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Abstract 

Background The polysaccharides in lignocellulosic biomass hold potential for production of biofuels and bio-
chemicals. However, achieving efficient conversion of this resource into fermentable sugars faces challenges, espe-
cially when operating at industrially relevant high solid loadings. While it is clear that combining classical hydrolytic 
enzymes and lytic polysaccharide monooxygenases (LPMOs) is necessary to achieve high saccharification yields, 
exactly how these enzymes synergize at high solid loadings remains unclear.

Results An LPMO-poor cellulase cocktail, Celluclast 1.5 L, was spiked with one or both of two fungal LPMOs 
from Thermothielavioides terrestris and Thermoascus aurantiacus, TtAA9E and TaAA9A, respectively, to assess their 
impact on cellulose saccharification efficiency at high dry matter loading, using Avicel and steam-exploded wheat 
straw as substrates. The results demonstrate that LPMOs can mitigate the reduction in saccharification efficiency 
associated with high dry matter contents. The positive effect of LPMO inclusion depends on the type of feedstock 
and the type of LPMO and increases with the increasing dry matter content and reaction time. Furthermore, our 
results show that chelating free copper, which may leak out of the active site of inactivated LPMOs during saccharifi-
cation, with EDTA prevents side reactions with in situ generated  H2O2 and the reductant (ascorbic acid).

Conclusions This study shows that sustaining LPMO activity is vital for efficient cellulose solubilization at high sub-
strate loadings. LPMO cleavage of cellulose at high dry matter loadings results in new chain ends and thus increased 
water accessibility leading to decrystallization of the substrate, all factors making the substrate more accessible 
to cellulase action. Additionally, this work highlights the importance of preventing LPMO inactivation and its potential 
detrimental impact on all enzymes in the reaction.

Keywords Lytic polysaccharide monooxygenase, LPMO, AA9, Cellulolytic enzyme cocktails, Enzymatic 
saccharification, Inactivation, Hydrogen peroxide, High-solids effect

Background
There is a critical need for technology that allows efficient 
utilization of renewable resources like lignocellulosic 
biomass to combat the environmental effects of human 

fossil fuel consumption. Lignocellulosic plant biomass is a 
ubiquitous source of the carbohydrate polymers cellulose 
and hemicellulose, which may be depolymerized to yield 
fermentable sugars that can be converted to biofuels and 
value-added chemicals [1]. Efficient depolymerization 
of these polysaccharides is hampered by the recalcitrant 
structure of plant cell walls. At the same time, efficient 
production of concentrated sugar syrups is essential 
for cost-effective conversion of lignocellulosic biomass 
into valuable products [2–5]. Performing enzymatic 
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saccharification processes efficiently at elevated solid 
loadings is pivotal in reducing the overall expenses asso-
ciated with lignocellulosic biorefineries, thereby enhanc-
ing the feasibility of lignocellulose valorization.

Performing enzymatic saccharification at high dry mat-
ter (DM) levels is known to hamper yields and conver-
sion rates, an effect that is referred to as "the high-solids 
effect" [6]. A high DM content refers to a situation in 
which little-to-no free water is present at the beginning 
of a reaction, meaning that the substrate holds all the 
water [4, 7]. The amount of free water will depend on the 
substrate composition and pretreatment methods. How-
ever, a DM content of 15–20% (w/w) is typically consid-
ered "high" [2]. Several studies employing commercial 
enzyme cocktails predominantly composed of endo- and 
exo-acting cellulases have demonstrated a linear reduc-
tion in the enzymatic conversion yield with increasing 
substrate concentration [6, 8–14].

A direct consequence of elevated solid loadings is 
increased slurry viscosity, which hampers adequate mix-
ing. Additional challenges arise from non-productive 
cellulase adsorption to phenolic compounds [15, 16], 
enzyme inhibition by compounds like furan derivatives 
formed during commonly used pretreatment methods 
such as steam explosion [16], and feedback inhibition of 
cellobiohydrolases or β-glucosidases (BGs) due to the 
accumulation of cellobiose or glucose, respectively [17, 
18]. Nevertheless, recent literature suggests that water 
constraints are the most prominent contributor to the 
high-solids effect [2, 5, 19]. Water has multiple roles 
during enzymatic saccharification: it functions as a sol-
vent facilitating the contact between enzymes and their 
substrate, it acts as a reactant during hydrolysis, and it 
is responsible for the diffusion of products from the site 
of enzymatic reaction [20]. Despite efforts in the last 
decades, the challenges posed by high-solids conditions 
remain a subject of ongoing studies.

