pipeline for production of sustainable aviation 
fuel [96].

Coordinating the expression of WRI1 with stem spe-
cific or developmentally regulated promoters active late 
in plant development [97, 98] or inducible promoters [43, 
99] may mitigate the negative impact on biomass accu-
mulation due to constitutive expression of WRI1 and 
other lipogenic factors described in this and several other 
studies [18, 25, 27].

The overall TAG and TFA compositions were signifi-
cantly altered by the co-expression of the lipogenic fac-
tors in energycane. Most notable was the increase in oleic 
acid (18:1) and linoleic acid (18:2) in both, TAG and TFA 
of transgenic leaves and stems at expense of saturated 
fatty acids. Similar findings were earlier reported for sug-
arcane by Parajuli et  al. [18]. A significant reduction of 
alpha linoleic acid (18:3) was only observed in the TFA 
of leaves. Interestingly in stem tissues oleic acid (18:1) 
linoleic acid (18:2) and alfa-linolenic acids (18:3) were 
significantly elevated in both TAG and TFA which dif-
fers from the observation in sugarcane using different 
lipogenic factors [18]. The elevated amount of unsatu-
rated FA in vegetative tissues of energycane should lead 
to improved fuel stability and cold flow [100].

The presence of leaf GCL droplets as seen in guard cells 
of WT have been reported for more than three decades 
[101], where they serve as an energy source to power sto-
matal opening [102]. Subsequent work on Arabidopsis 
and the lycophyte Selaginella provide evidence that TAG 
breakdown is an evolutionarily conserved mechanism 
in light-induced stomatal opening [103]. In the oil accu-
mulating L13, constitutive expression of  WRI1,  DGAT 
1 and OLE1 resulted in a substantial boost in GCL abun-
dance, and LDs were generally visible in surrounding tis-
sue, that were absent in WT controls. The pattern of 
widespread LD accumulation in transgenic energycane 
leaves is consistent with reports from transgenic sugarcane 
[18], tobacco [21], and the duckweed Lemna japonica [43].

https://bibiserv.cebitec.uni-bielefeld.de/intronserter
https://bibiserv.cebitec.uni-bielefeld.de/intronserter
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Conclusions
Energycane is a favored feedstock for the production of 
bioproducts and advanced renewable fuels because of its 
high biomass production and resilience under marginal 
conditions. In this study, we demonstrated that DGAT 1 
is the principal rate-limiting step for TAG and TFA accu-
mulation in energycane leaves. IME of DGAT 1 caused a 
step change in its expression and its co-expression with 
WRI1 and OLE1 elevated TAG or TFA content by 192- or 
56-fold relative to levels found in the leaves of unmodi-
fied energycane, respectively. These results lay the foun-
dation for the commercial production of biodiesel and 
other FA derivatives and reveal opportunities for further 
optimizations of high biomass energycane.

Materials and methods
Design and synthesis of the optimized DGAT 1 gene
For codon optimization, the native DGAT 1 gene from 
Tropaeolum majus (Gene bank AY084052) was opti-
mized by replacing the preferred codons with synony-
mous codons of Sorghum bicolor, a close relative of 
sugarcane, without changing the encoded amino acids 
(Additional file  1: Figure S1). Two optimized DGAT 
1, including DGAT 1(W) without intron and DGAT 
1 (In) with the 110-bp-long intron from the predicted 
5-methyltetrahydropteroyltriglutamate-homocysteine 
methyltransferase 1 of Sorghum bicolor (NCBI Accession 
number: NC_012877.2), were synthesized by GenScript 
(Piscataway NJ, USA). The specific intron was selected 
based on its compact size and the presence of cis-regu-
latory elements that may impact IME (Additional file 1: 
Figure S1).

Construction of the multigene expression vectors
Two different optimized DGAT 1 genes obtained from 
Tropaeolum majus, including DGAT 1(W) without 
intron and DGAT 1 (In) with a 110-bp-long intron were 
compared in this study. Using the Golden Gate cloning 
strategy [104, 105], three multigene expression vectors 
were created (Fig. 4). The first vector, shown in Fig. 4A, 
contains WRI1 from Sorghum bicolor controlled by the 
Brachypodium distachyon elongation factor 1-α promoter 
(pBdEF1α) and Panicum virgatum ubiquitin (tPvUbiII) 
terminator, and the selectable marker gene neomycin 
phosphotransferase (nptII) driven by the maize ubiqui-
tin promoter (pZmUbi) and Sorghum bicolor heat shock 
protein terminator (tSbHSP; Fig.  4A). Vectors shown 
in Fig. 4B and C contained expression cassettes for two 
genes: OLE1, obtained from Sesamum indicum, was 
under the control of the Brachypodium distachyon ubiq-
uitin promoter (pBdUbi10) and Nicotiana benthamiana 

actin 3’ UTR terminator (tNbACT3), and DGAT 1 from 
Tropaeolum majus, with or without intron was cloned 
under the control of the Panicum virgatum ubiquitin 
promoter (pPvUbiII) and Nicotiana tabacum extensin 
terminator (tNtEU; Fig. 4B and C).

