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Abstract 

Background Soil microbial fuel cells (MFCs) can remove antibiotics and antibiotic resistance genes (ARGs) simultane-
ously, but their removal mechanism is unclear. In this study, metagenomic analysis was employed to reveal the func-
tional genes involved in degradation, electron transfer and the nitrogen cycle in the soil MFC.

Results The results showed that the soil MFC effectively removed tetracycline in the overlapping area of the cathode 
and anode, which was 64% higher than that of the control. The ARGs abundance increased by 14% after tetracycline 
was added (54% of the amplified ARGs belonged to efflux pump genes), while the abundance decreased by 17% 
in the soil MFC. Five potential degraders of tetracycline were identified, especially the species Phenylobacterium 
zucineum, which could secrete the 4-hydroxyacetophenone monooxygenase encoded by EC 1.14.13.84 to catalyse 
deacylation or decarboxylation. Bacillus, Geobacter, Anaerolinea, Gemmatirosa kalamazoonesis and Steroidobacter 
denitrificans since ubiquinone reductase (encoded by EC 1.6.5.3), succinate dehydrogenase (EC 1.3.5.1), Coenzyme 
Q-cytochrome c reductase (EC 1.10.2.2), cytochrome-c oxidase (EC 1.9.3.1) and electron transfer flavoprotein-ubiqui-
none oxidoreductase (EC 1.5.5.1) served as complexes I, II, III, IV and ubiquinone, respectively, to accelerate electron 
transfer. Additionally, nitrogen metabolism-related gene abundance increased by 16% to support the microbial 
efficacy in the soil MFC, and especially EC 1.7.5.1, and coding the mutual conversion between nitrite and nitrate 
was obviously improved.

Conclusions The soil MFC promoted functional bacterial growth, increased functional gene abundance (includ-
ing nitrogen cycling, electron transfer, and biodegradation), and facilitated antibiotic and ARG removal. Therefore, 
soil MFCs have expansive prospects in the remediation of antibiotic-contaminated soil. This study provides insight 
into the biodegradation mechanism at the gene level in soil bioelectrochemical remediation.
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Background
The widespread use and sustained release of antibiotics 
pose an enormous threat to the ecological environment, 
leading to the occurrence of bacterial resistance through 
antibiotic resistance genes (ARGs) [1, 2]. Global analysis 
of 1088 soil metagenomic samples found that hot spots 
of microbial resistance are mainly located in densely 
populated areas with developed agriculture and animal 
husbandry, such as the eastern United States, western 
Europe, South Asia and East Asia [3]. Moreover, anti-
biotics have been discovered in children and pregnant 
women [4, 5], 93% of the elderly are harmed by antibiot-
ics [6], and 12% of newborns are diagnosed with invasive 
bacterial infections [7], which poses a serious threat to 
human health.

Microbial fuel cells (MFCs) have been confirmed to 
remove antibiotics and ARGs in wastewater [8–10] and 
soils [11–13]. For instance, Xu et  al. [14] reported that 
the removal rate of sulfamethoxazole in wastewater 
reached 94% using MFC-constructed wetlands. Our pre-
vious research showed that 42–50% of tetracycline in soil 
MFCs could be removed within 7 days, while its degrada-
tion rate in control soil was only 6% [13]. Furthermore, 
the abundance of ARGs in soil MFCs declined by 19–27% 
compared with the control [13]. However, the hetero-
geneity of soil leads to difficulties of the MFC in reme-
diation of antibiotic-contaminated soil compared to that 
of the water environment; therefore, few studies have 
reported on the removal mechanism of antibiotics and 
ARGs in soil using MFCs [15].

Microorganisms are important members of the soil 
system and are crucial in the degradation of pollutants in 
soils [16]. Soil MFCs can reshape the interspecific rela-
tionship of microorganisms and establish a microbial 
metabolic network with the ability to efficiently degrade 
antibiotics while also reducing the number of resist-
ant microbes [17]. At present, many potential degraders 
of antibiotics have been reported, such as Bacillus sp., 
Shewanella sp., Sphingomonas sp., Phenylobacterium sp., 
and Paraclostridium sp. [18–21]. Unfortunately, most 
microorganisms are uncultivable, which greatly limits 
the isolation of degrading microbes [22]. It has become a 
potential pollution remediation strategy to identify func-
tional genes with antibiotic degradation abilities and con-
struct genetically engineered bacteria. However, to our 
knowledge, few studies have explained the degradation 
mechanism of antibiotics by soil MFCs based on func-
tional genes, which requires further study.

The shortage of available nitrogen in organic-con-
taminated soil is the main limiting factor of bioreme-
diation [23]. As is well known, nitrogen availability is 
closely related to the nitrogen metabolism, whereas it 
is restrained by antibiotics. For example, sulfadiazine 

inhibited nitrification functional genes and nitrobac-
teria in the surface sediment, resulting in  NH4

+ and 
 NO2

− accumulation in overlying water [24]. The pres-
ence of oxytetracycline, sulfamethazine, and ciprofloxa-
cin restrained urea decomposition and denitrification 
by reducing the abundance of functional genes, includ-
ing ureC, nirK and norB, in soil [25]. Interestingly, soil 
MFCs promoted cathode-dominated ammoniation and 
anode-dominated denitrification while degrading petro-
leum hydrocarbons [26]. However, thus far, it is unclear 
whether soil MFCs promote nitrogen cycling during 
antibiotic removal and which key functional genes are 
involved.