Lytic polysaccharide monooxygenases (LPMOs) were 
discovered in 2010 [21] and are included in current 
commercial cellulase cocktails [22]. LPMOs are copper-
dependent redox enzymes that require a priming reduc-
tion and an oxygen species as co-substrate [21], most 
probably  H2O2 [23], to perform catalysis. The reduced 
LPMO-Cu(I) complex will oxidatively break the scis-
sile glycosidic bond in cellulose, leading to the forma-
tion of an aldonic acid or gemdiol-aldose for C1- or 
C4-oxidizing LPMOs, respectively [24, 25]. LPMOs are 
prone to non-reversible inactivation in the presence of 
excess  H2O2 [23], which can lead to release of the active-
site copper that may fuel transition metal-dependent 
futile side reactions, such as abiotic oxidation of reduc-
ing compounds [26, 27]. Numerous studies have shown 
that LPMOs improve the efficiency of classical hydrolytic 

cellulases, likely due to LPMOs’ ability to attack the more 
crystalline parts of the polysaccharide substrate [28–34].

Several studies have tried to shed light on the mecha-
nism behind the synergistic relationship between LPMOs 
and cellulases [34–39], one important outcome being 
that the oxidative regioselectivity of the LPMOs plays a 
role. For example, C1-oxidizing LPMOs tend to syner-
gize well with processive cellulases attacking the non-
reducing-end, while C4-oxidizing LPMOs seem to have 
a  better effect  when combined with cellulases attack-
ing the reducing ends of the cellulose chains [35, 38]. A 
recent study has shown that the LPMO effect may not 
be as "direct" as initially suggested. Studies of the effects 
of LPMO pretreatments showed that the chain ends 
introduced by LPMO action do not necessarily serve as 
immediate access points for cellulases. Instead, it was 
suggested that LPMO promotes time-dependent decrys-
tallization of the substrate that improves accessibility 
for the classical hydrolytic enzymes [40]. Indeed, several 
studies support the notion that LPMO action promotes 
decrystallization of cellulose [41–44]. Recently, Cannella 
et  al. [45] showed that oxidation of filter paper with an 
LPMO, or chemically, using TEMPO [(2,2,6,6-tetrameth-
ylpiperidin-1-yl)oxyl] increases the amount of water 
retained by the fibers, due to the increased negative sur-
face charge. Thus, LPMO activity will increase the hydro-
philicity and water content of the substrate, which could 
help mitigate the negative effects of high DM conditions 
on cellulase performance.

While the impact of LPMOs on the efficiency of cellulo-
lytic enzyme cocktails has been studied extensively, little 
is known about the effect of the DM level and the role 
LPMOs may play in counteracting the high-solids effect. 
It is important to note that water availability depends 
on the DM content and, therefore, that saccharification 
performances cannot be directly compared across low 
and high DM experiments [19]. The effect of DM loading 
(1–15%) on AA9 LPMO activity was recently shown to 
vary a lot depending on the type of LPMO. Some LPMOs 
gave more product release as DM content was increased, 
while other LPMOs seemed to be substrate saturated and 
even inhibited at high DM [44]. To gain more insight into 
these matters, in this study, a commercial LPMO-poor 
enzyme cocktail, Celluclast 1.5L, was spiked with two dif-
ferent fungal AA9 LPMOs, C1-oxidizing TtAA9E from 
Thermothielavioides (previously Thielavia) terrestris and 
predominantly C4-oxidizing TaAA9A from Thermoascus 
aurantiacus to investigate the impact of LPMOs on cel-
lulose saccharification at elevated DM concentrations. 
Using various experimental setups, we show that LPMOs 
are increasingly important for saccharification efficiency 
at higher substrate concentrations, notably in a manner 
that varies between LPMOs and substrates. We also show 
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the importance of preventing LPMO inactivation, not 
only because LPMO activity is needed, but also because 
copper leaking out of inactivated LPMOs [27, 46] facili-
tates unfavorable side reactions.

Methods
Steam‑exploded wheat straw
Steam-exploded wheat straw was provided by Novo-
zymes. The compositional analysis was performed based 
on the standard operating procedure developed by NREL 
[47] and is shown in Table 1. The DM content was meas-
ured using Karl Fischer titration as described elsewhere 
[48] and found to be 52% (w/w). The substrate was stored 
at − 20 °C.

