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Abstract 

Background  Rhodococci are studied for their bacterial ligninolytic capabilities and proclivity to accumulate lipids. 
Lignin utilization is a resource intensive process requiring a variety of redox active enzymes and cofactors for degrada‑
tion as well as defense against the resulting toxic byproducts and oxidative conditions. Studying enzyme expression 
and regulation between carbon sources will help decode the metabolic rewiring that stymies lignin to lipid conver‑
sion in these bacteria. Herein, a redox proteomics approach was applied to investigate a fundamental driver of carbon 
catabolism and lipid anabolism: redox balance.

Results  A consortium of Rhodococcus strains was employed in this study given its higher capacity for lignin degrada‑
tion compared to monocultures. This consortium was grown on glucose vs. lignin under nitrogen limitation to study 
the importance of redox balance as it relates to nutrient availability. A modified bottom–up proteomics workflow 
was harnessed to acquire a general relationship between protein abundance and protein redox states. Global pro‑
teomics results affirm differential expression of enzymes involved in sugar metabolism vs. those involved in lignin 
degradation and aromatics metabolism. As reported previously, several enzymes in the lipid biosynthetic pathways 
were downregulated, whereas many involved in β-oxidation were upregulated. Interestingly, proteins involved in oxi‑
dative stress response were also upregulated perhaps in response to lignin degradation and aromatics catabolism, 
which require oxygen and reactive oxygen species and generate toxic byproducts. Enzymes displaying little-to-no 
change in abundance but differences in redox state were observed in various pathways for carbon utilization (e.g., 
β‑ketoadipate pathway), lipid metabolism, as well as nitrogen metabolism (e.g., purine scavenging/synthesis), sug‑
gesting potential mechanisms of redox-dependent regulation of metabolism.

Conclusions  Efficient lipid production requires a steady carbon and energy flux while balancing fundamental 
requirements for enzyme production and cell maintenance. For lignin, we theorize that this balance is difficult 
to establish due to resource expenditure for enzyme production and stress response. This is supported by significant 
changes to protein abundances and protein cysteine oxidation in various metabolic pathways and redox processes.
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Background
Bacteria of the genus Rhodococcus are promising micro-
bial chassis for synthesis of fuels and chemicals using 
low-cost biomass derived substrates. They are well-
known for their ligninolytic capabilities and capacity to 
produce lipids, which are valuable platform chemicals 
[1–3]. Under stressful conditions such as nitrogen limi-
tation, oleaginous Rhodococci such as R. jostii RHA1 and 
R. opacus PD630 accumulate triacylglycerides (TAG) 
using certain carbon sources. To date research into the 
fundamentals of bacterial TAG synthesis has focused on 
carbohydrate utilization and the metabolic rearrange-
ments implicated in supplying metabolic precursors and 
NADPH for lipogenesis [4–7]. Questions pertaining to 
the feasibility of lipid production using lignin, aromat-
ics, and non-sugar compounds (e.g., furfural) have per-
sisted [8–10]. Compared to lipid production using lignin 
model compounds or carbohydrates, Rhodococci grown 
on lignin produce substantially less lipids [11–13]. Lignin 
utilization is a resource intensive process exemplifying a 
costly tradeoff between enzyme production and cell bio-
mass accumulation to maintain a balance between sup-
plies and energy required for catabolism (oxidation) and 
those for anabolism (reduction).

Lignin is a complex heterogeneous polymer com-
prised of various aromatic subunits linked together by 
C–O–C and C–C bonds. A broad repertoire of redox 
active and accessory enzymes are employed for lignin 
depolymerization and aromatics metabolism [14]. Rho-
dococci express various peroxidases and accessory oxi-
dases to depolymerize lignin. For example, R. jostii RHA1 
employs the well-characterized dye-decolorizing peroxi-
dase (DypB) [15]. DypB is a versatile lignin peroxidase 
that requires peroxide for activity and directly uses phe-
nolics and manganese ions as free radical mediators for 
lignin degradation. Following depolymerization, upper 
pathways funnel a wide variety of aromatics to the cen-
tral aromatic intermediates catechol, protocatechuate, 
and gallate [16]. R. opacus PD630 and R. jostii RHA1 use 
β‑ketoadipate, phenylacetic acid, and other central path-
ways to aerobically cleave aromatics and ultimately pro-
duce central metabolites [9].