Previous studies showed that the bioelectricity gener-
ated by soil MFCs could stimulate the growth of func-
tional microbes, thus promoting the degradation of 
pollutants [13, 27, 28]. This is mainly because the metab-
olism of organic matter is accelerated through electron 
transfer, hence it is necessary to study the electron trans-
fer process in soil MFCs. Bidirectional extracellular elec-
tron transfer (EET), namely, outwards EET and inwards 
EET, is regarded as the key for the electrochemical activ-
ity of electrically active bacteria [29]. In soil MFCs, out-
wards EET normally occurs at the anode, and the cathode 
serves as a sustained electron donor for electrotrophic 
bacteria to conduct inwards EET [13]. Zhang et  al. [30] 
found that conjugated polymers improved the bidirec-
tional EET efficiency by the close biointerface interac-
tions of conjugated polymer-microbe biohybrid systems. 
Riboflavin is also conducive to enhancing bidirectional 
EET, and its mechanism is determined by the EET direc-
tion: for outwards EET, free riboflavin serves as a redox 
mediator; for inwards EET, bound riboflavin is involved 
in electricity consumption [31]. Recently, the impact of 
adding exogenous substances to electron transfer in soil 
MFCs has received widespread attention. Chen et al. [32] 
reported that the addition of insulative ferrihydrite in a 
soil MFC generated more bioelectricity than conductive 
magnetite, possibly because ferrihydrite was turned into 
small particles of semiconductive lepidocrocite/goethite, 
which was likely to promote long-distance electron trans-
fer. Zhang et  al. [33] showed that both dissolved  (Fe2+) 
and solid-state  (Fe2O3) electron media acted as electron 
transporters in soil MFCs. Moreover, the possible elec-
tron transfer pathways in soil MFCs also need to be fur-
ther studied.

In this study, tetracycline was selected to study soil 
MFCs with the following aims: first, to identify poten-
tial degrading bacteria and functional genes to reveal 
the biodegradation mechanism of tetracycline by soil 
MFCs; second, to explore the electrically active bacte-
ria and functional genes involved in electron transfer 
in soil MFCs to speculate on probable electron transfer 
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pathways; and third, to reveal functional genes involved 
in the nitrogen cycle of soil MFCs and their contribution 
to tetracycline removal.

Results and discussion
Reciprocal action of the anode and cathode was more 
conducive to tetracycline removal
The anode (area A) of the soil MFC treatment (MT) 
showed superior removal capacity for tetracycline, 
with a degradation rate of 76%, which increased by 34% 
(p < 0.05) compared with that in the corresponding area 
of the anaerobic controls spiked with tetracycline (AT) 
(Fig.  1). To our knowledge, most studies have mainly 
focused on the degradation mechanism of tetracycline 
at the MFC anode, while fewer studies have studied the 
removal mechanism of tetracycline at the cathode. In 
this study, a similar degradation rate was found between 
the cathode and anode of the soil MFC, suggesting great 
potential for the cathode removal of tetracycline [13, 17]. 
Wang et  al. [34] found that electroactive bacteria (Rho-
dopseudomonas sp. and Acetobacter sp.) enriched on bio-
cathodes accelerated electron transfer, thereby enhancing 
the metabolic activity of degraders and ultimately pro-
moting the removal of methyl, hydroxyl, dimethyl, and 
amide groups on tetracycline. Our previous study also 
showed that flavoprotein 2,3-oxidoreductase, quinol oxi-
dase and fumarate reductase encoded by EC 1.3.8.7, EC 
1.10.3.14 and EC 1.3.5.4, respectively, might promote 
the electron transfer efficiency from the cathode to the 
cell, thus strengthening tetracycline removal [13]. Inter-
estingly, in the soil MFC, the highest degradation rate 
of tetracycline was found in area C (the overlap area of 
the cathode and anode, 87%), which was 14–72% higher 

(p < 0.05) than other regions of the MFC (Fig.  1). The 
reason might be that the biodegradation of tetracycline 
in the C region of the MFC was influenced by both the 
cathode and anode. In contrast, the tetracycline removal 
in area B was the lowest but 36% higher (p < 0.05) than 
the corresponding area of the AT treatment.

