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Abstract 

Background In industrial bioprocesses, microorganisms are generally selected based on performance, whereas 
robustness, i.e., the ability of a system to maintain a stable performance, has been overlooked due to the challenges 
in its quantification and implementation into routine experimental procedures. This work presents four ways of imple-
menting robustness quantification during strain characterisation. One Saccharomyces cerevisiae laboratory strain (CEN.
PK113-7D) and two industrial strains (Ethanol Red and PE2) grown in seven different lignocellulosic hydrolysates were 
assessed for growth-related functions (specific growth rate, product yields, etc.) and eight intracellular parameters 
(using fluorescent biosensors).

Results Using flasks and high-throughput experimental setups, robustness was quantified in relation to: (i) stabil-
ity of growth functions in response to the seven hydrolysates; (ii) stability of growth functions across different strains 
to establish the impact of perturbations on yeast metabolism; (iii) stability of intracellular parameters over time; (iv) 
stability of intracellular parameters within a cell population to indirectly quantify population heterogeneity. Ethanol 
Red was the best-performing strain under all tested conditions, achieving the highest growth function robustness. 
PE2 displayed the highest population heterogeneity. Moreover, the intracellular environment varied in response 
to non-woody or woody lignocellulosic hydrolysates, manifesting increased oxidative stress and unfolded protein 
response, respectively.

Conclusions Robustness quantification is a powerful tool for strain characterisation as it offers novel information 
on physiological and biochemical parameters. Owing to the flexibility of the robustness quantification method, its 
implementation was successfully validated at single-cell as well as high-throughput levels, showcasing its versatility 
and potential for several applications.
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Background
Industrial bioprocesses employ microorganisms for 
sustainable large-scale production of a broad range of 
chemicals used in pharmaceuticals, agriculture, biofu-
els, biochemicals and bioplastics. Although industries 
generally select their production hosts based on out-
put, microorganisms with reliable and stable production 
performance (e.g., product titers, rates and yields) are 
often preferred. The feature for which a microorganism 
can perform in a stable way across different perturba-
tions is referred to as “robustness” and can be crucial 
when selecting and improving microorganisms for bio-
production [1]. However, assessing robustness during 
strain screening, selection, and development has often 
been neglected due to difficulties in its quantification. 
Recently, a Fano factor-based, dimensionless, free-from-
arbitrary control conditions and frequency-independent 
robustness quantification method has been developed 
[2]. This method (i.e., Trivellin’s formula) allowed the 
identification of robust functions (e.g., specific growth 
rate or product yields) among the tested strains, as well 

as performance-robustness trade-offs in a perturbation 
space composed of single stress conditions coming from 
the lignocellulosic hydrolysate perturbation space (fea-
turing inhibitory compounds, osmotic stress, and prod-
uct inhibition, etc.) [2, 3]. Trivellin’s robustness equation 
highlighted how robustness computed with this formula 
is a relative (not absolute) feature of functions (such as 
specific growth rate, product yields, etc.) with respect to 
the systems (strains) considered [1, 2]. Moreover, as the 
Fano factor itself is generally used to assess the disper-
sion of data for the functions considered [4], Trivellin’s 
robustness equation can be potentially applied to answer 
a wide range of questions regarding function stability in a 
broader sense.

Lignocellulosic hydrolysates are complex substrates 
rich in various sugars and are derived from pre-treated 
plant biomass, such as wood waste or side streams. They 
are used for second-generation (2G) biofuel production, 
an environmentally friendly alternative to fossil fuels 
[5]. These substrates are fermented by microorganisms, 
including the yeast Saccharomyces cerevisiae, which is a 
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widely employed and efficient host [6]. However, 2G bio-
fuel production still faces challenges related to cost-effec-
tiveness, scalability, and fermentability of hydrolysates [7, 
8]. Due to the disparate origin of plant biomass, the com-
position of lignocellulosic hydrolysates varies in terms 
of the sugars and inhibitory compounds released during 
pre-treatment [9, 10]. Often, the effect of inhibitors on 
microbial growth and metabolism is assessed by adding 
one or a few of them at a time, losing information on the 
substrate complexity and compound synergy, which play 
a crucial role in affecting microbes’ performance.

Investigation of the intracellular environment during 
bioprocesses remains limited by the lack of tools for real-
time monitoring. The ScEnSor Kit enables the monitor-
ing of eight intracellular parameters using fluorescent 
biosensors [11, 12]. While this kit has already been used 
for studies in a defined synthetic hydrolysate [11], it has 
never been applied with real lignocellulosic hydrolysates 
or for robustness analysis. The ScEnSor Kit is suitable for 
investigating individual cells and populations, making it 
an optimal tool to investigate population heterogeneity. 
Subpopulations with different phenotypes are generally 
present within the same bulk isogenic population and 
its occurrence poses a problem in industrial settings as 
it may cause decreased production yields [1, 13]. Thus, 
having a tool to explore, quantify and evaluate population 
heterogeneity at an early stage of strain development and 
selection would be highly desirable.

This study aimed to showcase four simple means of 
implementing robustness analysis in the physiologi-
cal characterisation of three S. cerevisiae strains (the 
laboratory CEN.PK113-7D strain, and the industrial 
Ethanol Red and PE2 strains) in seven lignocellulosic 
hydrolysates. To this end, growth-related functions, 
such as specific growth rate and product yields, and 
eight intracellular parameters measured via fluorescent 
biosensors from the ScEnSor kit [12] were determined. 
Three experimental setups, including aerobic and anaer-
obic flask screenings and high-throughput screening, 
were employed. As the robustness quantification method 
previously developed was based on the Fano factor [2], 
the concept of robustness was here broadened to assess 
the stability of functions in four different ways. Trivel-
lin’s robustness equation was, therefore, used to assess: 
(i) stability of growth functions for each strain across 
different hydrolysates; (ii) similarity of growth functions 
across strains in each hydrolysate to establish the impact 
of hydrolysates on yeast metabolism; (iii) dispersion of 
intracellular parameters over time with respect to their 
mean, to reveal their stability for each strain and hydro-
lysate; and (iv) homogeneity of intracellular parameters 
in a cell population, to indirectly quantify population 
heterogeneity. Robustness quantification is a powerful 

tool which provides new perspectives on strain charac-
terisation for academic and industrial purposes. Due to 
the flexibility of the robustness quantification formula, 
very different research questions can be accommodated, 
showing the potential to be applied in many branches of 
biotechnology.

Materials and methods
Strains and media
The S. cerevisiae strains used in this study were CEN.
PK113-7D (MATa URA3 HIS3 LEU2 TRP1 MAL2-8c 
SUC2) [14], as well as bioethanol-producing Ethanol Red 
(Société Industrielle Lesaffre, Division Leaf ) and PE2 
[15]. Biosensors were integrated into the genome of all 
strains using the ScEnSor kit [12] (Addgene repository 
ID #1000000215). The biosensors provided a means of 
monitoring intracellular pH [16], intracellular ATP [17], 
glycolytic flux [18], oxidative stress (OxSR) [19], unfolded 
protein response (UPR) [20], ribosome abundance [11], 
pyruvate metabolism, and ethanol consumption [12].