Co-cultivation of different microbial strains can 
enhance utilization of biomass-derived substrates for 
improved growth and bioproduct synthesis [17]. Com-
pared to monocultures, a consortium of Rhodococci 
showed a higher capacity to degrade alkali lignin from 
corn stover potentially due to enzymatic synergism [9, 
18]. Engineered R. jostii deficient in vanillate O-dem-
ethylase (VanA−) was employed to funnel lignin-derived 
aromatics to vanillate, which can hypothetically be 
used for lipid production by R. opacus [18–20]. Nev-
ertheless, lignin to lipid yields for the consortium were 

comparable to those of monocultures [8]. Proteomics 
analysis was subsequently conducted to elucidate the 
molecular mechanisms conferring the emergent prop-
erty of increased lignin degradation and to explore dif-
ferences in the expressed metabolism of glucose-fed vs. 
lignin-fed cultures [9]. Pathways related to carbohydrate 
metabolism, including glycolysis, the pentose phosphate 
(PP) pathway, and the Entner–Doudoroff (ED) pathway, 
were greatly downregulated using lignin as the sole car-
bon source under nitrogen limitation. These pathways 
can provide NADPH, glycerol 3-phosphate, and acetyl-
CoA for TAG synthesis [4, 21]. Fatty acid β-oxidation 
was likely upregulated to produce NADH and acetyl-CoA 
for growth as well as enzymes for lignin utilization. TAG 
synthesis enzymes were largely downregulated during 
lignin fermentation [9].

Reactive oxygen species (ROS) such as hydrogen per-
oxide (H2O2) are implicated in lignin and aromatics 
utilization [22, 23]. Interestingly, antioxidant enzymes 
are upregulated during lignin utilization: these include 
thioredoxin, catalase, and superoxide dismutase, which 
compete with fatty acid synthesis for NADPH [9, 24]. 
Lipid metabolism is intrinsically tied to the redox state 
of Rhodococcus [4, 25, 26]. Costa et al. reported a group 
of fatty acid synthesis proteins that were differentially 
oxidized at cysteine thiols [4]. Thiol redox post-transla-
tional modifications (PTM) can alter protein activities to 
regulate biological processes and/or protect against oxi-
dative damage [27–30]. Redox PTMs generally occur as 
reversible oxidation of cysteine thiol groups and include 
S-mycothionylation (SSM), S-sulfenylation (SOH), 
disulfide bonds, etc. [25, 31]. The regulatory interplay 
between lignin catabolism, oxidative stress, and lipid 
metabolism is still uncharacterized. We hypothesize that 
redox-dependent mechanisms modulate carbon metabo-
lism. To address this, a LC–MS/MS-based proteomics 
approach was applied to measure protein abundance and 
cysteine thiol oxidation (i.e., protein redox state) in the 
same experiment [32]. The redox proteomes of a Rho-
dococcus consortium were quantitatively compared for 
glucose vs. lignin growth conditions—providing the first, 
direct evidence of redox-dependent PTMs as a function 
of carbon source.

Results
Protein abundance patterns during cultivation on lignin vs. 
glucose
A recently reported LC–MS/MS-based direct detec-
tion workflow was adapted for this study to simul-
taneously quantify protein abundances and protein 
cysteine thiol oxidation [32]. This is accomplished by 
omitting enrichment steps for cysteine-containing 
peptides. This analytical approach was used to study 
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a Rhodococcus synthetic consortium (R. jostii RHA1, 
R. opacus PD630, and R jostii RHA1 VanA–) grown 
on 5  g/L glucose or lignin as the sole carbon source 
under nitrogen-limitation [9, 32]. Following cell lysis, 
reduced cysteine free thiols were blocked with the 
alkylation agent HPE-IAM to minimize oxidation dur-
ing sample preparation (Fig. 1A). Oxidized thiol PTMs 
including disulfide (S–S), SSM, SO2H, and SO3H are 
comparably stable under mild conditions, mostly pre-
serving them during sample preparation [27]. In con-
trast to the published direct detection method, which 
focused on exploring multiple types of cysteine PTMs, 
this study harnesses the MS intensities of HPE-IAM 

alkylated cysteine-containing peptides (HPE-IAM-Cys) 
to determine protein oxidation level. Proteins were 
considered as “having lower oxidation levels” when the 
corresponding HPE-IAM-Cys peptides were detected 
with higher MS intensities (Fig.  1B). In total 3682 
proteins were identified using our LC–MS/MS work-
flow. A higher coverage of protein identification and 
quantification was achieved compared to the previous 
label-free proteomic analysis using filter-aided sample 
preparation [9]. Compared to the glucose condition, 
603 proteins were upregulated and 462 proteins down-
regulated in the lignin condition (fold-change > 1.5, 
Student’s t-test q-value < 0.05) (Fig. 2A).

Fig. 1  Quantification of protein abundance and cysteine thiol oxidation levels in Rhodococci fed on glucose or lignin as sole carbon sources. 
A Proteomics sample preparation. Proteins were extracted in the presence of HPE-IAM. Cysteine free thiols (SH) were alkylated with HPE-IAM 
while oxidized cysteine residues (e.g. SOH, SSM, S–S, SO2H, SO3H) were preserved. Then, proteins were digested for MS analysis. B Simultaneous 
relative quantification of protein abundance and thiol oxidation level. Peptide samples from glucose- or lignin-fed Rhodococci were subjected 
to MS analysis. The sum of MS1 peak intensities of all peptides assigned to individual proteins were used to compare a given protein’s abundance 
between two conditions. The peak intensities of HPE-IAM alkylated Cys-containing (HPE-IAM-Cys) peptides were summed for individual protein 
Cys residues, showing the abundance of protein cysteines at reduced state, which can be used to compare the thiol oxidation level of a given Cys 
site between two conditions. Note that the assay provides an indirect measurement of thiol oxidation level. The higher intensities of HPE-IAM-Cys 
peptides indicate lower cysteine thiol oxidation levels and vice versa
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Consistent with our previous findings, enzymes 
involved in lignin depolymerization and upper aromatics 
pathways were observed (Additional file 1: Table S1). This 
includes the peroxidase DypB; however, significant dif-
ferences in abundance were not observed likely because 
the secretomes were not analyzed [15]. Cytochrome P450 
(CYP) was also observed but only in the lignin condi-
tion. This heme-thiolated monooxygenase is involved 