Enzymes
TaAA9A from Thermoascus aurantiacus and TtAA9E 
from Thermothielavioides (previously Thielavia) ter-
restris, as well as Celluclast 1.5 L, NZ-BG (a β-glucosidase 
preparation), and Cellic CTec2 were kindly supplied by 
Novozymes (Novozymes, Bagsværd, Denmark). The 
protein concentrations were determined using the Brad-
ford method with BSA (Sigma-Aldrich, St. Louis, MO, 
USA) as standard. Both LPMOs were copper saturated as 
described previously [49], followed by desalting using a 
PD MidiTrap column (G-25; GE Healthcare, Chicago, IL, 
USA). All enzymes were stored at 4 °C.

Standard reaction setup
The enzyme dosage was held constant at 4  mg pro-
tein per g substrate for all reactions. Reactions without 
LPMO were performed with Celluclast 1.5 L and NZ-BG 
in a 9:1 ratio (protein:protein). For the reactions supple-
mented with LPMO, the LPMO constituted 10% of the 
total protein dose (i.e., 0.4 mg/g substrate). The BG dose 
was held at 10% of total protein (0.4  mg/g substrate) in 
all reactions to ensure the complete conversion of cel-
lobiose to glucose. Thus, Celluclast 1.5  L represented 
80% of the protein (3.2 mg/g substrate) in reactions with 
added LPMO and 90% (3.6 mg/g substrate) in reactions 
without added LPMO. Reactions with Cellic CTec2 were 
performed without addition of BG at 4 mg protein per g 
substrate.

The substrates were microcrystalline cellulose (Avi-
cel PH-101, 50  µm particles; Sigma-Aldrich) or steam-
exploded wheat straw and reactions were run at 
5–25% (w/w) DM concentrations in 50  mM sodium 

acetate  buffer (Sigma-Aldrich), pH 5.0. If not specified 
otherwise, 10  mM ascorbic acid (Sigma-Aldrich) was 
added at the beginning of all reactions with Avicel. Glu-
cose feedback inhibition of enzyme cocktails was probed 
by adding 2.5, 5.0, or 10% (w/w) glucose (Sigma-Aldrich) 
at the start of the reaction in addition to the cellulose 
substrate.

Reaction termination and dilution
All time points (5, 24, 48, and 72 h) were run as individ-
ual reactions in 2 mL Eppendorf tubes with 0.6 mL reac-
tion volume in an Eppendorf Thermomixer (Eppendorf, 
Hamburg, Germany) at 50  °C and 1000  rpm. The reac-
tions were terminated by boiling the samples at 100  °C 
for 20 min before samples were diluted to 1% DM (w/w) 
by transferring the whole reaction slurry to 15 mL Falcon 
tubes and diluting with sodium acetate buffer [6] to mini-
mize errors associated with the higher DM contents [3]. 
Afterward, the samples were thoroughly mixed, 250  µL 
of each were filtered with a 96-well filter plate (0.2  µm; 
Sigma-Aldrich), and filtrates were stored at 4  °C before 
further analysis.

Cellulase inactivation by abiotic reactions
A mixture of Celluclast 1.5  L and NZ-BG (9:1 ratio, 
0.6  mg protein in total) was preincubated in 50  mM 
sodium acetate buffer pH 5.0 at 50 °C and 1000 rpm for 
24 h in an Eppendorf Thermomixer together with exter-
nally added 10 mM  H2O2 (Sigma-Aldrich), 10 mM ascor-
bic acid, or 0.63  mM Cu(II)SO4. The effects of different 
combinations of  H2O2 or ascorbic acid with Cu(II) and 
EDTA (6.3  mM; Sigma-Aldrich) were also tested. After 
the preincubation, the saccharification reaction was ini-
tiated by transferring the preincubated cellulase cocktail 
(450  µL) to Eppendorf tubes containing 150  mg Avicel, 
yielding a reaction mixture with 25% DM (w/w) and 4 mg 
protein per gram of substrate. The saccharification reac-
tions were run at the same conditions as for the prein-
cubation reactions for 24 and 48 h after which they were 
terminated as described above.