Synthetic-defined minimal Verduyn (“Delft”) medium 
adjusted to pH 5 was used as control medium. It con-
tained 20 g/L glucose, 5 g/L  (NH4)2SO4, 3 g/L  KH2PO4, 
1 g/L  MgSO4 ·  7H2O, 20.4 g/L K-phthalate, 1 mL/L trace 
metal solution, and 1  mL/L vitamin solution [11]. Vita-
min and trace metal solution compositions can be found 
in Additional file 1: Table S1 (Additional File 1). The com-
position of lignocellulosic hydrolysates is listed in Table 1; 
the undiluted hydrolysate was set to 100%. Christian 
Roslander and Mats Galbe at Lund University, Sweden, 
carried out pre-treatment of raw plant biomass and enzy-
matic hydrolysis to produce the hydrolysates (Table  2), 
which were then diluted to obtain the desired percent-
age (60% vol/vol for BioLector I screening and 50% vol/
vol for flasks). The hydrolysates were supplemented with 
5  g/L  (NH4)2SO4, 3  g/L  KH2PO4, 1  g/L  MgSO4 ·  7H2O, 
20.4  g/L K-phthalate, 1  mL/L trace metal solution, and 
1  mL/L vitamin solution. The final pH was adjusted to 
5. Prior to use, all hydrolysates were filter-sterilised with 
 Whatman® paper to remove most solids and 0.2 μm aPES 
to ensure sterility.

Cultivation conditions
All cultivations were performed at 30 °C.

A BioLector I (M2p-labs GmbH) was used for high-
throughput screening. For the pre-inoculum, 10 μL yeast 
cells were inoculated from a cryo-stock into 5 mL Delft 
medium in 50-mL tubes and grown overnight with shak-
ing at 200 rpm. Overnight cultures were then inoculated 
at an optical density of 600 nm  (OD600) = 0.4 into a final 
volume of 200  μL using CELLSTAR black clear-bottom 
96-well microtiter plates (Greiner bio-one) and sealed 
with AeraSeal films (Sigma-Aldrich). The screening was 
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performed in 85% humidity and shaking at 900 rpm for 
36 h.

For flask cultivations, overnight cultures as described 
above were first re-inoculated into 25 mL Delft medium 
in 250-mL baffled flasks and grown shaking for another 
24  h to increase the cell mass. For oxygen-limited flask 
screening, 20-mL cultures were inoculated at  OD600 = 0.5 
in 100-mL non-baffled flasks, which were then sealed 
with trap loops containing glycerol to create oxygen-
limited conditions [21]. The shaker was set to 150  rpm 
(rotation radius of 12.5  mm). For measurements of lag 
phase and specific growth rate, growth was recorded 
using the Cell Growth Quantifier (Scientific Bioprocess-
ing) by taking scattered light measurements every 10 min 
for 48  h. In addition, samples at the beginning (t0h) 
and at the end (t48h) of the screening were taken to 
determine cell dry weight, as well as glycerol and etha-
nol yields. Samples were first centrifuged at 3500  rpm 
for 5 min, after which the pellet was washed twice with 
water and dried in pre-weighted Eppendorf tubes for cell 

dry weight measurements, while the supernatant was 
filtered through 0.2-µm nylon membrane filters (VWR) 
for composition analysis. Yields were computed as the 
amount of glycerol or ethanol produced during the cul-
tivation divided by the consumed hexose amount. Pen-
toses were not considered in yield computation as the 
selected strains cannot metabolise them. For aerobic 
flask screenings, 75  mL cultures at  OD600 = 0.25 were 
inoculated in 500-mL baffled flasks. The shaker was set to 
230 rpm (rotation radius of 20 mm). Samples were taken 
every 4  h during 24  h for  OD600 and biosensor output 
measurements.

Determination of substrate composition
Hydrolysate composition was determined by high-per-
formance anion exchange chromatography with pulsed 
amperometric detection (HPAEC–PAD) for monosac-
charides (glucose, galactose, mannose, xylose, and ara-
binose) and high-performance liquid chromatography 
(HPLC) for inhibitors (formic, acetic, and levulinic acids, 
furfural, and hydroxymethylfurfural) (Table  1). Samples 
collected during anaerobic flask screening were analysed 
by HPLC for glucose, ethanol, and glycerol and with 
HPAEC–PAD for galactose and mannose.

The HPLC system was equipped with a refractive index 
detector (Jasco) and a Rezex ROA–organic acid  H+ col-
umn (Phenomenex). Separation was performed at 80  °C 
with a flow rate of 0.8  mL/min and 5  mM  H2SO4 as 
eluent.

HPAEC–PAD was performed on an ICS5000 system 
equipped with a 4 × 250 mm Dionex Carbopac™ PA1 col-
umn and 4 × 50  mm guard column maintained at 25  °C 
(Dionex), with 10-μL injection volume. The eluents 
were: (A) water, (B) 300  mM NaOH, and (C) 100  mM 

Table 1 Composition of the lignocellulosic hydrolysates used in this study

Concentrations are expressed in g/L and refer to the pure hydrolysate (100%)
a  Non-woody hydrolysates. b Woody hydrolysates

Compound Wheat  strawa Sugarcane 
 bagassea

Corn  stovera Oat  hullsa Birchb High-gravity 
 spruceb

Softwood 
logging 
 residuesb

Glucose 82.3 95.6 62.5 37 124.4 84.9 26.7

Mannose – – – – 3.2 31.6 21.6

Galactose 1.3 0.7 1.3 2.6 1.7 6.2 9.4

Arabinose 3.1 2 1.9 5.3 1.1 4 4.3

Xylose 38.1 47.1 26.3 87.7 63.8 15 16.5

Formic acid 0.2 – – 3.1 1.5 1.4 0.1

Acetic acid 5 4.7 2.5 5.1 13.4 7.8 2.7

Levulinic acid 2.1 – – – – 3.6 0.7

Furfural 3.2 1.1 2.7 3.4 0.6 0.4 0.5

Hydroxymethylfurfural – – 0.4 – – 0.9 0.7

Table 2 Pre-treatment conditions employed to obtain 
lignocellulosic hydrolysates

a  Non-woody hydrolysates. b Woody hydrolysates

STEX, steam explosion

Raw material Pre-treatment

Oat  hullsa STEX 185 °C, 7 min, 1% (w/w)  H2SO4

Corn  stovera STEX 200 °C, 10 min, 0.2% (w/w)  H2SO4

Sugarcane  bagassea STEX 200 °C, 10 min, 0.2% (w/w)  H2SO4

Wheat  strawa STEX 190 °C, 10 min, 0.2% (w/w)  H2SO4

Spruceb STEX 205 °C, 7 min, 1.5% (w/w)  SO2

Softwood logging  residuesb STEX 205 °C, 7 min, 1.5% (w/w)  SO2

Birchb STEX 200 °C, 5 min, 2.5% (w/w)  SO2
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NaOH + 85 mM sodium acetate. The samples were eluted 
isocratically with 100% eluent A for 20 min (1 mL/min) 
and detected with postcolumn addition of solvent B at 
0.5  mL/min. Thereafter, a cleaning step with 20% elu-
ent A, 40% eluent B, and 4% eluent C was performed 
at 1  mL/min for 11  min. Peak analysis was performed 
using Chromeleon software 7.2.10. Peaks were quantified 
against pure monosaccharide standards (0.1–0.005  mg/
mL).