Soil bacterial community
Anodes dominated the bacterial diversity of the soil MFC
A total of 78,552–78,879 effective tags with aver-
age lengths of 254  bp were obtained (Additional file  1: 
Table S1). The coverage indices were all above 98%, sug-
gesting that the sequencing depths could reflect the real 
situation of the bacterial community (Additional file  1: 
Table  S1). Compared with the anaerobic controls with-
out antibiotic (AN), the richness declined more obviously 
(12%) than diversity (4%) in terms of Shannon and Chao1 
indices in the AT treatment (Additional file 1: Table S1). 
In contrast, these two indices in the MT treatment were 
comparable to those in the AT treatment. In the soil 
MFC, the highest Shannon index was observed in area 
A, followed by area C (Additional file 1: Table S2). Fur-
thermore, the Chao1 index of area A was also the high-
est in the soil MFC, and these among the other three 
areas were similar. Principal coordinate analysis (PCoA) 
was conducted for the bacterial community of differ-
ent treatments based on Bray‒Curtis distances. Axis 1 
explained 45.78% of the variance, and Axis 2 explained 
14.68% (Fig. 2a). Samples from the AN, AT and MT treat-
ments were clustered together. Furthermore, the dis-
tance between MT and AT or AN was farther than that 
between AT and AN, which indicated that the bacterial 
community was greatly shifted by the soil MFC.

Soil bacterial community composition
At the phylum level, Proteobacteria, Bacteroidetes and 
Acidobacteria were the top three phyla, with their abun-
dances accounting for 25–37%, 16–19% and 11–13% of 
the total bacteria, respectively (Fig. 2b). The abundances 
of Proteobacteria and Acidobacteria in the AT treatment 
were 18% and 13% lower than those in the AN treatment, 
respectively. However, the amounts of Proteobacteria and 
Acidobacteria in the MT treatment increased by 19% and 
6% compared with those in the AN treatment, respec-
tively. For Proteobacteria, the highest increase was found 
in the area B of MT (40%), followed by the area A of MT 
(34%, Fig.  2c). For Acidobacteria, however, the highest 
increase was observed in the area C of MT (24%). The 
abundance of Gemmatimonadetes exhibited a similar 
trend to that of Acidobacteria.

The abundances of the top fifty genera, accounting for 
24–34% of the total composition, were chosen to con-
struct the heatmap (Fig.  2d). The top five genera were 

Fig. 1 Contents (column graph) and degradation rates (scatter 
graph) of tetracycline in different treatments. Different lowercase 
letters represent significant differences at the 0.05 level. The soil MFC 
and its anaerobic control spiked with tetracycline were labelled MT 
and AT, respectively
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Pontibacter (2.3–11%), unidentified Acidobacteria (1.4–
4.8%), Anaerolinea (0.4–5.9%), Sphingomonas (1.2–3.7%) 
and Bacillus (0.7–2.2%). The abundance of Pontibacter in 
the AT treatment increased by 49% compared with that 
in the AN, and it further increased by 64% in the MT 
treatment (dominant in area C) relative to that in the 
AT treatment (Fig. 2d, e). Compared with the AN treat-
ment, the abundance of unidentified Acidobacteria and 
Sphingomonas declined by 9% and 22%, respectively, in 
the AT treatment, whereas they were enhanced by 15% 
and 14%, respectively, in the MT treatment (Fig.  2d). 
There were sixteen bacteria showing the same trend as 

unidentified Acidobacteria and Sphingomonas, nine of 
which belonged to Proteobacteria (Steroidobacter, Phe-
nylobacterium, Massilia, Azoarcus, Microvirga, Woeseia, 
unidentified Burkholderiaceae, Skermanella and Lyso-
bacter), one belonged to Acidobacteria (Stenotropho-
bacter), one belonged to Bacteroidetes (Adhaeribacter), 
two belonged to Actinobacteria (Gaiella and Marmori-
cola), one belonged to Gemmatimonadetes (Gemmati-
rosa), one belonged to unidentified Bacteria (Candidatus 
Entotheonella) and one belonged to Firmicutes (uniden-
tified Clostridiales). Unidentified Acidobacteria, Steno-
trophobacter, Phenylobacterium and Adhaeribacter were 

Fig. 2 PCoA of the bacterial community (a). The anaerobic control without antibiotics was labelled AN. Chord charts of the top 10 bacterial 
communities at the phylum level in different treatments (b) and different areas (c). The last capital letter of the sample name represents 
the sampling area; for example, ANA represents area A of the AN treatment. Heatmaps of the bacterial community at the genus level in different 
treatments (d) and different areas (e). Networks of the potential functional bacteria at the genus level (f). Red and blue edges represent 
significant positive and negative relationships, respectively (p < 0.05, Spearman test), and the size of each node is proportional to the abundance 
of the corresponding bacteria
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dominant in area C of the MT treatment; Gemmatirosa 
and Lysobacter were dominant in areas C and D; Sphingo-
monas, Massilia, Woeseia, and Candidatus Entotheonella 
were dominant in area D; Steroidobacter, Azoarcus, uni-
dentified Burkholderiaceae and Skermanella were domi-
nant in areas A and D; Microvirga, Gaiella, unidentified 
Clostridiales and Marmoricola were dominant in area A 
(Fig. 2e). In addition, although the amount of Bacillus in 
the AT treatment declined by 21% compared with that in 
the AN treatment, it rose by 17% in the MT treatment 
(dominant in area A) relative to that in the AT treatment, 
as did Acidibacter.