Analysis of soluble native and oxidized sugars
Glucose levels were analyzed by high-performance liquid 
chromatography (HPLC) using a Dionex Ultimate 3000 
(Dionex, Sunnyvale, CA,  USA) connected to a refrac-
tive index detector 101 (Shodex, Japan) as described 
previously [29]. The analytical column was a Rezex 

Table 1 Composition of steam-exploded wheat straw

Ash Arabinan Galactan Glucan Xylan Mannan Total lignin

7.70 1.62 0.71 47.48 19.19 0.33 22.51
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ROA-organic acid H + (8%) 300 × 7.8  mm (Phenome-
nex, Torrance, CA, USA), the eluent was 5 mM  H2SO4, 
the operating temperature was 65  °C, and the flow 
rate was 0.6  mL/min. Soluble oxidized sugars (Glc1A, 
Glc4gemGlc and  Glc4gemGlc2) were quantified by high-
performance anion exchange chromatography with 
pulsed amperometric detection (HPAEC-PAD) using a 
Dionex ICS-5000 (Dionex) equipped with a CarboPac 
PA200 column, as previously described [50, 51]. An elu-
ent gradient from 0 to 100% B (A: 100  mM NaOH; B: 
1  M NaOAc + 100  mM NaOH), an operational flow of 
500 µL/min, and a sample loop volume of 5 µL were used, 
as described previously [51]. The results were analyzed 
using the Chromeleon 7 software program (Dionex).

Standards of glucose, cellobiose, and gluconic acid 
(C1-oxidized, DP1) were purchased from Sigma-Aldrich 
and diluted as appropriate. Cellobionic and cellotri-
onic acid (C1-oxidized, DP2-3) [52] and C4-oxidized 
standards of DP2-3 [29, 51] were produced as described 
previously using MtCDH from Myriococcum thermo-
philum [52] or NcAA9C from Neurospora crassa [53] 
respectively.

Statistical analysis
The statistical analysis was performed with a two-tailed 
Student’s t-test using Microsoft Excel (Office 365).

Results and discussion
The role of LPMOs at different cellulose concentrations
Enzymatic saccharification experiments using Celluclast 
1.5 L (supplemented with a β-glucosidase, NZ-BG) with 
or without LPMOs were run at five different cellulose 
(Avicel) concentrations ranging from 5 to 25% (w/w). The 
overall glucose conversion in the reactions with only the 
cellulolytic enzyme cocktail (90% Celluclast 1.5  L + 10% 
NZ-BG) decreased with the increasing DM content, 
and this effect was visible both after 5 and 24  h of sac-
charification (Fig.  1). Interestingly, for reactions with 
added LPMOs (80% Celluclast 1.5 L + 10% NZ-BG + 10% 
LPMO), the high-solids effect was less pronounced after 
24 h, as can be seen by comparing the blue and gray line 
with the orange line in Fig.  1B. This result shows that 
the importance of the LPMO increases with increasing 
DM concentrations and saccharification time (Fig.  1), 
as observed previously [45, 54]. Remarkably, at the low-
est substrate concentration (5%), supplementing the cel-
lulolytic enzyme cocktail with LPMOs decreased glucan 
conversion after 24  h substantially (by about one-third) 
(Fig.  1B). This result is noteworthy, since it provides an 
“extreme” illustration of how strongly LPMO effects 
depend on reaction conditions.

After 5  h of reaction, the concentration of soluble 
oxidized LPMO products was highest in the 10 and 

15% (w/w) DM reactions. Reactions with higher cel-
lulose concentrations yielded lower concentrations of 
soluble oxidized sugars (Fig. 2A, B), which could reflect 
lower LPMO activity or, more likely, that a larger frac-
tion of the oxidized sites remains bound to the substrate 
(as expected based on the work of Courtade et al. [55]). 
Similar results have been shown recently for different 
DM concentrations of cellulose nano-crystals (1–15%), 
although Magri et al. observed a maximum release of sol-
uble oxidized sugar at 5% DM for the same LPMOs used 
in our study [44]. However, these experiments were done 
with LPMOs alone (i.e., no presence of cellulases). Addi-
tionally, a recent study has shown that the LPMO oxida-
tion profiles also vary depending on the substrate type 
[56]. Thus, the results cannot be compared directly.