Fluorescence analysis
Fluorescence analysis was carried out in a BioLector I 
as described previously [11]. The following filters were 
used: E-OP-301 (for biomass, gain 10), E-OP-315 (for 
ymYPET, gain 45), E-OP-309 (for mTurquoise2, gain 45), 
E-OP-319 (for mCherry, gain 55), E-OP-341 (for UV-
GFP, gain 20), and E-OP-304 (for GFP, gain 40). Back-
ground fluorescence from the medium and the parental 
strains was subtracted and the signal normalised with 
either a normalisation construct or wavelength, as previ-
ously described [11]. Screening and analysis were carried 
out by treating triplicates individually, with the mean and 
standard deviation computed at the end.

For microscopy, 1-mL samples from aerobic flask 
screening were first washed in phosphate-buffered saline 
at pH 5 and centrifuged for 3  min at 3000  rpm. Cells, 
even those harvested at low  OD600 values, were resus-
pended to obtain a dense solution, from which 1 μL 
was placed on a glass slide prior to visualisation. Sam-
ples were analysed on an inverted Leica DMI 4000 B 
fluorescence microscope (Leica Microsystems) equipped 
with a 100 × objective. The filters used were: excita-
tion 441/30  nm and emission 480/80  nm (DC 455  nm) 
for mTurquoise2 (exposure 150  ns, gain 1.5); excitation 
500/40 and emission 535/60 nm (DC 515 nm) for ymY-
PET (exposure 100 ns, gain 1); and excitation 546/24 and 
emission 605/150 nm (DC 560 nm) for mCherry (expo-
sure 100 ns, gain 1). Gains and exposures were set prior 
to the experiment, so that none of the parental strains 
(without fluorescent proteins) would give a signal. Pic-
tures were then analysed in Fiji by developing a macro for 
bulk analysis [22]. At least 25 cells/sample were used for 
fluorescence and robustness analysis.

Robustness analysis
Robustness quantification was carried out using the fol-
lowing equation [2]:

The ratio “σ^2/x” represents the Fano factor [4].
When computing robustness across conditions, R(c), 

“σ” and “x” refer to the standard deviation and mean, 

(1)R = −

Fano factor

mean
= −

σ
2

x
∗

1

m

respectively, of a function, such as specific growth rate 
or lag phase, across multiple media (conditions) for one 
single strain (system). Instead, “m” refers to the mean of 
a function across all media in all strains. Therefore, R(c) 
identifies how stable a function is in the face of different 
conditions tested.

When computing robustness across systems, R(s), “σ” 
and “x” refer to the standard deviation and mean, respec-
tively, of a function, such as specific growth rate or lag 
phase, across all systems (strains) for each condition 
(medium). Instead, “m” refers to the mean of a function 
across all strains and conditions. Therefore, R(s) identi-
fies how similar a function is across different strains for 
each condition.

When computing robustness over time, R(t), “σ” and 
“x” refer to the standard deviation and mean, respectively, 
of a function (the biosensor signal output) throughout 
the screening for each replicate of each strain in each 
condition. Instead, “m” refers to the mean of a function 
across all strains. Therefore, R(t) identifies how stable a 
function is over time in each condition.

When computing robustness across populations, R(p), 
“σ” and “x” refer to the standard deviation and mean, 
respectively, of a function (the biosensor signal output) 
across all cells at each timepoint. Instead, “m” refers 
to the mean of a function across all strains, conditions, 
and timepoints. Therefore, R(p) identifies how stable a 
function is across a cell population (in other words, how 
homogeneous it is).

Data analysis and availability.
Data analysis was carried out in R [23]. All data, R scripts, 
and the Fiji macro used in this study are available via 
GitHub (https:// github. com/ lucat orep/ Robus tness_ imple 
menta tion) or through the corresponding author.

Results
Experimental setup: perturbation space and strain 
selection
The perturbation space investigated in our study included 
seven different lignocellulosic hydrolysates obtained 
from non-woody (wheat straw—WSH, corn stover—
CSH, oat hulls—OHH, and sugarcane bagasse—SBH) 
or woody (high-gravity spruce—HGSH, softwood log-
ging residues—SLRH, and birch—BiH) plant biomass. 
The numerous inhibitory compounds and harsh condi-
tions left after pre-treatment pose some of the challenges 
when using lignocellulosic hydrolysates as substrates 
for microbial fermentation [8]. For example, aldehydes 
and aromatic compounds cause redox imbalance and 
oxidative stress [24–26], weak acids cause acidification 
of the cytosol and metabolic stress [27, 28], and high 
sugar levels cause osmotic stress [29] as well as product 

https://github.com/lucatorep/Robustness_implementation
https://github.com/lucatorep/Robustness_implementation
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inhibition upon their conversion into ethanol [30]. Owing 
to differences in plant biomass compositions, hydro-
lysates contain different types and amounts of inhibitory 
compounds (Table 1), with differential effects on cell per-
formance (see, Additional file 1).

Among the S. cerevisiae strains employed in this 
study, CEN.PK113-7D is a laboratory strain originat-
ing from wild-type and industrial strains [31], whereas 
Ethanol Red and PE2 are widely used for first-generation 
bioethanol production in Europe and Brazil, respec-
tively [32]. The performance of functions related to 
growth and intracellular parameters was here evaluated. 
Next, robustness was quantified to assess the stability 
of these functions across conditions, strains, time, and 
population.