Potential degrading bacteria and electroactive bacteria
The correlation results showed that the degradation 
rate was significantly positively correlated with Sphingo-
monas, Stenotrophobacter, Phenylobacterium, Massilia, 
Adhaeribacter, Acidibacter, Woeseia and Gemmatirosa 
(p < 0.05, Additional file  1: Table  S3). Previous studies 
indicated that Sphingomonas sp. can use tetracycline 
as a nutrient source for growth and reproduction [18, 
19]. Phenylobacterium sp. was reported to be capable of 
degrading sulfonamide antibiotics [35]. Massilia sp. and 
Gemmatirosa sp. are potential degrading bacteria of poly-
cyclic aromatic hydrocarbons [36, 37]. Woeseia sp. may 
utilize plastics and hydrocarbons as energy substances 
[38, 39]. Therefore, the species of these genera might be 
crucial in tetracycline removal, especially Sphingomonas 
and Phenylobacterium.

Bacillus sp. and Geobacter sp. are potential electroac-
tive bacteria in MFCs [40, 41]. For example, Bacillus 
cereus is capable of promoting electron transfer by align-
ing the cytochrome complex and excreting flavin mole-
cules [42]. Geobacter sulfurreducens can obtain electrons 
from fumarate and solid donors and conduct extracellu-
lar electron transfer through type IV conductive pili and 
c-type cytochromes [43, 44]. In the current research, the 
abundance of Bacillus in the soil MFC was 17% higher 
than that in the AT treatment and dominant at the anode. 
Furthermore, Geobacter showed enrichment in the MFC 
anode. Therefore, Bacillus and Geobacter were likely 
to contribute to electricity production. Moreover, the 
abundance of Anaerolinea showed a similar tendency 
to that of Geobacter. Anaerolinea sp. was reported to be 
enriched at the MFC anode and could transfer electrons 
[45], which might also be a potential exoelectrogen.

The twelve major genera were selected to explore the 
evolution of interspecific relationships through network 
analysis (Fig. 2f ). Compared with the AN treatment, the 
numbers of nodes and edges in the network decreased 
by 29% and 20% in the AT treatment, respectively. This 
result indicated that the interspecific relationship was 
weakened after tetracycline was added, which might be 

attributed to the inhibition of bacteria by tetracycline. In 
the soil MFC, most of the selected bacteria had a close 
relationship with each other, and the numbers of nodes 
and edges were 29–80% and 100–150% higher than those 
in the other two treatments, respectively (Fig.  2f ). This 
indicated that the interspecific relationship between 
microorganisms in the soil MFC was strengthened by 
biocurrent stimulation [17].

Potential functions of microbiomes in the soil MFC
To identify the potential functions of the soil micro-
biomes in the MFC, samples from area C (the highest 
degradation rate in the MT) were chosen for metagen-
omic sequencing. The clean data were between 6732 and 
7183, and the clean Q30 was over 93%, which suggested 
that the quantity and quality of sequencing data were 
sufficient (Additional file  1: Table  S4). After metagen-
omic assembly, 186,023–247389 gene fragments were 
obtained, with N50 lengths reaching 673–958  bp, indi-
cating that the splicing quality was satisfactory for gene 
prediction.

Pathway and enzyme‑encoding genes of tetracycline 
biodegradation
Biological metabolic pathways in the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) database mostly 
included energy metabolism, carbohydrate metabolism, 
amino acid metabolism, metabolism of other amino 
acids, metabolism of cofactors and vitamins, nucleotide 
metabolism, xenobiotic biodegradation and metabo-
lism, metabolism of terpenoids and polyketides, and 
lipid metabolism. In this study, the relative abundance of 
metabolic pathways in the area C of AT (ATC) declined 
by 5.1% compared with that in the area C of AN (ANC), 
whereas it was enhanced by 7.6% in the area C of MT 
(MTC) compared with ATC, suggesting that soil MFC 
could restore the metabolism inhibited by tetracycline 
(Fig.  3a). Especially for xenobiotic biodegradation and 
metabolism, its abundance in MTC was 25% higher 
than that in ATC, which reflected the superior degrada-
tion performance of MFC. In addition, DNA polymerase 
(encoded by EC 2.7.7.7, EC 2.7.7.6) and RNA helicase 
(EC 3.6.4.13) abundances in the MTC treatment were 
enhanced by 16–27% and 42%, respectively, compared 
with those in the ATC treatment (Fig. 3e), suggesting that 
MFC could promote microorganism growth, which con-
firmed a previous conjecture [13, 26, 46].