in demethylation and/or dealkylation of alkoxybenzo-
ates such as guaiacol [33]. In R. rhodochrous, CYP is part 
of a two-component system with two redox partners, 
ferredoxin and ferredoxin reductase (upregulated up to 
21.5-fold in our results) [34]. The products of this reac-
tion are catechol and formaldehyde—the latter being an 
example of a toxic byproduct generated during lignin 
degradation. Enzymes in central aromatic degradation 
pathways including the β-ketoadipate pathway (both 
catechol and protocatechuate branches), phenylacetic 
acid pathway, and homogentisate pathway were signifi-
cantly upregulated (up to 14.9-fold) in the lignin condi-
tion. Catechol 2,3-dioxygenase and 2-keto-4-pentenoate 
hydratase, which catalyze meta-cleavage of catechol, 
were upregulated.

Enzymes that produce and cycle reactive oxidants to 
attack lignin via Fenton chemistry were also upregulated 
in Rhodococci [35, 36]. These include glycolate oxidase, 
quinone reductases (up to 28.7 fold), NAD(P)H dehy-
drogenase, and cholesterol oxidase [37–42]. Glycolate 
oxidase is a flavin mononucleotide (FMN)-dependent 
enzyme that catabolizes phenylglyoxal and mandelic acid 
substrates as well as toxic glycolaldehyde byproducts [40]. 
Expression of these enzymes as well as the generation of 
toxic byproducts from lignin degradation may partially 
explain the upregulation of oxidative stress response pro-
teins including catalases, alkyl hydroperoxide reductases, 
and a cold shock protein [25, 43]. Some proteins involved 
in the synthesis and degradation of mycothiol (MSH, a 
low-molecular-weight antioxidant) were also more abun-
dant [44]. Corroborated by the results of Hensen et al., a 
MSH-dependent enzyme crucial for detoxifying formal-
dehyde, a byproduct of guaiacol and vanillin catabolism, 
was upregulated 3.8 fold. This dehydrogenase produces 
S-formylmycothiol and NADPH [23]. These results sug-
gest competing NADPH requirements between lignin 
utilization and lipogenesis. In accordance with lignin 
depolymerization, proteins involved in central aromatic 
degradation pathways including the β-ketoadipate path-
way (both catechol and protocatechuate branches), phe-
nylacetic acid pathway, and homogentisate pathway were 
significantly upregulated (up to 14.9-fold) in the lignin 
condition. Catechol 2,3-dioxygenase and 2-keto-4-pen-
tenoate hydratase, which catalyze meta-cleavage of cat-
echol, were upregulated.

In addition to their structural role, lipids are sec-
ondary metabolites crucial for redox homeostasis and 
energy balance [26]. Plausibly induced by redox imbal-
ance, enzymes involved in lipid metabolism were differ-
entially expressed [25]. A number of proteins involved in 
β-oxidation were significantly upregulated (e.g., acetyl-
CoA C-acyltransferase, upregulated up to 72.5 fold) dur-
ing lignin conversion. A few proteins involved in fatty 

Fig. 2  Relative quantification of protein abundance and HPE-IAM-Cys 
peptide abundance (i.e. cysteine thiol oxidation level). A Volcano 
plot comparing protein abundances in Rhodococci samples 
during lignin vs. glucose fermentations. Proteins with significantly 
changed abundances were indicated in red (upregulated) 
or green (downregulated). Criteria was applied: adjusted 
p-value < 0.05, fold-change > 1.5. B Volcano plot comparing 
cysteine thiol oxidation levels of individual proteins in Rhodococci 
samples for the aforementioned conditions. Protein cysteine 
sites with significantly altered oxidation levels were indicated 
in red (reduced oxidation) or green (increased oxidation). Criteria 
was applied: adjusted p-value < 0.05, fold-change > 1.5
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acid synthesis were upregulated in the lignin condition: 
these include FabG, a 3-oxoacyl-[acyl-carrier-protein] 
reductase; FabD, an [acyl-carrier-protein] S-malonyl-
transferase, and FabF, a 3-oxoacyl-[acyl-carrier-protein] 
synthase. These enzymes are components of the type II 
Fatty Acid Synthase (FAS-II), which elongates acyl-CoA 
to produce mycolic acids [45, 46]. Mycolic acids are char-
acteristic constituents of Mycobacterial cell walls and 
modulate cell surface properties in response to the envi-
ronment and stressors—including aromatics [47]. Several 
acyltransferases of the Kennedy pathway were downregu-
lated, which supports the negligible lipid accumulation 
observed during lignin utilization. Glyceroneogenesis 
enzymes including glycerol-3-phosphate dehydrogenase 
were also downregulated.