Ethanol Red outperforms the other strains 
in oxygen-limited flask screening
In 2G biofuel production, sugars present in the lignocel-
lulosic hydrolysates are converted to ethanol. Because of 
the Crabtree effect, S. cerevisiae can exhibit fermentative 
(absence of oxygen and abundance of sugars), respiro-fer-
mentative (presence of oxygen and abundance of sugars) 
or respiratory (presence of oxygen and low levels of sug-
ars) growth [33]. Therefore, to avoid ethanol re-consump-
tion while still allowing the oxygen-required biosynthesis 
of sterols and unsaturated fatty acids necessary for micro-
bial growth [34, 35], yeast strains were grown in media 
containing 50% (vol/vol) lignocellulosic hydrolysates 
under oxygen-limited conditions (Fig. 1a). In this setup, 
the only oxygen available for the cells was the one inside 
the flask at the beginning of the screening, as the glycerol 
trap loop prevented diffusion of oxygen from outside. 
Ethanol Red grew in almost all hydrolysates, whereas PE2 
and CEN.PK113-7D did not (Additional file 1: Fig. S1a). 
Moreover, Ethanol Red displayed the highest ethanol and 
glycerol yields and specific growth rate, along with the 
shortest lag phase (Fig. 1b). In contrast, despite its scarce 
growth, PE2 attained relatively high cell mass and etha-
nol yields, but low glycerol yields (Fig.  1b). Sterols and 
unsaturated fatty acids are essential for microbial growth 
and play a key role in cell tolerance towards many forms 
of stress [36–38]. However, their biosynthetic process is 
energy-consuming as one molecule of ergosterol requires 
24 molecules of ATP and 16 of NADPH +  H+ [35]. Vari-
ations in strain performance in the hydrolysates tested 
might be due to strain-specific differences in lipid and 
sterol composition of membranes, as well as their meta-
bolic activities. Ergosterol has been shown to act as a cell 
protectant against inhibitory compounds [39]. There-
fore, we speculate that when cultivated in lignocellulosic 
hydrolysates, Ethanol Red might rely on a basal metabolic 

state which allows it to divert energy towards growth 
rather than tolerance.

Robustness across conditions unveils strains with the most 
stable performance across hydrolysates
During industrial bioprocesses, cell factories’ perfor-
mance and productivity are constantly challenged by 
multiple perturbations and varying conditions [1]. Here, 
the robustness formula (Eq.  1) and the data collected 
from oxygen-limited flask screening were used to assess 
the robustness across conditions (different hydrolysates), 
R(c) (Fig.  2a). Ethanol Red exhibited both the best per-
formance—short lag phase, highest specific growth rate, 
and ethanol and glycerol yields—as well as the highest 
robustness for multiple functions (Fig.  2b). This finding 
confirmed the elevated tolerance and robust functions 
associated with Ethanol Red [2, 3, 40]. Among all the 
functions considered, ethanol yield achieved the highest 
R(c) values. In the absence of oxygen, fermentation is the 
only source of energy for ATP production, and ethanol is 
the final product. Therefore, maintaining a stable (robust) 
ethanol yield is necessary for cells to cope with the stress-
ful environment of lignocellulosic hydrolysates.

Based on the definition of robustness, it is not possi-
ble to make assumptions about performance from the 
robustness value alone. In fact, owing to trade-offs, the 
best-performing strain might not necessarily be the one 
with the highest robustness for a certain function [2, 3]. 
For example, CENPK113-7D showed the highest robust-
ness values for specific growth rate and lag phase in 
woody substrates, even though it was the worst-perform-
ing strain (Additional file 1: Fig. S1b).

Robustness over systems evaluates the impact 
of perturbations on strain performance
Substrate composition is one of the main determinants 
of microbial performance and physiological responses. 
Understanding differences and similarities in how strains 
respond to specific conditions can help direct strain engi-
neering. Therefore, to assess the impact of the medium 
on cell metabolism across strains, the robustness formula 
(Eq.  1) was applied to compute robustness across sys-
tems, R(s). In this case, R(s) identified the similarity of a 
function across different yeast strains for each substrate 
(Fig. 3a).

Using the oxygen-limited flask screening data, R(s) 
pointed to how similarly the three strains were perform-
ing in each medium. The highest R(s) was observed in 
the control condition (Fig. 3b), which could be explained 
by the absence of stressors and, therefore, optimal and 
similar behaviour among strains. R(s) of lag phase and 
specific growth rate was high also for SLRH50, but that 
was because of a lack of growth in all the strains (Fig. 3b). 
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Non-woody hydrolysates led to higher cell mass yields 
than woody ones, although no clear distinction could 
be observed with respect to the corresponding R(s). 
This suggests that non-woody hydrolysates exerted a 

smaller inhibitory effect on cell mass yield compared to 
woody hydrolysates (difference in performance) and not 
all strains responded equally (scattered R(s)). For glyc-
erol yield, all media led to similar performance, thereby 

Fig. 1 Overview of oxygen-limited screening and strain performance in various lignocellulosic hydrolysates. a Yeast can metabolise sugars 
through fermentation or respiration depending on oxygen and substrate availability. Using a glycerol trap loop to close the cultivation flask 
blocked the diffusion of oxygen from outside, causing the cells to rely exclusively on the oxygen trapped inside. Hence, yeast employed 
a respiro-fermentative metabolism until oxygen was available, but switched to a fermentative metabolism thereafter. b Overview of five functions 
(specific growth rate, lag phase, ethanol/glycerol/cell mass yields) of three S. cerevisiae strains (CEN.PK113-7D, Ethanol Red, PE2) in seven different 
lignocellulosic hydrolysates at 50% (vol/vol) and a control condition (Delft). Shades of green refer to non-woody hydrolysates, while shades 
of purple refer to woody hydrolysates
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preventing any clustering based on the hydrolysate cat-
egory. Nevertheless, woody hydrolysates emerged as hav-
ing lower R(s) for glycerol yield than non-woody ones. 
Two hydrolysates stood out in this function: OHH50 and 
SLRH50. On one hand, Delft and OHH50 exhibited very 
similar R(s), but three times stronger performance in the 
former, suggesting that all strains were affected equally by 
OHH50. On the other hand, Delft and SLRH50 displayed 
very similar performance, but different R(s), suggesting 

that some strains improved the performance and others 
decreased it, which led to the same mean performance 
but lower R(s).

Computing R(s) using the experimental yields and rates 
is better suited when microorganisms belonging to the 
same species are compared, as they share the same maxi-
mum theoretical production rates or yields. However, 
when comparing microorganisms from different species 
or genera, this would make R(s) irrelevant. In this case, 

Fig. 2 Robustness over perturbation in oxygen-limited flask screening. a R(c) denotes how stable a function of a system (S) is in the face of different 
conditions (C). In the example, the function is more robust in system 2 than in system 1, because it is more stable across all conditions. b Correlation 
between performance and robustness for five functions. Dispersion of data on the x-axis refers to the standard deviation of performance across all 
conditions (lignocellulosic hydrolysates)
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efficiency (ratio between the experimental and theoreti-
cal yields or rates) rather than rates/yields themselves 
can be used, thus allowing to compare relative changes in 
functions rather than absolute values. However, note that 
the function analysed in R(s) computation would be the 
efficiency, not the experimental rates or yields, thus mak-
ing R(s) a measurement of the similarity of product rate 
or yield efficiency across strains for each condition.

High-throughput investigation of eight intracellular 
parameters with biosensors
Real-time monitoring of the intracellular environment 
in a bioprocess is limited by a lack of suitable tools. 