Previous studies have shown that the biodeg-
radation pathway of tetracycline mostly included 
oxidation, demethylation, decarbonylation, dehydro-
genation, deamination, dehydroxylation, loss of acyl-
amino groups (deacylation) and ring opening, and the 
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degraders included Sphingobacterium changzhouense 
TC931, Sphingobacterium mizutaii S121, Klebsiella sp. 
SQY5 and Alcaligenes sp. R3 [47–51]. The biodegrada-
tion of tetracycline is achieved by complicated meta-
bolic reactions catalysed by enzymes. For example, Yin 
et al. [52] found that isomerase-, oxidoreductase-, and 
transferase-encoding genes were possibly involved in 
tetracycline degradation. In the present study, amidase 
(EC 3.5.1.4) and 4-hydroxyacetophenone monooxy-
genase (EC 1.14.13.84) were found to have potential 
degradation functions. Although the abundance of 
EC 3.5.1.4 was similar in the ANC and ATC, its abun-
dance in the MTC was 31% higher than that in the ATC 
(Fig.  3e). Compared with that of the ANC, the abun-
dance of EC 1.14.13.84 decreased by 67% in the ATC, 
whereas it increased by 59% in the MTC. According to 
the KEGG database, EC 3.5.1.4 is involved in the deg-
radation of aminobenzoate (reaction: R05590, pathway: 
map00627, Additional file  1: Figure S1), and it mainly 
promotes the removal of amino groups [53, 54]. There-
fore, the enzyme-encoding gene EC 3.5.1.4 was likely 
to catalyse the deamination reaction of tetracycline 
biodegradation in this study (Fig.  3c). Zhou et  al. [55] 
reported that the –NH2 in sulfamethoxazole easily 
underwent a substitution reaction with –OH. Moreo-
ver, EC 1.14.13.84 can insert oxygen atoms between 
the aromatic ring and a ketone side chain to degrade 
bisphenol (reaction: R06892, pathway: map00363, 
Additional file  1: Figure S2) [56]. Thus, the EC 
1.14.13.84 gene might be involved in the deacylation of 

tetracycline degradation or act on the bond breaking of 
the –COOH group (Fig. 3c).

Nitrogen cycle processes were enhanced by the soil MFC
Nitrogen limitation, as the bottleneck of soil bioremedia-
tion, needs attention [57]. Our results showed that the 
abundance of nitrogen metabolism (ko00910) in the ANC 
decreased by 11% compared with that in the ATC (Addi-
tional file  1: Figure S3). Previous studies showed that 
tetracyclines might inhibit nitrification, denitrification 
and anammox processes, and the rates of nitrification, 
denitrification and anammox activity declined by 50%, 
44% and 81% relative to nonantibiotic treatment, respec-
tively [58–60]. However, whether tetracyclines inhibit 
the nitrogen cycle process is related to the concentration 
of tetracyclines and the duration of the experiment [61]. 
Interestingly, the gene abundance of nitrogen metabolism 
increased by 16% in the soil MFC compared with ATC 
(Additional file 1: Figure S3). The possible reasons were 
as follows: first, the electrochemically active microbes 
enriched in the MFC promoted the geochemical cycle 
(including the carbon cycle, nitrogen cycle, sulfur cycle, 
iron cycle, etc.) [62]; second, the growth and metabolism 
of nitrogen cycle microorganisms might be activated in 
MFCs [26]; third, the MFC enhanced the shedding of 
nitrogen-containing groups (amino and amide groups) 
of tetracycline, thus providing a more abundant nitrogen 
source for nitrogen cycle microbes.

The nitrogen cycle mostly includes dissimilatory nitrate 
reduction, assimilatory nitrate reduction, denitrification, 
nitrification and anammox [63, 64], and enzymes are vital 

Fig. 3 The abundance of metabolism in different treatments (a). Proposed nitrogen cycle pathway (b), degradation pathway of tetracycline (c) 
and electron transfer pathway (d) in the soil MFC. The abundances of enzyme-encoding genes (e) and ARGs (f) in different treatments
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driving factors in nitrogen transformation processes [65]. 
Nine enzyme-encoding genes related to the nitrogen 
cycle were identified (Fig. 3b), of which EC 1.7.5.1 showed 
the highest abundance, followed by EC 1.7.2.5, EC 
1.7.99.-, EC 1.7.2.4, EC 1.7.2.1, EC 1.7.1.15, EC 1.7.99.1, 
EC 1.7.2.6 and EC 1.7.7.1 (Additional file  1: Figure S4). 
For dissimilatory nitrate reduction, the nitrate reductase 
encoding EC 1.7.5.1 catalyses the conversion of nitrate to 
nitrite [66], and the presence of nitrite reductase encod-
ing EC 1.7.1.15 is beneficial for the formation of ammonia 
[67]. The enzyme-encoding gene EC 1.7.5.1 simultane-
ously participates in nitrification (nitrite → nitrate) [68]. 
In addition, the reaction from hydroxylamine to nitrite 
in nitrification was equally important and was catalysed 
by hydroxylamine dehydrogenase (EC 1.7.2.6) [69]. The 
assimilatory nitrate reduction process mostly involves 
assimilatory nitrate reductase encoded by EC 1.7.99.- 
and ferredoxin-nitrite reductase encoded by EC 1.7.7.1 
[70]. Denitrification was divided into four steps, namely, 
nitrate → nitrite → nitric oxide → nitrous oxide → nitro-
gen. Nitrite reductase (EC 1.7.2.1) and hydroxylamine 
reductase (EC 1.7.99.1) jointly promote the reaction from 
nitrite to nitric oxide [23, 71]. Nitric oxide reductase (EC 
1.7.2.5) and nitrous oxide reductase (EC 1.7.2.4) catalyse 
the conversion of nitric oxide to nitrous oxide and nitrous 
oxide to nitrogen, respectively [72]. As expected, the nine 
enzyme-encoding genes mentioned above were inhibited 
by tetracycline; however, their abundances were upregu-
lated in the soil MFC, with EC 1.7.5.1 showing the larg-
est increase in abundance, an increase of 79% in the MTC 
treatment compared to the ATC treatment (Fig. 3e). This 
result indicated that MFC promoted the nitrogen cycle 
in soil, especially the mutual conversion between nitrite 
and nitrate  (NO2