The ratio of solubilized glucose to solubilized oxidized 
sugars after 5  h increases with increased DM (Fig.  2C). 
For the reaction containing TtAA9E, the glucose-to-oxi-
dized sugar ratio increased from 60 to 150 (i.e., approxi-
mately 0.7–1.7% of the soluble sugar were oxidized), 
while for the TaAA9A-containing reaction, the ratio 
increased from 120 to 260 (i.e., approximately 0.4–0.8% 
of the soluble sugar were oxidized) when increasing the 
substrate concentration from 5 to 25% (w/w) (Fig.  2C). 
After longer incubation, i.e., at 24 h, the concentration of 
soluble LPMO products (Fig. 2A, B) followed the trends 
of the glucose concentration (Fig. 1B), meaning that the 
levels of solubilized oxidized products increased with 
DM and that the glucose-to-oxidized sugar ratios did not 
vary much with DM (around 100 for all reactions, i.e., 
approximately 1% of the soluble sugars were oxidized; 
Fig.  2D). The fraction of oxidized sugars are similar to 
that reported in a recent study by Cannella et  al. [45], 
which also observed that the ratio of oxidized to native 
sugars increased at longer incubation times than 24 h at 
higher DM levels (10–25%), while the ratio remained sta-
ble at the lower DM levels (5%). Although these effects 
depend on multiple interrelated factors, such as solubi-
lization effects and substrate concentration-dependent 
effects on LPMO stability, the trends in the levels of solu-
ble oxidized products after 24 h that are visible in Fig. 2 
align well with the notion, derived from Fig.  1, that the 
importance of LPMOs increases at higher DM levels.

In the early stages of saccharification, cellulases 
work on easily accessible regions of the polysaccharide 
substrate. As the reaction progresses, the remaining 
substrate becomes more recalcitrant, exposing regions 
that are more resistant to enzymatic attack. It is gen-
erally believed that LPMOs help break down these 
recalcitrant structures by introducing oxidative modi-
fications, creating new sites of accessibility that enable 
cellulases and other enzymes to continue degrading 
the substrate. Importantly, recent studies indicate that 
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the LPMO–cellulase synergism may be more complex 
than creating access points [40–43, 45]. The cleavage 
of a glycosidic bond and concomitant oxidation of the 
cleavage point allows surrounding water molecules to 
access the highly ordered fibril structure, leading to 
decrystallization and amorphization over time [45]. 

The extent of these larger, and potentially slower, 
effects will likely vary between C1- and C4-oxidizing 
LPMOs. Generation of aldonic acids (C1 oxidation) is 
thought to have the largest effect due to the open ring 
structure allowing more water to penetrate the crystal-
line structure [41–43]. On the other hand, recent work 

Fig. 1 The impact of LPMO supplementation on cellulose saccharification at increasing solids loading. Saccharification reactions containing 5–25% 
(w/w) Avicel were set up with 3.6 mg/g of Celluclast 1.5 L + 0.4 mg/g NZ-BG or with 3.2 mg/g Celluclast 1.5 L  + 0.4 mg/g NZ-BG + 0.4 mg/g TaAA9A 
or TtAA9E. All reactions contained 10 mM AscA as reductant. Bars represent the glucose release in g/L (left y-axis), and lines show the percentage 
of cellulose conversion (right y-axis) after 5 (A) and 24 h (B). Standard deviations for three biological replicates are shown as error bars
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by Angeltveit has shown that, with time, the increase 
in overall accessibility of the substrate for the tradi-
tional hydrolytic enzymes will be governed by a time-
dependent non-enzymatic decrystallization phase that 
follows the oxidative action of LPMOs and that does 
not clearly depend on the oxidative regiospecificity of 
the enzymes [40]. This aligns with our data showing 
a significant LPMO effect after 24  h for both the C1- 
and C4-active LPMOs.

Increased saccharification efficiency by combining TtAA9E 
and TaAA9A activity
The highest DM content, 25% (w/w), was selected for 
experiments to investigate the impact of supplement-
ing the reactions with varying ratios of the C1-active 
(TtAA9E) and the predominantly C4-active (TaAA9A) 
LPMOs in 72  h reactions with  sampling after 5  h and 
every 24  h. Figure  3A shows a clear positive effect 
of LPMO inclusion on saccharification yield, with a 