Fluorescent biosensors can be employed to overcome 
this limitation [11], but oxygen needs to be present in 
the cultivation to allow proper formation of the chromo-
phore [41]. Therefore, the three biosensor-bearing 
strains were tested under aerobic conditions in a high-
throughput system in the selected perturbation space, 
with the aim of following eight intracellular parameters 
over time (Fig.  4a). In line with previous findings, no 
differences in lag phase and maximum specific growth 
rate were detected between the parental strains and the 
strains bearing biosensors (Additional file  1: Fig. S2), 
suggesting no impact of the biosensors on yeast metabo-
lism [11, 12]. In contrast to oxygen-limited conditions in 

Fig. 3 Robustness over systems in oxygen-limited flask screening. a R(s) denotes how stable a function is across systems (S) in the same condition 
(C). In the example, the most similar performance across systems is in perturbation x, followed by z and y. This identifies how similarly different 
systems react to the same perturbation. b Correlation between performance and R(s) of five functions. Dispersion of data on the x-axis refers 
to the standard deviation of performance among all strains
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Fig. 4 High-throughput aerobic screening overview, strain performance, and R(p) in various lignocellulosic hydrolysates. a Overview 
of the high-throughput aerobic screening, in which fluorescent biosensors were used to assess eight intracellular parameters. S. cerevisiae uses 
a respiro-fermentative metabolism until sugars are consumed and then switches to respiratory metabolism, whereby ethanol is consumed 
as a carbon source. b Performance of two functions (specific growth rate and lag phase) of three S. cerevisiae strains (CEN.PK113-7D, Ethanol 
Red, and PE2) in seven different lignocellulosic hydrolysates at 60% (vol/vol) and a control condition (Delft). Shades of green refer to non-woody 
hydrolysates, while shades of purple refer to woody hydrolysates. c Correlation between performance and R(c) of specific growth rate and lag 
phase. Dispersion of data on the x-axis refers to the standard deviation of performance across all conditions (media)
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flask screening, nearly all strains grew in media contain-
ing 60% (vol/vol) lignocellulosic hydrolysate (Additional 
file 1: Fig. S3a). Ethanol Red remained the best-perform-
ing strain, with overall higher specific growth rates and 
shorter lag phases (Fig. 4b). However, PE2 exhibited the 
highest R(c) for both functions across all media (Fig. 4c) 
or when categorising them into woody and non-woody 
(Additional file 1: Fig. S3b). With oxygen present in the 
medium, carbon flux could be channelled to respiration 
instead of fermentation, thereby increasing energy pro-
duction and the chances of surviving the harsh condi-
tions in lignocellulosic hydrolysates. Moreover, the good 
performance of Ethanol Red might be due to its increased 
biosynthesis of ergosterol, with its cell-protecting prop-
erties, under aerobic conditions when exposed to ligno-
cellulosic inhibitors [42].

Over the course of 36 h, eight intracellular parameters, 
including ATP concentration, intracellular pH, pyruvate 
metabolism, ethanol consumption, glycolytic flux, ribo-
some abundance, oxidative stress response (OxSR), and 
unfolded protein response (UPR), were monitored (Addi-
tional file  1: Fig. S4). The mean fluorescent output for 
each strain, replicate and medium across the 36  h was 
then computed to quantify the intracellular parameters 
(Fig. 5a). Ethanol Red displayed higher pyruvate metabo-
lism and UPR with respect to the other strains, whereas 
PE2 presented higher ATP, intracellular pH, ethanol res-
piration, and OxSR (Fig.  5b). Glycolytic flux and ribo-
some levels were comparable between the three strains. 
Differences in stress responses were detected according 
to the origin of plant biomass (Additional file 1: Fig. S5). 
While OxSR was higher in non-woody hydrolysates, UPR 
was higher in woody ones, especially during the expo-
nential phase. This was in line with expectations based on 
hydrolysate composition (Table  1). Woody hydrolysates 
are richer in weak acids, which mainly elicited UPR [43, 
44], whereas non-woody hydrolysates present more alde-
hydes, causing oxidative stress [26]. When the biosensor 
output was analysed according to growth phase, pyruvate 
metabolism was higher during exponential phase than lag 
phase, pointing to higher fermentation activity. However, 
no major differences in glycolytic flux were seen. This 
suggested that the sugars were directed towards a fer-
mentative or respiratory pathway during the two phases. 
Respiration has been shown to be a key determinant of 
the length of lag phase, with cells capable of a respiratory 
metabolism growing earlier than fermenting ones [45]. 
Ethanol consumption was instead at its lowest in expo-
nential phase, with few differences among strains and 
media (Additional file  1: Fig. S5). The biosensor output 
for ethanol consumption decreased in exponential phase 
due to glucose repression of the fluorescent protein’s pro-
moter [46]. Intracellular pH and ATP levels were instead 

stable in both lag and exponential phase, as the abun-
dance of hexoses stabilised ATP production and intra-
cellular pH. In general, the latter was slightly lower in 
non-woody compared woody hydrolysates, which might 
be explained by abundant weak acids in the medium [28].

Robustness over time establishes the degree 
of intracellular parameter fluctuations
Fluorescent biosensors allow for monitoring trends 
in the intracellular environment. Studying the stabil-
ity of a function over time will provide an important 
understanding of yeast metabolism. Such information 
would be of importance for determining the suitabil-
ity for industrial purposes. For example, the stability of 
ATP levels correlates with cytotoxic protein aggregation 
[47], whereas, by looking into production rates over time 
of different strains, one can assess which strain has the 
most stable production. Therefore, a quantitative tool for 
assessing the stability of functions over time would facili-
tate such analyses. The robustness quantification formula 
(Eq.  1) was employed here to evaluate robustness over 
time, R(t). Higher R(t) values were associated with more 
stable functions and, hence, the ones with the less data 
dispersion over time with respect to their mean (Fig. 6a). 
Applying the formula to assess the stability of biosensor 
fluorescent output (Fig. 6b) revealed that CEN.PK113-7D 
attained the most stable ATP level, ethanol consumption, 
and oxidative stress over time. In contrast, PE2 exhib-
ited the highest R(t) for UPR and glycolytic flux, whereas 
Ethanol Red had the highest R(t) for pyruvate metabo-
lism and ribosome levels (Fig.  6b). In the case of OxSR 
and UPR, low R(t) indicated greater activation of the 
stress response itself. In fact, the elevated UPR and OxSR 
in Ethanol Red and PE2, respectively (Fig. 5b), are asso-
ciated with low R(t) (Fig. 6b). Stable ATP level through-
out the cultivation is a desired trait, as it would suggest 
enough energy to sustain all the metabolic processes. 
On the other hand, being able to switch on/off specific 
metabolic responses is crucial for survival under stress-
ful conditions to maximise energy utilisation. Therefore, 
high R(t) is not necessarily a desired trait, but it depends 
on the function considered. PE2 displayed the least sta-
ble pyruvate metabolism and ethanol consumption over 
time, suggesting it was the most flexible when switching 
between fermentation and respiration (Additional file 1: 
Fig. S4).