−NO3
−) driven by the enzyme-encoding 

gene EC 1.7.5.1 (Fig. 3b). This meant that there were suf-
ficient electron receptors  (NO3

−) and donors  (NO2
−), as 

electron shuttles in the overlapping area of the cathode 
and anode, which might serve tetracycline degradation.

Genes of electron transfer were upregulated by the soil 
MFC
Complexes (I, II, III, IV) containing electronic carri-
ers are crucial in the respiratory chain, which partici-
pates in inwards and outwards electron transfer [73]. 
For instance, our previous research found that the succi-
nate dehydrogenase complex encoded by EC 1.3.5.4 (EC 
1.3.5.1) catalysed the conversion of succinate to fuma-
rate at the cathode [13]. A total of four related enzyme-
encoding genes (including EC 1.6.5.3, EC 1.3.5.1, EC 
1.10.2.2 and EC 1.9.3.1) were discovered in this study. 
Although their abundances in the ATC declined by 
11–34% relative to the ANC, they increased by 20–36% 
in the MTC compared with the ATC (Fig. 3e). EC 1.6.5.3 

encodes ubiquinone reductase (complex I), which is a 
very large complex that participates in the electron trans-
fer chains of mitochondria and aerobic bacteria, trans-
ferring electrons from NADH to the ubiquinone pool 
[74]. Coenzyme Q-cytochrome c reductase encoded by 
EC 1.10.2.2 could act as complex III for electron transfer 
[75]. EC 1.9.3.1 encoded cytochrome-c oxidase that acted 
on a haem group of donors and could serve as complex 
IV [75]. In addition, as a liposoluble coenzyme, ubiqui-
none could accept electrons transferred from complex I 
or complex II in the respiratory chain and then transfer 
the electrons to complex III [76]. In the current study, 
the abundance of electron transfer flavoprotein-ubiqui-
none oxidoreductase encoded by EC 1.5.5.1 in the ATC 
treatment declined by 21% compared with that in the 
ANC treatment, whereas it was enhanced by 44% in the 
MTC treatment compared with that in the ATC treat-
ment (Fig. 3e). Based on the above analysis, a schematic 
diagram of intracellular electron transfer is presented in 
soil MFC (Fig. 3d). Ultimately, the electrons transmitted 
within the cell are transferred to the electrode through 
direct contact or electron mediators, thereby accelerating 
the electron transfer of the soil MFC, which was benefi-
cial for tetracycline degradation.

ARGs were reduced efficiently by the soil MFC
The thirty most abundant ARGs were selected to draw 
the bubble chart (Fig.  3f ). The total abundance in the 
ATC increased by 14% compared with that in the ANC; 
however, it decreased by 17% in the MTC relative to 
that in the ATC (Additional file  1: Figure S5), indicat-
ing that MFC could effectively remove ARGs [13, 17]. 
Among these thirty ARGs, a total of twenty-five ARGs 
(Excluding Streptomyces_cinnamoneus_EF-Tu, amino-
coumarin_resistant_alaS, Mycobacterium_tuberculo-
sis_katG, lrfA and farB) increased in the ATC compared 
with the ANC, with an average increase of 60% (Fig. 3f ). 
In the twenty-five ARGs, 54% belonged to efflux pump 
genes, 33% belonged to target alteration genes, and 13% 
belonged to inactivation genes (Additional file 1: Figure 
S6a). Therefore, efflux pump resistance was the main 
resistance mechanism of soil microorganisms to tetra-
cycline. The efflux pump, as a transport protein present 
on the cell membrane, can pump antibiotics out of the 
cells, thereby reducing the concentration of intracellu-
lar antibiotics and leading to bacterial resistance [77, 
78]. Furthermore, the efflux pump is the vital cross-
resistance mechanism; that is, different pollutants (such 
as tetracycline or heavy metals) attack the same target 
and activate the bacterial efflux pump system, caus-
ing it to be resistant to multiple pollutants [79]. In this 
study, the addition of tetracycline not only increased 
the abundance of tetracycline resistance genes but 
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also amplified other ARGs after tetracycline exposure. 
For example, among the efflux pump genes, only adeC, 
adeG, mexW, mexI and tetV belonged to tetracycline 
resistance genes. The other efflux pump genes were as 
follows: abcA, peptide antibiotic; penam, cephalosporin 
resistance gene; TaeA, pleuromutilin resistance gene; 
mdtB and mdtC, aminocoumarin resistance genes; 
patA, fluoroquinolone resistance gene; and msbA, 
nitroimidazole resistance gene. Zhang et  al. [80] also 
found that the abundances of sulII and blaTEM-1 were 
elevated by tetracycline, indicating that tetracycline 
might function as a coselection pressure for ARGs cor-
responding to other antibiotics. In addition, nineteen of 