Differences in protein cysteine oxidation according 
to carbon source
To evaluate protein redox states, we utilized an indirect 
approach whereby alkylated peptides would indicate 
original levels of reduced cysteine free thiols. Proteins 
assigned with higher intensities of HPE-IAM-Cys pep-
tides (i.e., reduced Cys-containing peptides) were consid-
ered as having lower oxidation levels. Selection criteria 
were applied for both statistical significance (Student’s 
t-test q-value < 0.05) and fold change (at least 1.5-fold 
changes to HPE-IAM-Cys peptide intensities) (Fig.  2B). 
In total, 1668 alkylated cysteine-containing peptides were 
quantitatively compared. 133 HPE-IAM-Cys peptides 
showed higher abundance (i.e., lower oxidation levels) 
while 124 cysteine sites had higher oxidation levels for 
lignin vs. glucose fermentations. Some cysteine residues 
were represented by several HPE-IAM-Cys peptides, 
which requires additional data processing to faithfully 
represent the redox state for a given residue. Thus, pro-
tein redox states were further analyzed at the Cys site 
level by annotation and aggregation of the raw intensi-
ties of HPE-IAM-Cys peptides. The summed intensities 
of individual protein Cys sites were compared by Stu-
dent’s t-test. Protein Cys sites with significantly changed 
oxidation level were filtered by: fold-change > 1.5, Stu-
dent’s t-test raw p-value < 0.05. To differentiate redox 
state changes from protein abundance, only proteins with 
insignificant differences in abundance (– 1.5 < protein 
abundance fold-change < 1.5) were considered as candi-
dates regulated according to their redox state. 162 differ-
ently oxidized protein Cys sites passed our criteria. These 
proteins were mainly involved in carbohydrate metabo-
lism, lignin/aromatic degradation, lipid metabolism, 
stress response, amino acid metabolism, and energy bal-
ance (Fig. 3).

Without glucose or other sugars as carbon sources, a 
group of proteins involved in carbon metabolism (e.g., 

glycolysis and aromatics catbolism) were more oxidized 
during lignin fermentation: these include catechol 
1,2-dioxygenase (CatA), fructose-bisphosphate aldo-
lase (FBA), and phosphoglucomutase (PGM) (Fig. 3A). 
CatA is important for aromatics catabolism; it uses 
molecular oxygen and a non-heme reaction center for 
intradiol cleavage of catechol [48]. The oxidized Cys67 
site is found in its conserved linker domain, which is 
involved in homodimerization according to protein 
sequence classification using InterPro and a structural 
analysis of a related species [49, 50]. It is possible that 
oxidized Cys67 affects the conformation of this domain 
and, as a result, phospholipid binding, dimerization, 
protein complex localization, and/or other functions; 
however, there are no other reports of this cysteine 
residue in literature. In yeast, FBA is partially oxidized 
during oxidative stress, thus affecting a variety of cel-
lular pathways [51]. In actinobacteria, redundant FBA 
activity was observed suggesting a cycle between glu-
coneogenesis as well as the Entner–Doudoroff and 
pentose phosphate (PP) pathways [52, 53]. In contrast, 
malate synthase (MLS) was less oxidized, which may 
affect metabolic flux through the glyoxylate cycle, and 
thus the production of succinate and malate for gluco-
neogenesis (Fig.  3B). Pentose phosphate (PP) pathway 
enzymes F420-dependent glucose-6-phosphate dehy-
drogenase (FGD), and xylulokinase (XLK) were less 
oxidized (Figs.  3B and 4). Besides its obvious role in 
sugar metabolism, the PP pathway is crucial for cop-
ing with oxidative stress and provides intermediates for 
fatty acid synthesis [3]. FGD is reportedly involved in 
an F420-depedent anti-oxidant mechanism for bacte-
rial stress response [54].