Except for intracellular pH and ethanol consumption, 
R(t) was generally higher in exponential phase than in 
lag phase, with clear relative differences among strains 
and media (Additional file  1: Fig. S6). The lag phase 
represents the time cells spend adapting to a new envi-
ronment before they start growing exponentially [45]. 
This implies several metabolic rearrangements and, 
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consequently, less stable intracellular parameters. Finally, 
woody hydrolysates showed overall lower R(t) compared 
to non-woody ones (Additional file  1: Fig. S6). This can 
be explained by their higher amounts of inhibitors, which 

result in greater growth variability, lower specific growth 
rates, and a more challenging environment for yeast 
strains to adapt to.

Fig. 5 Overview of intracellular parameters in high-throughput aerobic screening. a For each biosensor (intracellular parameter), strain (system), 
medium (condition), and replicate, the mean fluorescence output over the time course of the screening (blue dotted line) was computed. Each 
mean was then used to construct the boxplots for each strain. b Overview of biosensor output for eight intracellular parameters (left to right, top 
to bottom): ATP level, intracellular ATP, pyruvate metabolism, ethanol respiration, glycolytic flux, ribosome abundance, oxidative stress, and unfolded 
protein response. Red dots identify the mean across all media and replicates in each strain
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Fig. 6 Robustness over time for intracellular parameters. a R(t) denotes how stable a function of systems (S) is over time for each condition (C). R(t) 
can be used to compare the same perturbation between different strains (systems) or within the same strain to assess how different media affect 
function stability. b R(t) for eight intracellular parameters (left to right, top to bottom): ATP level, intracellular ATP, pyruvate metabolism, ethanol 
respiration, glycolytic flux, ribosome abundance, oxidative stress, and unfolded protein response. Red dots identify the mean R(t) across all media 
and replicates for each strain
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Single-cell investigation of intracellular parameters 
highlights the presence of subpopulations
During cell cultivation, different isogenic subpopula-
tions (i.e., subpopulations with the same genetic back-
ground) tend to form [13]. These subpopulations often 
show different physiological traits, such as different stress 
responses, growth, and/or productivity [48–50]. Under-
standing how subpopulations emerge is crucial for opti-
mising protocols and tailoring yeast strains for targeted 
industrial purposes, ultimately enhancing yields and 
efficiency. Therefore, biosensors from the ScEnSor Kit 
[12] were used to operate a single-cell investigation of 
intracellular parameters during yeast growth in lignocel-
lulosic hydrolysates. Strains bearing either GlyOx (simul-
taneous detection of glycolytic flux and oxidative stress) 
or RibUPR (ribosome abundance and UPR) biosensors 
were grown in aerobic flasks in Delft, CSH50 or HGSH50 
medium for 24  h (Fig.  7a). To assess whether subpopu-
lations formed after inoculation, a low starting  OD600 
(0.25) was used. This caused CEN.PK113-7D and PE2 
to have a very long lag phase in HGSH50 and CSH50, 
achieving only one doubling during the whole screen-
ing (Fig. 7b). Instead, Ethanol Red was able to grow in all 
lignocellulosic hydrolysates. Biosensor outputs were in 
line with the results obtained by high-throughput screen-
ing (Fig.  7c). Ethanol Red had the lowest glycolytic flux 
(low flux is associated with high fluorescence), followed 
by PE2 and CEN.PK113-7D (Fig. 7c); however, it was also 
the only strain in which glycolytic flux augmented over 
time (Additional file  1: Fig. S7a). Ethanol Red exhibited 
also the strongest stress responses (OxSR and UPR) and 
highest ribosome levels (Fig.  7c). Moreover, when look-
ing at the distribution of biosensor output for each strain 
at each timepoint, PE2 and CEN.PK113-7D stood out as 
having the most diverse populations (Additional file  1: 
Figs. S7–S8).

To gain a more complete overview of yeast metabolism 
and its changes over time, the correlation between each 
intracellular parameter pair (measured by the GlyOx 
and RibUPR biosensors) was assessed for each strain 
and timepoint (Supplementary Figs. S9–S10, Additional 
File 1). Two subpopulations were noted for PE2 in Delft 
and HGSH50 media throughout the screening: one with 
high OxSR and glycolytic flux, and the other with low 
OxSR and glycolytic flux (Fig.  7d, Additional file  1: Fig. 
S9). Here, high glycolytic flux probably allowed cells to 
be more metabolically active and generate more ATP 
and NAD(P)H +  H+ to sustain both growth and a strong 
OxSR. Alternatively, as this behaviour was observed in 
yeast grown in Delft and HGSH50 (with no or few com-
pounds triggering oxidative stress, respectively), the 
higher glycolytic flux might correlate with higher respiro-
fermentative metabolism. In turn, the higher respiration 

might increase the production of reactive oxygen species 
from basal metabolic processes, in turn requiring a more 
active OxSR. Both PE2 and CEN.PK113-7D harboured 
two subpopulations with equal glycolytic fluxes, but dif-
ferent OxSR levels in CSH50 (Additional file 1: Fig. S9). 
As CSH contained aldehydes, it might be that while one 
subpopulation was using the energy to actively detoxify 
the medium, the other was using it to grow. CEN.PK113-
7D had also two subpopulations emerging over time; in 
one case they presented the same UPR but different ribo-
some abundance in Delft medium, while in the other, 
they shared the same ribosome levels but different UPR 
in HGSH50 (Additional file 1: Fig. S10). While differences 
in ribosomal proteins have been associated with vary-
ing cell lifespans [51], variations in UPR have not been 
reported before. PE2 showed an increasing UPR with 
similar ribosome abundance, but no clear distinction in 
subpopulations. Finally, no subpopulations of Ethanol 
Red appeared in any of the media tested for any of the 
two intracellular parameter pairs.