Tissue culture and genetic transformation of energycane
For this study, the energy cane genotype UFCP 84-1047 
(WT) was chosen for its superior biomass and resil-
ience [106]. Immature leaf whorl cross-sections (Fig. 5A) 
were cultured to induce embryogenic callus (Fig.  5B) 
as described by Fouad et al., [107]. The media for callus 
induction, transformation, selection, and shoot and root 
regeneration were prepared according to Fouad et  al. 
[107].

Prior gene transfer, plasmids were digested using 
the restriction enzyme AscI to remove the backbone. 

DGAT1(W)

pPvUbiII tNtEU

OLE1

pBdUbi10 tNbACT3

pBdEF1α

WRI1

tPvUbiII pZmUbi

nptII

tSbHSP

DGAT1(In)OLE1

(A)

(B)

(C)

pPvUbiII tNtEUpBdUbi10 tNbACT3
Fig. 4 Recombinant DNA constructs used in energy cane 
transformation. A Expression cassettes of WRI1 from Sorghum 
bicolor controlled by the Brachypodium distachyon elongation 
factor 1-α promoter (pBdEF1α) and Panicum virgatum ubiquitin 
(tPvUbiII) terminator, and the selectable marker gene neomycin 
phosphotransferase (nptII) driven by the maize ubiquitin promoter 
(pZmUbi) and Sorghum bicolor heat shock protein terminator 
(tSbHSP). B Expression cassettes for OLE1, obtained from Sesamum 
indicum, was under the control of the Brachypodium distachyon 
ubiquitin promoter (pBdUbi10) and Nicotiana benthamiana actin 
3ʹ UTR terminator (tNbACT3), and DGAT 1 from Tropaeolum majus, 
without intron was cloned under the control of the Panicum 
virgatum ubiquitin promoter (pPvUbiII) and Nicotiana tabacum 
extensin terminator (tNtEU). C Expression cassettes for OLE1, 
obtained from Sesamum indicum, was under the control 
of the Brachypodium distachyon ubiquitin promoter (pBdUbi10) 
and Nicotiana benthamiana actin 3ʹ UTR terminator (tNbACT3), 
and DGAT 1 from Tropaeolum majus, including a 110-bp-long 
intron from the predicted Sorghum bicolor 5-methyltetrahydropt
eroyltriglutamate-homocysteine methyltransferase 1 was cloned 
under the control of the Panicum virgatum ubiquitin promoter 
(pPvUbiII) and Nicotiana tabacum extensin terminator (tNtEU) W: 
no intron. In: intron
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Linearized fragments were gel extracted and puri-
fied according to Fouad et  al. [107]. Two different 
combinations including WDO (WRI1 + nptII: DGAT 
1(W) + OLE1), and WDiO (WRI1 + nptII: DGAT 
1(In) + OLE1) were delivered to embryogenic callus by 
biolistic gene transfer. For each combination, a total of 
10 shots of DNA were delivered to callus in a 1:2 molar 
ratio (WRI1 + nptII: DGAT 1 + OLE1) using a Biolistic 
PDS-1000/He particle delivery system (Biorad, Hercu-
les, California, USA) as described earlier [108]. Putative 
transgenic plants (Fig.  5C, D) were regenerated follow-
ing selection on geneticin-containing culture medium 
as described by Fouad et al., 2015 [107]. Rooted plantlets 
were transferred to soil and grown under greenhouse 
conditions under natural photoperiod and 25-29ºC day 
and 20 to 24 °C night temperature (Fig. 5E).

Cis‑regulatory elements in the 110‑bp intron
PLACE and PlantCARE software were used to evalu-
ate the presence of potential cis-regulatory elements in 
the 110-bp-long intron from the predicted 5-methyltet-
rahydropteroyltriglutamate-homocysteine methyltrans-
ferase 1 of Sorghum bicolor (NCBI accession number: 
NC_012877.2). We also searched for sequence motifs 
that were earlier reported for their contribution to IME 
including sequence TTNGAT YTG  and its reverse com-
plement CAY ATC NAA as well as NGATY (or its reverse 
complement YATCN) [76].