An enzyme central to energy metabolism, dihy-
drolipoamide dehydrogenase (DLDH), showed decreased 
oxidation levels for Cys42 and Cys47 during lignin 
conversion (6.37-fold change in intensity). DLDH is 
ubiquitous for its role as a subunit of the pyruvate dehy-
drogenase complex, α-keto glutarate dehydrogenase 
complex, and branched chain amino acid dehydrogenase 
complex—many of which require the antioxidant cofac-
tor α-lipoic acid [55]. The DLDH catalytic mechanism 
involves NAD+ reduction and FADH2 oxidation cycles 
for cysteine disulfide bond formation [56, 57]. Accord-
ing to UniProt, Cys42 and Cys47 are within the active 
site and tend to form a redox-sensitive disulfide bond 
[58]. The activity of this protein is reversibly altered by 
H2O2 and reducing agents [59]. Recently, Rahmanpour 
et  al. reported that DLDH in Thermobifida fusca pre-
vented in vitro lignin re-polymerization [60]. The capture 
of reduced DLDH during lignin conversion suggests a 
multifaceted role in ROS scavenging, lignin degradation, 
and/or redox regulation of central metabolism.
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The redox states of certain cysteine residues for 
enzymes involved in anabolism were also quantified. 
Two enzymes involved in fatty acid synthesis displayed 
increased oxidation in the lignin condition (Fig.  3A): 
acetyl/propionyl-CoA carboxylase alpha unit (ACC/
PCC) and another component of FAS-II, a 3-oxoacyl-
[acyl-carrier-protein] reductase (FabG1). ACC/PCC is 
involved in de novo fatty acid synthesis. In S. cerevisiae, 
this protein’s enzymatic activity can be attenuated in a 
redox-controlled fashion [51]. In E. coli, redox-sensitive 
components of FAS-II (e.g., FabF) were oxidized during 
nitrosative stress [61]. Interestingly, both these proteins 
are less oxidized during nitrogen-limitation (supporting 
TAG accumulation) compared to nitrogen abundance 
(limiting TAG accumulation) in R. jostii RHA1 [4]. In this 
study, Rhodococci were grown in nitrogen-limited condi-
tions; nevertheless, using lignin as the sole carbon source 

still led to a significant shift towards oxidized fatty acid 
synthesis enzymes. Ultimately, a reduced state may be 
required for carbon flux to lipids.

Two acyl-CoA dehydrogenases (ACAD) were less oxi-
dized in lignin-fed Rhodococci samples. ACAD cata-
lyzes the first step in each cycle of β-oxidation to break 
down fatty acids. In eukaryotes, there is evidence sug-
gesting that the activity of this enzyme is decreased due 
to cysteine PTMs (e.g., oxidation, alkylation, etc.): it is 
possible that this regulatory mechanism is conserved 
in prokaryotes [62, 63]. Furthermore, a 3-ketoacyl-CoA 
thiolase (ACAA/KAT), which catalyzes the thiolytic 
cleavage of 3-ketoacyl-CoA into acyl-CoA and acetyl-
CoA during β-oxidation, was also less oxidized (18.5-
fold higher intensity of HPE-IAM-Cys peptides) during 
lignin fermentation. Notably, ACAA/KAT also cata-
lyzes the last step of β-ketoadipate pathway converting 

Fig. 3  Overview of the differentially oxidized protein at cysteine site level (p-value < 0.05, and fold-change ≥ 1.5) among the lysate samples 
from glucose or lignin fermentation after 5 days. The ID prefixes correspond to the following: “Pd630” = R. opacus PD630 and “26,252…” = R. 
jostii RHA1. Left panel: protein abundance level; right panel: protein cysteine thiol oxidation level. Relative abundances (intensities) of proteins 
or HPE-IAM-Cys peptides were log2 transformed and median centered to zero. Each row represents one protein Cys site and each column 
represented one sample. “G1”, “G2” and “G3” are the lysate triplicate samples from glucose fermentation; “L1”, “L2” and “L3” are the lysate triplicate 
samples from lignin fermentation. All the fermentation was conducted by co-culture of three strains: R. jostii RHA1, R. jostii RHA1 vanA−, R. 
opacus PD630. The protein name abbreviation was followed by FASTA IDs of strains and Cys site IDs. A The selected proteins more oxidized 
during lignin fermentation. B The selected proteins more reduced during lignin fermentation
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β-ketoadipyl-CoA to acetyl-CoA and succinyl-CoA. 
ACAA/KAT redox-regulation in plants and bacteria 
involves reversible formation of a disulfide bond between 
two catalytic cysteines [64, 65]. Under conditions condu-
cive to oxidation, disulfide bond formation leads to a con-
formational change and inactivation. Active site residues 
for Rhodococcus ACAA/KAT were predicted using NCBI 
and UniProt sequence alignments and yielded Cys109, 
His401, and Cys431 [58, 66]. In our results, Cys109 was 
less oxidized (a free thiol instead of a disulfide bond), 
suggesting higher activity for fatty acid and aromatic deg-
radation during lignin conversion.