Robustness across populations indirectly quantifies 
population heterogeneity
Phenotypic population heterogeneity refers to the rise 
of subpopulations with phenotypic differences from the 
same isogenic bulk population and it might hinder pro-
ductivity in bioprocesses [1, 13]. For example, an early 
study showed that during L-valine production, only a 
minor part of the bulk population is actively generating 
L-valine, while the majority is producing biomass [52]. In 
insulin-producing yeast, three different subpopulations 
have been found under glucose-limited conditions, prob-
ably to increase fitness [50]. This phenomenon of distrib-
uting different phenotypes within a population is often 
referred to as bet-hedging, aimed to increase survivabil-
ity in face of unexpected events [53]. Therefore, whether 
phenotypic population heterogeneity is a positive or 
negative trait depends on the function considered and 
the scenario. Here, using the robustness quantification 
formula (Eq. 1), we propose an efficient, quick, and easy 
way of indirectly quantifying population heterogeneity by 
computing robustness across populations, R(p) (Fig. 8a). 
R(p) gives an indication of how homogeneous a func-
tion is within a cell population at a specific timepoint. 
Therefore, the lower R(p), the higher the level of popula-
tion heterogeneity for a function within a cell population. 
Using single-cell data obtained via aerobic flask screen-
ing, R(p) was computed for glycolytic flux, OxSR, UPR, 
and ribosome abundance (Fig.  8b). Ethanol Red exhib-
ited the highest R(p) for all functions, confirming the low 
level of heterogeneity across all conditions observed with 
the scatter plots (Additional file  1: Figs. S9b–10b). PE2 
displayed the highest degree of population heterogeneity 
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Fig. 7 Growth, intracellular parameters, and subpopulations in aerobic flask screening. a Overview of the aerobic flask screening, in which 
fluorescent biosensors integrated into the genome of the three yeast strains were used to assess four intracellular parameters. S. cerevisiae 
presented a respiro-fermentative metabolism until sugars were abundant and then switched to a respiratory metabolism, whereby ethanol 
was consumed as a carbon source. b Growth curves of the three strains selected in lignocellulosic hydrolysates during aerobic flask screening. c 
Overview of biosensor output for four intracellular parameters (left to right): glycolytic flux, ribosome abundance, oxidative stress, and unfolded 
protein response. Boxplots were made by plotting the mean across all cells at each timepoint for all media. Red dots identify the mean across all 
media and timepoints in each strain. d Dot plot correlating oxidative stress and glycolytic flux at 20 h from the beginning of the screening 
for the three strains. Each dot represents a single cell
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for all functions except UPR, for which CEN.PK113-7D 
was the most heterogeneous (Fig.  8b). The above trend 
was valid also when media were considered individually 
(Additional file 1: Fig. S11). Similar to the other R types, 
also R(p) does not give any information on the perfor-
mance by itself, thus cases with heterogeneous popula-
tions might still have an average performance higher than 
the one from homogeneous populations.

Discussion
In the present study, three S. cerevisiae strains were cul-
tivated in seven different lignocellulosic hydrolysates 
obtained from both woody- and non-woody plant bio-
mass. Using a recently developed robustness quanti-
fication method [2], we here expanded the robustness 
concept by illustrating four different ways of implement-
ing robustness analysis into canonical experimental 
procedures. Our approach allows the investigation of 
robustness (i.e., the ability of a system to maintain a stable 

performance) in quantitative terms, addressing differ-
ent perspectives. Such tools are instrumental in moving 
strain and bioprocess development forward. The physio-
logical characterisation was carried out by checking both 
growth-related functions (specific growth rate, ethanol 
yield, etc.) and the intracellular environment using fluo-
rescent biosensors from the ScEnSor kit [12]. Notably, the 
same concept can be applied to evaluate the robustness 
of titres, rates, and yields (TRY metrics) for an industrial 
process. A wide range of biosensors is available to detect, 
quantify, and monitor industrially relevant compounds, 
such as branched-chain amino acids [54], natural prod-
ucts [55], and short- or medium-chain fatty acids [56]. 
By coupling these tools and the robustness quantifica-
tion method, one can assess the TRY metrics and their 
robustness while developing and/or improving strains 
for industrial purposes. Often, microorganisms exploited 
in bioproduction are selected based on performance. 
However, this might be generally compensated from a 

Fig. 8 Robustness across populations to assess levels of population heterogeneity. a R(p) denotes how homogeneous (stable) a function 
of systems (S) is within cells in a population for each timepoint in each condition (C). This value can be used to compare the same condition 
between different strains (systems) or within the same strain to assess how different media affect function stability. b R(p) for four intracellular 
parameters (left to right): glycolytic flux, ribosome abundance, oxidative stress response, unfolded protein response. Boxplots include R(p) values 
for each timepoint in each medium tested. Red dots identify the mean R(p) across all media and timepoints for each strain
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metabolic point of view by low TRY stability (i.e., lower 
robustness) due to trade-offs [2, 3]. Metabolic operations 
are constrained thermodynamically by an upper limit on 
Gibbs energy dissipation [57]. Similarly, cells must con-
stantly decide whether they should allocate their energy 
towards the performance of specific functions in favour 
of their robustness or vice versa. Therefore, from an 
industrial point of view, having a lower-performing and 
more-stable production phenotype over time or across 
conditions might sometimes be preferred over a better-
performing but unstable one, especially in the case of 
continuous cultivations.

For the first time, four different applications of the same 
robustness quantification formula were here showcased 
(Eq.  1), each providing insights on different aspects of 
function stability (Fig. 9). First, R(c) was used to identify 
stable functions when the yeast strains were challenged 
with different conditions (different types of lignocellu-
losic hydrolysates in this case). Industrial bioprocesses 
encompass a wide range of conditions and perturbations 
that might affect microbial performance and productivity 

[1]. Therefore, following the selection of relevant condi-
tions for a specific industrial process of interest, strains 
can be screened to evaluate their ability to withstand 
such challenges. R(s) was used to assess how similarly dif-
ferent strains responded to the same perturbation. This 
becomes useful in the early stages of strain development 
or characterisation of new strains/species, to understand 
how different perturbations affect microbial metabolism 
and performance. Next, R(p) offered a way to indirectly 
quantify population heterogeneity, as it measured how 
homogeneous a function was in a cell population. While 
this value can be used to identify the strain with the high-
est population heterogeneity for a function, it can be 
used also to assess which conditions increase such het-
erogeneity. Phenotypic population heterogeneity is a trait 
that might be positive or negative based on the function 
and scenario considered. When considering the produc-
tion phenotype, generally a homogeneous population is 
preferred, so that every cell contributes to the produc-
tion. While from a physiological point of view, in the case 
of bet-hedging, phenotypic population heterogeneity 

Fig. 9 Summary of applications of the robustness quantification method for strain characterisation in this study. For a desired function (specific 
growth rate, ATP level, ethanol yield, cell size, etc.), systems (S), and set of conditions (C), it is possible to use the robustness quantification method 
to measure robustness across conditions (i.e., stability of a function across different conditions), systems (i.e., stability of a function across different 
systems), populations (i.e., stability of a function within a cell population), and over time (i.e., the stability of a function over time)
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might instead be considered a positive feature. Similar 
considerations can be made also for R(t), which refers to 
the stability of a function over time. In fact, it might be 
more favourable to select a strain, whose production rate 
is not the highest possible, but is stable (robust) over time 
owing, maybe, to low heterogeneity. Such a strain may 
also give the highest productivity if one considers the 
overall process.