the thirty ARGs (Streptomyces_cinnamoneus_EF-Tu, 
Bifidobacteria_intrinsic_ileS, abcA, TaeA, desR, TriC, 
adeG, Mycobacterium_tuberculosis_katG, Mycobacte-
rium_tuberculosis_gyrA, lrfA, OXA-368, mexW, ami-
nocoumarin_resistant_cysB, mdtC, PmrF, mdtB, patA, 
msbA and tetV) in the MTC treatment were reduced 
compared with those in the ANC treatment, and the 
abundance of the nineteen ARGs mentioned above in 
the MTC treatment was 33% lower on average than that 
in the ANC (Fig.  3f ). Similarly, the efflux pump gene 
accounted for most ARGs (61%), followed by the target 
alteration gene (33%) (Additional file 1: Figure S6b).

Fig. 4 Split heatmap of the microbial community at the species level in different treatments
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Functional microbes at the species level were discovered 
in the soil MFC
The abundances of the top thirty species were chosen 
to cluster the split heatmap (Fig.  4). Phenylobacterium 
zucineum was the top species. Compared with ANC, the 
amount of P. zucineum in the ATC treatment decreased 
by 52%, whereas it was 637% higher in MTC than in ATC 
(Fig.  4). A total of fourteen species exhibited the same 
trend as P. zucineum, such as Gemmatirosa kalamazo-
onesis, Nitrospira moscoviensis, Ramlibacter tataouinen-
sis, Steroidobacter denitrificans, Nitrospira sp. SG-bin1, 
Candidatus Nitrospira nitrificans and Nitrospira japon-
ica. Furthermore, the abundances of Pontibacter roseus 
and Luteitalea pratensis in the ATC, respectively, 
increased by 18% and 1.2% compared with the ANC 
treatment, and they rose by 10% and 51% in the MTC 
treatment relative to the ATC treatment, respectively 
(Fig. 4).

Chen et al. [35] found that Phenylobacterium sp. was a 
degrader of sulfadiazine and sulfamethoxazole. Interest-
ingly, EC 1.14.13.84 was found in the species P. zucineum, 
which suggested that P. zucineum was likely to secrete 
4-hydroxyacetophenone monooxygenase to degrade 
tetracycline (Fig.  3c). Our previous study indicated that 
the species G. kalamazoonesis and S. denitrificans were 
potential electrotrophic microbes; G. kalamazoone-
sis and S. denitrificans secreted quinoloxidase encoded 
by EC 1.10.3.14 and flavoprotein 2,3-oxidoreductase 
encoded by EC 1.3.8.7 to accelerate electron transfer, 
respectively [13]. In the current study, EC 1.6.5.3 and EC 
1.9.3.1 were found in both G. kalamazoonesis and S. deni-
trificans. In addition, EC 1.3.5.1 and EC 1.10.2.2 existed 
in G. kalamazoonesis and S. denitrificans, respectively. 
G. kalamazoonosis and S. denitrificans were likely to be 
electrotrophic bacteria and contributed to electricity 
generation in this experiment. Previous studies showed 
that the species N. moscoviensis, Nitrospira sp. SG-bin1, 
Candidatus Nitrospira nitrificans and N. japonica are 
involved in the nitrogen cycle [81–84]. For instance, Can-
didatus Nitrospira nitrificans could fully oxidize ammo-
nia via nitrite to nitrate [83]. However, unfortunately, 
no association was found between these species and the 
nitrogen cycle genes mentioned above.

Conclusions
Tetracycline and ARGs were effectively removed simul-
taneously by the soil MFC, which was due to the enrich-
ment of degrading bacteria and electroactive bacteria and 
their close interactions. Based on the metagenomic anal-
ysis, G. kalamazoonesis and S. denitrificans are likely to 
be electrotrophic bacteria, while P. zucineum can secrete 
the 4-hydroxyacetophenone monooxygenase encoded by 

EC 1.14.13.84 to catalyse the deacylation or decarboxyla-
tion of tetracycline. Substantially, the soil MFC enhanced 
microbial metabolism, especially xenobiotic biodegrada-
tion and nitrogen metabolism, and corresponding func-
tional genes, including degradation, electron transfer 
and the nitrogen cycle. In addition, efflux pump resist-
ance, as the main resistance of microbes to tetracycline, 
was reduced by the soil MFC. Overall, the key func-
tional genes in soil bioelectrochemical remediation were 
revealed in this study.