In addition to carbon assimilation and lipid metabo-
lism, differential oxidation of enzymes involved in amino 
acid and purine metabolism were observed. Amino acid 
and purine scavenging pathways generate energy and 
metabolic precursors for regeneration/synthesis of NAD 
and various other molecules. These pathways also pro-
vide endogenous sources of nitrogen during nitrogen 

limitation [2–4]. NADP+-dependent succinate-semi-
aldehyde dehydrogenase (SSADH), which is involved 
in glutamate degradation, catalyzes the conversion of 
succinate-semialdehyde to succinate and regenerates 
NADPH as a result. Decreased oxidation of SSADH was 
observed in the lignin condition hinting at a redox regu-
latory mechanism sensitive to the available carbon source 
under nitrogen limitation. This is also supported by the 
lower oxidation state of adenosine deaminase, involved 
in purine scavenging, and a putative enamine deaminase 
(RidA), which gets rid of reactive enamine intermediates 
[67, 68]. These intermediates are generated by pyridoxal 
5′-phosphate-dependent enzymes such as ornithine ami-
notransferase and phosphoserine aminotransferase (both 
less oxidized in our results). Interestingly, xanthine dehy-
drogenase, which converts xanthine to urate, can be con-
verted to the ROS-generating oxidase form via reversible 
oxidation [69]. A final example includes the first enzyme 

Fig. 4  Overview of main metabolic network of lignin conversion to lipid in Rhodococci. Compared to samples from glucose fermentation, 
abbreviations for proteins upregulated in lignin-fed Rhodococci are presented in red (* indicates that the given protein was significantly upregulated 
in our previous [9] work), whereas downregulated proteins in lignin-fed Rhodococci are presented in blue; the abbreviations for proteins 
with increased oxidation levels at the reported cysteine thiols are shown in orange boxes, whereas protein cysteine sites with decreased oxidation 
level are shown in green boxes. Proteins written in black were observed but significant differences in expression were not



Page 8 of 13Li et al. Biotechnology for Biofuels and Bioproducts          (2023) 16:180 

in the shikimate pathway, 3-deoxy-D-arabinoheptulo-
sonate 7-phosphate synthase, which exhibited 9.01-fold 
lower oxidation. This pathway is important for metabo-
lism of aromatic amino acids such as tryptophan which is 
required for de novo NAD synthesis [70]. These results 
showcase the complexity by which protein activity is reg-
ulated to modulate availability of essential nitrogenous 
metabolites (e.g., cofactors and amino acids).

Besides metabolic enyzmes, several transcriptional 
regulators were differentially oxidized, two of which 
belong to the two-component systems (TCS). This sug-
gests redox regulation of TCS components which impact 
signal transduction and metabolism at the transcriptional 
level in response to environment changes such as nitro-
gen limitation and carbon source availability [71, 72]. 
The TCS response regulator GlnR is a global regulator 
with a central role in nitrogen metabolism. This regula-
tor has been reported in other Mycobacteria [73, 74]. The 
transcriptional regulator NnaR, which can be activated 
by GlnR, is a co-activator associated with nitrate/nitrite 
assimilation. NnaR orthologues have been found in R. 
jostii and R. opacus and are named NlpR. NlpR exhibits 
functionality in modulating lipogenesis and lipid accu-
mulation in addition to ammonium limitation [5]. This 
implies an important role of the GlnR-mediated system 
in lipid accumulation for oleaginous Rhodococci. Another 
TCS consisting of histidine kinase PrrB and response 
regulator PrrA was reported in Mycobacterium smegma-
tis and regulates expression of several genes involved in 
TAG and lipid biosynthesis pathways [75]. Unfortunately, 
little is known about redox regulation of TCS and its 
partners.

Redox regulation has been proposed for stress con-
ditions such as nitrogen-limitation and even in the 
absence of stress [30]. It is well established that thiore-
doxin (Trx) and glutathione-glutaredoxin antioxidant 
systems mediate redox homeostasis in eukaryotes [76, 
77]. The exposed active 2-Cys sites of these proteins 
reduce oxidized proteins via thiol-disulfide exchange 
reactions. Similar mechanisms were proposed for the 
MSH-mycoredoxin (Mrx) system in Gram-positive bac-
teria  [44]. In our results, several proteins involved in 
MSH synthesis and metabolism were upregulated dur-
ing lignin fermentation. Furthermore, peroxiredoxin 
and alkyl hydroperoxide reductases (AhpC), which are 
important scavengers of H2O2 and peroxide-function-
alized molecules, were upregulated during lignin fer-
mentation [78]. Although protein abundances of the 
Trx system remained unchanged or downregulated, a 
putative thioredoxin 2-Cys site (Cys76 and Cys79) indi-
cated decreased oxidation level in lignin-fed samples 
suggesting an active antioxidant defense (Fig. 3B). Mean-
while, a chaperone protein HtpG (a bacterial homolog 

of the eukaryotic chaperone Hsp90 which is involved in 
response to many environmental stresses) also showed 
decreased oxidation (up to 2.63 folds) at two Cys sites 
[79]. The role of these antioxidants in redox regulation of 
Rhodococcus metabolism requires further investigation.