In the present work, we applied the robustness quanti-
fication method in a high-throughput screening system, 
flasks, and microscopy analysis to validate it at very dif-
ferent resolution levels: population, subpopulation, and 
single-cell. However, the same procedure can be extrapo-
lated to analyse data from almost any experimental setup 
(e.g., large-scale reactors, gel-encapsulated cultures, or 
microfluidics chips) or instrument (e.g., flow cytometry 
to analyse thousands of cells simultaneously). Investiga-
tion of robustness and performance can be especially 
interesting in dynamic microfluidics single-cell cultiva-
tion, as it monitors growth, intracellular parameters, and 
production (via biosensors) of single cells over time while 
trying to mimic dynamic industrial conditions [58, 59].

Overall, the robustness quantification formula (Eq. 1) is 
a versatile equation that can be applied to many different 
scenarios consisting of at least two systems, a set of con-
ditions (the more the better for statistical purposes), and 
function(s) of interest. As such, the use of the formula 
can be extended out of strain characterisation. For exam-
ple, one can assess: (i) the stability of hydrolytic activity 
by an enzyme and its mutants across a set of tempera-
tures or pH values; (ii) the stability of sugar release dur-
ing pre-treatment of lignocellulosic biomass across time 
and different substrates; and (iii) specificity of a tran-
scription factor in targeting a DNA consensus sequence. 
Applications are endless and only creativity becomes 
a bottleneck in finding new uses. It is, however, impor-
tant to remember that robustness values computed with 
this formula are always relative (never absolute) and vary 
based on the selected perturbation space and strain.

Conclusions
In the present work, we showcased for the first time four 
simple ways of implementing robustness quantification 
for the physiological characterisation of three S. cer-
evisiae strains cultivated in seven lignocellulosic hydro-
lysates. The physiological characterisation was carried 
out including the analysis of both growth-related func-
tions (specific growth rate, ethanol yield, etc.) and eight 
intracellular parameters using fluorescent biosensors. 
The robustness quantification method was used to assess 
the stability of functions across (i) conditions (the seven 
hydrolysates), (ii) systems (three yeast strains), (iii) time, 
and (iv) cell populations. Moreover, the combination of 

different commonly available instrumentation validated 
the methods at resolution levels spanning from popula-
tions, through subpopulations and down to single cells. 
Owing to the simplicity of the robustness equation, it can 
be applied to many different scenarios having at least two 
systems to compare, a set of conditions, and function(s) 
of interest. In this way, robustness analysis offers a versa-
tile tool for strain characterisation in multiple fields and, 
overall, for biotechnological applications.
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Additional file 1: Table S1. Trace metals and vitamin solutions. 
Composition of (A) trace metal and (B) vitamin solutions used in Delft 
medium. Figure S1. Growth curves and robustness across conditions 
in oxygen-limited flask cultivations. Overview of selected S. cerevisiae 
strains in flask screening under oxygen-limited conditions using different 
lignocellulosic hydrolysates. (a) Growth curves. (b) Correlation between 
performance and robustness across conditions, R(c), for five functions 
(lag phase, specific growth rate, ethanol/glycerol/cell mass yields) based 
on non-woody (WSH50, SBH50, CSH50, and OHH50) or woody (SLRH50, 
HGSH50, and BiH50) biomass. Figure S2. Maximum specific growth rates 
and lag phases. Maximum specific growth rates (a) and lag phases (b) of 
parental and biosensor strains in all tested media. Statistical differences 
between the biosensor and parental strains are represented above the 
bar plots; those between the control (Delft) and all other conditions are 
shown below the bar plots. As no differences in functions were observed 
between the parental and biosensor strains, all strains (three replicates 
each) have been used for a more reliable statistical analysis. *p ≤ 0.05; **p 
≤ 0.01, ***p ≤ 0.001, and ****p ≤ 0.0001. Figure S3. Growth curves and 
robustness across conditions in BioLector screening. Overview of selected 
S. cerevisiae strains in flask screening under oxygen-limited conditions 
using lignocellulosic hydrolysates. (a) Growth curves. (b) Correlation 
between performance and robustness across conditions for two functions 
(lag phase and specific growth rate) dividing non-woody (WSH60, SBH60, 
CSH60, and OHH60) or woody (SLRH60, HGSH60, and BiH60) lignocellu-
losic hydrolysates. Figure S4. Line plots for intracellular parameters exam-
ined via BioLector I screening. Overview of all line plots for the biosensors 
used in BioLector screening. Cell mass is represented as the natural 
logarithm of scattered light, while intracellular parameters are denoted as 
fluorescence ratios (a.u.). Figure S5. Overview of biosensor outputs cat-
egorised by growth phase and medium. Overview of biosensor output for 
eight intracellular parameters computed either for the lag phase (left) or 
exponential phase (right) taking into consideration all tested media (“ALL”), 
only woody hydrolysates or only non-woody hydrolysates. Red dots 
identify the mean fluorescent output across all media in that group. Note 
that for glycolytic flux, the higher the biosensor output the lower the flux. 
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Figure S6. Robustness over time of intracellular parameters categorised 
by growth phase and medium. Robustness over time (i.e., the stability of 
a function over time) for eight intracellular parameters computed either 
for the lag phase (left) or exponential phase (right). Robustness was 
computed taking into consideration all tested media (“ALL”), only woody 
hydrolysates or only non-woody hydrolysates. Red dots identify the mean 
R(t) across all media in that group. Figure S7. Line plots for GlyOx fluores-
cence outputs. Output from the GlyOx biosensor for glycolytic flux (a) and 
oxidative stress response (b). Violin plots represent the distribution of the 
intracellular parameter within the cell population at each timepoint. Red 
dots represent the mean across all cells. At least 25 cells were analysed for 
each timepoint. Figure S8. Line plots for RibUPR fluorescence outputs. 
Output from the RibUPR biosensor for ribosome abundance (a) and 
unfolded protein response (b). Violin plots represent the distribution of 
the intracellular parameter within the cell population at each timepoint. 
Red dots represent the mean across all cells. At least 25 cells were ana-
lysed for each timepoint. Figure S9. Scatter plots for GlyOx fluorescence 
outputs. Scatter plots summarising the correlation between glycolytic flux 
and oxidative stress response for each cell at each timepoint (0, 4, 8, 12, 
16, 20, and 24 h) for CEN.PK113-7D (a), EthanolRed (b), and PE2 (c). Each 
dot represents a cell. At least 25 cells were analysed for each timepoint. 
Figure S10. Scatter plots for RibUPR fluorescence outputs. Scatter plots 
summarising the correlation between ribosome abundance and unfolded 
protein response for each cell at each timepoint (0, 4, 8, 12, 16, 20, and 24 
h) for CEN.PK113-7D (a), EthanolRed (b), and PE2 (c). Each dot represents 
a cell. At least 25 cells were analysed for each timepoint. Figure S11. 
Robustness across populations for intracellular parameters categorised 
by medium. Robustness across populations (i.e., how homogeneous a 
function is within a cell population) for four intracellular parameters (top 
to bottom): glycolytic flux, ribosome abundance, oxidative stress response, 
and unfolded protein response. Red dots identify the mean R(p) across all 
timepoints for each strain in each medium.
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