PCR analysis of genomic DNA extracts
Genomic DNA was extracted from leaves using the cetyl 
trimethyl ammonium bromide (CTAB) method [109]. 
100  ng of genomic DNA was used as a template in a 
20-μL PCR reaction. PCR amplification was conducted 
using Hot Start Taq DNA Polymerase (NEB, Ipswich, 
Massachusetts, USA) for WRI1, nptII, OLE1, and DGAT 
1 individually following the manufacturer’s protocol. 
Primers for each target gene are listed in Additional file 2: 
Table S1. Five transgenic lines in each combination were 
confirmed by PCR for WRI1, DGAT 1, OLE1, and nptII 
(Additional file 1: Figure S2).

Greenhouse propagation of transgenic, lipid accumulating 
energycane
In the greenhouse, transgenic energycane (Fig.  5E) was 
propagated by nodal stem cuttings to obtain biologi-
cal replicates and three plants per transgenic line and 
non-transgenic plants were each planted in a pot with a 
15  cm diameter containing potting mix (Jolly Gardener 
C/G, Oldcastle Lawn and Garden, Atlanta GA). Plants 
were irrigated and fertilized daily with a drip fertigation 
system. In the greenhouse, the temperature was con-
trolled by evaporation cooling to 25–29  °C during the 
day and 20–24 °C during the night using natural photo-
period with a maximum daily light intensity of 1000 to 
1500 μmol  m−2  s−1.

(A) (B)

(C) (D)

(E)

Fig. 5 Generation of transgenic energy cane. A Leaf whorl cross-sections were used as explants. B Callus induced from leaf whorl cross-section 
was used as the target for biolistic gene transfer. C Calli regenerating on medium with geneticin for selection of nptII expression. D Regenerated 
plants before transferring to soil. E Transgenic energy cane lines growing in greenhouse. Bar = 5 mm



Page 11 of 15Cao et al. Biotechnology for Biofuels and Bioproducts          (2023) 16:153  

Sampling of leaves and stem for quantitative real‑time PCR 
(qRT‑PCR), TAG and FA analysis
Leaves from 15 transgenic lines were sliced in half at the 
midrib; one half was used for qRT-PCR analysis, while 
the other half was used for TAG and FA analyses. Stem 
internodes from the three highest TAG lines were also 
sampled and divided into two halves before grinding in 
a Retsch cryo bead mill (Verder Scientific, Haan, Ger-
many). For qRT-PCR analysis, samples were flash-frozen 
in liquid nitrogen and maintained at −  80  °C for later 
RNA extraction. For TAG and FA analyses, each sample 
consisted of at least 100 mg of leaf or stem fresh weight 
and was freeze-dried for 72 h in a lyophilizer (Labconco, 
MO, USA). For TAG and FA analyses samples were 
shipped to Brookhaven National Laboratory on dry ice.

qRT‑PCR analysis for transgene expression
TRIzol reagent was used to extract total RNA from leaf/
stem samples (Life Technologies, Thermo Fisher Sci-
entific, Waltham, MA, USA). A High Capacity cDNA 
Reverse Transcription Kit (Applied Biosystems, Fos-
ter City, CA, USA) was used to synthesize cDNA from 
approximately 1.0  µg of total RNA from each sample. 
DGAT 1, OLE1, and WRI1 expressions were measured 
using primers shown in Additional file  2: Table  S1. The 
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
gene was used as a housekeeping gene for transcript 
normalization [110]. qRT-PCR was performed in a 
Real-Time PCR Detection System (Biorad, Hercules, 
CA, USA) using SsoAdvanced Universal SYBR green 
supermix (Biorad, Hercules, CA, USA). The formula  2{Ct 

(GAPDH) – Ct (transgene)}, was used to determine the relative 
transcription levels of WRI1, DGAT 1, and OLE1.

Analysis of TAG and total FA composition
TAG and FA analyses were conducted accord-
ing to Zale et  al., 2016 [20]. In brief, 10.0  mg of lyo-
philized leaf/stem tissue was extracted with 700  µL 
of extraction solution containing 2:1:0.1 by volume 
methanol:chloroform:formic acid. After 1 h of mixing on 
a vortex mixer and then standing at RT overnight, extract 
total lipids were as the lower phase by adding 350 μL of 
1  M KCl and 0.2  M  H3PO4 followed by briefly vortex-
ing and centrifuging at 2000  g for 10  min Total lipids 
were separated by thin layer chromatography (TLC) 
using a mixture of hexane, diethyl ether and acetic acid 
(70:30:1, by volume) as mobile phase and TLC Silica gel 
60 (EMD Millipore, Cat. No. 1056260001). By spraying 
0.05% primuline (in 80% by volume of acetone), lipids 
were visualized under UV light. TAG fractions were 
scraped from the TLC plate after identifying by compar-
ing mobility with that of authentic TAG standards. After 
being incubated in 1.0 mL of boron trichloride–methanol 