Discussion
Our preliminary results present a pattern of putative 
redox-dependent protein regulation that modulates a 
variety of metabolic pathways and biological processes 
(Fig.  4). Ultimately, differences in protein redox states 
track well with changes in abundance for correspond-
ing biological processes. Firstly, a number of proteins in 
aromatic degradation pathways increased in abundance 
while PcaF and MLS were less oxidized, supporting 
catabolism of aromatics for TCA anaplerosis. Secondly, 
in addition to higher oxidation of PCC and FabG, down-
regulation of FAS and other fatty acid synthesis enzymes 
hints at a reduced anabolic flux from central metabolites 
to lipogenesis. Thirdly, proteins involved in β-oxidation 
and acetyl-CoA conversion (i.e., MLS) showed higher 
abundance and lower oxidation (separately, given the 
aforementioned filter criteria) evincing increased fatty 
acid degradation to maintain flux to the TCA cycle. 
Lastly, most glyceroneogenesis and Kennedy pathway 
proteins showed lower abundance pointing to decreased 
TAG synthesis. The orchestration of these carbon metab-
olism modules and those detailed for nitrogen metabo-
lism (e.g., purine scavenging/synthesis) supports a regime 
for generating and cycling central metabolites and energy 
to build and maintain cell biomass instead of accumulat-
ing lipids. This metabolic redistribution seems correlated 
with oxidative stress response, but a causal link was not 
determined. Further investigations of oxidative stress and 
metabolism using lignin will be required to probe these 
relationships.

Profiling redox PTMs is a powerful first step towards 
investigating their potential regulatory roles. Future 
research will harness molecular approaches to specify 
antioxidant-enzyme interactions, redox switches, and 
the functional consequences of redox states. Immuno-
precipitation is a widely used approach to identify pro-
tein–protein interactions: this mature technology may 
be used to co-precipitate antioxidants and their bind-
ing partners [80, 81]. Even though limited information 
is available for the identified proteins, bioinformat-
ics and modeling tools can be used to predict cysteine 
site exposure, which affects their reactivity [31]. Direct 
mutagenesis and activity assays can be used to study 
individual proteins of importance to elucidate func-
tional changes caused by redox PTMs and interrogate 
hypothetical redox switches for metabolic regulation. 
Promoting reducing power generation or enhancing 
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antioxidant activities during lignin conversion may 
also improve lipid yields in Rhodococci—especially for 
demanding carbon sources like aromatics and lignin 
[82]. One novel approach for regenerating reducing 
power could be supplementing Rhococcus cultures with 
hydrogen (perhaps from a hydrogen-producing micro-
organism). Our results confirm expression and differen-
tial oxidation of a cytoplasmic [NiFe(Se)]-hydrogenase 
[83–85].

Our study of co-cultured Rhodococci provides intrigu-
ing metabolic insights and a platform for discovering can-
didate proteins involved in redox regulatory networks. 
Moreover, this study exemplifies how proteomics can be 
used to study synthetic microbial consortia, even though 
sequence similarity among the strains employed herein 
makes this challenging [86]. In future work, we plan to 
explore and validate select Cys site modifications using 
the open search strategy with FragPipe and targeted 
redox proteomics methods [87, 88]. Furthermore, we 
endeavor to qualify mechanisms of microbial interactions 
using metabolomics [17, 89].

Conclusions
Efficient bacterial lipid production requires a steady car-
bon and energy flux to generate acetyl-CoA, glycerol-
3-phosphate, and NADPH, while balancing fundamental 
requirements for enzyme production and cell mainte-
nance. For lignin, we theorize that this balance is difficult 
to establish due to resource expenditure for enzyme pro-
duction and oxidative stress response, the latter of which 
competes for NADPH. To study redox state as a function 
of carbon source, we investigated the expressed metabo-
lisms of a synthetic Rhodococcus consortium grown on 
alkali lignin vs. glucose under nitrogen-limited condi-
tions. A novel mass spectrometry-based detection work-
flow allowed us to pinpoint putative redox regulatory 
nodes in metabolic pathways by simultaneously quanti-
fying protein abundances and redox states. Independent 
of abundance, several proteins in both conditions were 
differentially oxidized providing possible targets for fur-
ther study. Additional studies of ROS, oxidants like lipid 
peroxides, and the MSH/MSSM ratio will further our 
understanding of redox imbalance and regulation dur-
ing lignin utilization. Functional studies using targeted 
mutagenesis, molecular cloning, and activity assays will 
be required to confirm redox regulation of the reported 
proteins and tease out contributions to redox imbalance 
from lignin utilization vs. nitrogen starvation. This study 
exemplifies a unique perspective of microbial metabolism 
one can attain using redox proteomics: specifically, that 
PTMs are implicated in the tug-and-pull of oxidation and 
reduction, which lie at the heart of metabolism.

Methods
Alkali lignin preparation
Alkali-extracted lignin from corn stover was prepared 
as previously described [9, 18]. Briefly, lignin-rich sol-
ids containing 20% glucan, 11% xylan, 3% arabinan, 2% 
galactan, 53% lignin, and 11% ash were first obtained by 
treating corn stover with 0.1 M NaOH at 80  °C for 2 h. 
Then, lignin was solubilized by soaking lignin-rich solids 
in 0.1  M NaOH at pH 12.5 again. The supernatant was 
filtered filtered through 11 μm pore size Whatman filters. 
Lignin was recovered from the filtrate by slowly adjust-
ing the pH to 3 with 2 M H2SO4. Precipitated lignin was 
collected and washed twice with 70  °C deionized water 
by filtration, then lyophilized for 3  days. Cellulose and 
hemicellulose fractions were not observed in the final 
alkali-extracted lignin [18]. The alkali lignin consisted of 
aromatic p-hydroxyphenyl (H), guaiacyl (G) and syringyl 
(S) units, and major lignin linkages (β-O-4, β-β, and β-5) 
as reported in the our previous work [18].