Material and methods
Tested soils and chemicals
The tested soil sample was collected from Wuqing 
farmland in Tianjin (coordinate: N39°27′20.59″, 
E117°09′26.18″) and then air-dried, ground, and passed 
through a 2-mm sieve. The soil properties are shown in 
Additional file  1: Table  S5. Tetracycline was purchased 
from Dr. Ehrenstorfer LGC (Augsburg, Germany). 
Chemicals such as methanol, acetonitrile and acetone 
were of chromatography grade.

Soil MFC configuration and operation
The configuration and operation of the soil MFC were 
performed according to our previous method [85]. 
Briefly, the cylindrical reactor was composed of a graphite 
rod anode and an activated carbon air–cathode (Fig. 5). 
Each reactor was filled with 1000 g of soil (400 mL deion-
ized water, 10 mg·kg−1 tetracycline) and connected to an 
external resistance of 100 Ω (labelled MT). Carbon fibre 
was mixed into the soil at a 1% mass fraction to reduce 
soil internal resistance [28]. Furthermore, nonelectrode 
controls (spiked with 10  mg·kg−1 tetracycline, AT; no 
antibiotic added, AN) were set. The experimental details 
are shown in the Supplementary Information (Additional 
file  1: Table  S6). All reactors were placed at a constant 
temperature of 30 °C for 53 days without light.

Electrochemical and chemical analysis
Voltage (U) was recorded using a data acquisition system 
(PISO-813, ICP DAS Co., Ltd) [13]. The soil samples were 
collected at the anode (area A), away from the cathode 
and anode (area B), overlapping area of the cathode and 
anode (area C), cathode (area D) of the soil MFC, and the 
corresponding control areas (Fig. 5). The partial samples 
were stored at − 80 °C for biological analysis. Others were 
freeze-dried for soil property analysis and tetracycline 
quantification. The soil pH and electrical conductivity 
were measured by a metre at a 1:5 soil:water ratio [86]. 
The total nitrogen, phosphorus and organic matter were 
analysed by common methods [87]. The tetracycline con-
tent was determined by a published protocol [88].
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Analysis of 16S rRNA gene amplicons
Total genomic DNA was extracted from soil samples by 
a Power Soil DNA isolation kit (Mo Bio, America). The 
concentration and purity of DNA were determined in 1% 
agarose gels and then diluted to 1  ng·μL−1 with sterile 
water. The universal primers 515F (GTG CCA GCMGCC 
GCG GTAA) and 806R (GGA CTA CHVGGG TWT 
CTAAT) were used to amplify the V3-V4 regions of the 
16S rRNA gene by PCR. The PCR conditions referred to 
our previous method [13]: 3  min at 95  °C (initial dena-
turation); 30 cycles consisting of denaturation at 95 °C for 
30 s, renaturation at 55 °C for 30 s, and extension at 72 °C 
for 45  s; and a final extension at 72  °C for 10  min. The 
samples were assessed in 2% agarose gels by electropho-
resis. After purification, a high-quality sequencing library 
was constructed and sequenced by Novogene Company 
(Beijing, China).

Metagenomic analysis
The extracted DNA samples were sequenced on the Illu-
mina NovaSeq 6000 platform (Illumina, San Diego, CA, 
USA) according to our previous report [13]. Briefly, the 
genomic DNA was randomly sheared into fragments 
using a Covaris S2 System (Massachusetts, USA) for 
library construction. Libraries were quantified using real-
time PCR and then sequenced by Novogene Company. 
Subsequently, the quality of the raw data was filtered to 
acquire reliable data for assembly. Open reading frame 
prediction was performed based on each sample and the 

mixed assembled scaffolds (≥ 500  bp), and reads with a 
length less than 100 nt were filtered out. CD-HIT soft-
ware was used to remove redundancy to obtain a non-
redundant initial gene catalogue. The clean data of each 
sample were compared to the initial gene catalogue 
to obtain the number of gene reads. DIAMOND soft-
ware was employed to compare the gene catalogue with 
the sequences of bacteria, fungi, archaea and viruses 
extracted from the National Center for Biotechnology 
Information (NCBI) database to obtain species informa-
tion. Enzyme genes were annotated by the KEGG data-
base, and ARGs were annotated by the Comprehensive 
Antibiotic Research Database (CARD) database.

Statistical analysis
Microsoft Excel 2010 (Redmond, USA) was employed to 
acquire averages and standard deviations of the data. The 
significant differences and Spearman correlation between 
samples were determined by IBM SPSS Statistics 22 soft-
ware (New York, USA). Networks were constructed to 
reveal the interspecific relationships between the poten-
tial functional bacteria at the genus level using Cytoscape 
3.9.1 software (California, USA). To reduce the network 
complexity, Spearman correlation analysis was con-
ducted between functional bacteria, and a correlation 
between two bacteria was regarded as statistically robust 
if p < 0.05. Nodes represented functional bacteria, and 
edges represented the interaction between these bacteria.

Fig. 5 Picture (a), schematic drawing of the soil MFC (b), open-circuit group (c) and nonelectrode group (d). The yellow area is the sampling area
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