for 40 min at 80–85  °C, TAG fractions were transmeth-
ylated into FA methyl esters (FAMEs). FAMES were 
extracted into hexane and dried under a nitrogen stream 
before being dissolved in 100 μl hexane and analyzed by 
GC–MS with an Agilent Technologies (Santa Clara, CA, 
USA), 7890A GC System equipped with an Agilent 60 m 
DB23 capillary column (ID 250-μm), and a 5975C mass 
selective detector in full mass scan mode. The oven tem-
perature was ramped from 100  °C to 240  °C at a rate of 
15 °C  min−1 and held at 240 °C for 3 min with a flow rate 
of 1.2 ml  min−1. Following incubation in 1.0 mL of boron 
trichloride–methanol, total lipid extracts were immedi-
ately transmethylated into FAMES for total FA analysis. 
Using gas chromatography–mass spectrometry, FAMES 
was dissolved in 100 µL hexane and measured. An inter-
nal standard of 5.0 g of C17:0 was employed.

Visualization of lipid droplets with confocal microscopy
For the visualization of lipid droplets, the third leaf from 
the non-necrotic tip region of both the transgenic line 
L13 and its corresponding WT was carefully excised. 
Subsequently, these leaf samples underwent fixation 
using a FAA buffer (4% formalin, 5% glacial acetic acid, 
50% ethanol, 41% water, V/V) under vacuum conditions 
for a duration of 1 h. Following fixation, the samples were 
stained with a solution containing 12 μg/mL of BODIPY 
493/503 (Invitrogen, Eugene, OR, USA) and 0.1% Triton 
X-100, employing vacuum assistance for 20  min. The 
imaging process was carried out using a Leica TCS SP5 
laser scanning confocal microscope, employing an exci-
tation wavelength of 496 nm for BODIPY and capturing 
emissions within the range of 505–583 nm. Additionally, 
chlorophyll autofluorescence was captured within the 
wavelength range of 661–800 nm.

Analysis of sequence elements
The intron sequence was analyzed in PLACE database 
(htpp://www. dna. affrc. go. jp/ PLACE/ signa lup. html/, 
accessed on 14th August) [111] and PlantCARE database 
(https:// bioin forma tics. psb. ugent. be/ webto ols/ plant care/ 
html/, accessed on 14th August 2022) [112].

Statistical analysis
The TAG content, total FA content, biomass, and qRT-
PCR analysis data were expressed as means ± standard 
error (SE). To conduct statistical analysis of the means, 
one-way ANOVA was completed using SPSS version 20.0 
(Armonk, NY, USA). A value of p ≤ 0.05 was considered 
statistically significant. Pearson’s correlation coefficient 
was also calculated using SPSS. For each statistical analy-
sis, three independent biological replications were used.

http://www.dna.affrc.go.jp/PLACE/signalup.html/
https://bioinformatics.psb.ugent.be/webtools/plantcare/html/
https://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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Additional file 1: Figure S1. Comparison of a native DGAT 1 gene (I) 
from Tropaeolum majus and an optimized DGAT 1 gene (II). The under-
lined letters indicate nucleotides that were modified for codon optimiza-
tion. The lowercase letters indicate the inserted intron. The TTNGAT YTG 
-like motif is highlighted in purple with nucleotides that deviated from the 
motif are marked in green. Extra nucleotide compared to the TTNGAT YTG  
is highlighted in gray. The GT1-consensus, the CAAT box and the NGATY 
core of the longer TTNGAT YTG  motif are highlighted in blue, yellow, and 
dark yellow, respectively. Figure S2. PCR analysis of transgenic plants. A 
to F. PCR amplification of DGAT 1(W), DGAT 1(In), OLE1, WRI1, or nptII, from 
genomic DNA of transgenic plants, respectively. PC. Positive control (plas-
mid used for transformation), Genomic DNA extracts of non-transgenic 
energycane plant (WT) were used as the negative control. W: no intron. In: 
intron. Arrows indicate target amplicon.

Additional file 2: Table S1. List of primers used for gene expression 
analysis. Table S2. Correlation of total FA content with TAG content in 
transgenic energycane during plant development. Table S3. Correlation 
of TAG content with total FA, biomass yield DW, height, circumference, 
stem diameter and tiller number in transgenic energycane.
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