Rhodococci cultivation
Co-cultivation of three Rhodococcus strains (R. opacus 
PD630, R. jostii RHA1, and its mutant R. jostii RHA1 
VanA-) was conducted as previously described.1 Briefly, 
seed cultures for each strain were inoculated at 5% (v/v) 
into M9 medium with supplements and incubated at 30 
°C, 180 rpm for 5 days. 5 g/L of glucose or alkali corn 
stover lignin was used as sole carbon sources. Ammo-
nium sulfate was added as a nitrogen source at a C/N 
ratio = 15/1 (g/g). After fermentation, cells were pel-
leted by centrifugation, washed twice with NaCl solution 
(0.9%, w/v), and then processed for LC–MS/MS.

Proteomics sample preparation
After fermentation, cells were pelleted by centrifuga-
tion at 8000 × g and 4 °C for 15 min, then washed twice 
with NaCl solution (0.9%, w/v). Cell pellets were resus-
pended in 10% (w/v) trichloroacetic acid (TCA) followed 
by incubation on ice for 20 min to partially lyse cells and 
preserve the redox proteome [90]. Precipitated proteins 
and cell debris were pelleted by centrifugation at 13,000 g 
for 15 min at 4 °C. The pellet was washed with 500 μl of 
ice-cold 10% TCA and then with 200 μl ice-cold 5% TCA. 
Then the pellet was resuspended in lysis buffer (250 mM 
HEPES, 10 mM EDTA, 0.5% SDS, 8 M urea, 10 mM HPE-
IAM, pH 7.5) by intermittent sonication and incubation 
at 37  °C for 2  h [32, 90]. Bead-beating was performed 
using 100  μl of 0.1-mm zirconia/silica beads to further 
lyse cells and extract proteins. Cell lysate was centrifuged 
at 14,000 g for 10 min at 4  °C to remove cellular debris. 
The supernatant was incubated at 37  °C for 30  min for 
complete alkylation followed by acetone precipitation. 
The resultant protein pellet was dissolved in 25  mM 
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ammonium bicarbonate buffer containing 8 M urea (pH 
8) then subjected to FASP Protein Digestion Kit for lignin 
removal and trypsin digestion. All samples were cleaned 
up by C18 SPE column and concentrated by a Speed Vac 
SC110 following the manufacturer’s instructions. Sam-
ples were reconstituted to 0.1  µg/µL with 0.1% formic 
acid for LC–MS/MS analysis.

LC–MS/MS analysis
Three biological replicates of samples were analyzed by 
a nanoAcquity ultra performance liquid chromatogra-
phy (UPLC) system (Waters) coupled to a Q-Exactive 
HF Mass Spectrometer (Thermo Scientific, San Jose, 
CA) as previously described [91]. Protein identification 
and label-free quantification (LFQ) was conducted using 
MaxLFQ algorithm offered by MaxQuant [92], search-
ing against FASTA files (R. opacus PD630, Accession: 
PRJNA30413; R. jostii RHA1, Accession: PRJNA309609) 
from NCBI and JGI databases [93, 94]. Dynamic oxida-
tion of methionine (15.9949  Da) and dynamic HPE-
IAM modification of Cys (177.0790  Da) were used for 
searching.

Data analysis
LFQ intensities of proteins exported from MaxQuant 
were log2 transformed and compared by Student’s t-test 
values adjusted for Permutation-based false discov-
ery rate in Perseus [95]. Significant protein abundance 
changes met the following criteria: (a) Student’s t-test 
q-value < 0.05; (b) fold-change > 1.5 or < –1.5. Protein 
redox state (i.e., oxidation states of cysteine thiols) was 
compared at peptide level by quantification of HPE-IAM-
Cys peptides. Raw intensities of unoxidized cysteine-
containing peptides (with add-on mass of HPE-IAM 
moiety) exported from MaxQuant were log2 transformed 
and normalized by median-center normalization across 
conditions, followed by Student’s t-test in Perseus. Pro-
tein redox state was quantified at Cys site level by anno-
tation of Cys site of individual HPE-IAM-Cys peptides 
and aggregation of raw intensities of peptides with the 
same Cys sites. Then, Cys site intensities were log2 trans-
formed and normalized, followed by student’s t-test by R. 
Protein cysteines with significantly increased or reduced 
oxidation level must pass the following criteria: (a) Stu-
dent’s t-test raw p-value < 0.05; (b) fold-change of Cys site 
intensities > 1.5 or < –1.5; (c) log2 (fold-change) of corre-
sponding protein abundance > –1.5 and < 1.5.
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