Fig. 2 Release of oxidized sugars during saccharification of Avicel at increasing dry matter concentrations. The figure shows the formation 
of soluble oxidized products in the reactions shown in Fig. 1. Panel A shows the soluble C1-oxidized products formed by TtAA9E; panel B shows 
the soluble C4-oxidized products formed by TaAA9A. Panels C and D show the molar ratio of glucose (from Fig. 1) to total soluble oxidized sugar 
after 5 and 24 h, respectively. Standard deviations are shown as error bars, for three biological replicates
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maximum 38% increase when combining Celluclast 1.5 L 
with both LPMOs in a 7:3 ratio (TaAA9A:TtAA9E). Early 
work done prior to the discovery that LPMOs are redox 
enzymes has shown that each of these LPMOs improves 
the saccharification of pretreated corn stover, with 
TaAA9A being the better enzyme [22]. Our results show 
that, for Avicel, TtAA9E outperforms TaAA9A. It is also 
worth noting that Celluclast 1.5  L supplemented with 
any TtAA9E-containing LPMO mixture depolymerized 

Avicel more efficiently than the more modern LPMO-
containing cellulase cocktail Cellic CTec2 (Fig. 3A, B).

The reaction with Celluclast 1.5  L and C4-active 
TaAA9A showed peculiar kinetics: maximum glucose 
levels were reached after 24 h (Fig. 3A), and the concen-
tration of C4-oxidized products started declining after 
24  h (Fig.  3C). The latter indicates LPMO inactivation 
and concomitant release of free copper from the active 
site of oxidatively damaged LPMOs into solution [27]. 

Fig. 3 Saccharification of Avicel with LPMO-containing cellulase cocktails at high dry matter. In the reactions, 25% (w/w) Avicel was incubated 
with either 3.2 mg/g Celluclast 1.5 L + 0.4 mg/g NZ-BG + 0.4 mg/g LPMO (TaAA9A and TtAA9E in varying ratios), or 3.6 mg/g Celluclast 
1.5 L + 0.4 mg/g NZ-BG, or 4 mg/g Cellic CTec2. All reactions contained 10 mM AscA as reductant. Panel A shows the glucose release; panel B 
shows the total release of oxidized sugars, which is the sum of C4-oxidized products generated by TaAA9A (C) and C1-oxidized products generated 
by TtAA9E (D). The symbols * and *** in panel A indicate significant differences (p ≤ 0.05 and p ≤ 0.01, respectively) between the cellulase cocktail 
spiked with TtAA9E only (0:100) and the other enzyme combinations after 72 h (by Student’s t-test). Soluble oxidized products were not detected 
in the reactions without LPMO. Standard deviations are shown as error bars, for three biological replicates
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Under such conditions, i.e., increased availability of  H2O2 
due to copper-catalyzed abiotic oxidation of the reduct-
ant and accumulation of this  H2O2 because the LPMO 
no longer consumes it, the C4-oxidized products are 
unstable and degrade [28]. In reactions with TtAA9E, 
the levels of C1-oxidized products kept increasing after 
24  h (Fig.  3D), indicating that this enzyme stays active 
longer. In general, LPMO inactivation happens faster 
at low substrate concentrations [55]. The apparent dif-
ference in kinetics and levels of inactivation could be a 
direct consequence of differences in enzyme stabilities of 
the two LPMOs or a result of different substrate-binding 
preferences and thus the experience of different effective 
substrate concentrations during the reactions. Combin-
ing TtAA9E with TaAA9A (and the cellulases) led to an 
apparent delay in the degradation of C4-oxidized oli-
gosaccharides (Fig.  3C), indicating a moderate stabiliz-
ing effect of TtAA9E on TaAA9A for example because 
TtAA9E still can productively consume available  H2O2. 
Overall, our data indicate that co-supplementation of 
TtAA9E and TaAA9A is beneficial, because it leads to 
less LPMO inactivation and a higher saccharification 
efficiency.

The role of LPMOs in enzyme inactivation
In the absence of lignin, like in our reactions with Avi-
cel, LPMOs rely on  H2O2 produced in  situ either from 
abiotic oxidation of the reductant or from the reaction 
of reduced LPMOs in solution with oxygen [53, 57]. Free 
(i.e., not substrate-bound) reduced LPMOs lose their 
activity over time due to oxidative damage to the catalytic 
site that results from a peroxidase reaction, i.e., futile 
turnover of  H2O2 [23, 58]. Thus, LPMO stability dur-
ing a reaction depends on a combination of the level of 
available  H2O2 and the effective substrate concentration. 
Of note, when using reductants whose abiotic oxidation 
is promoted by transition metals such as copper, such 
as ascorbic acid, LPMO inactivation may be a self-rein-
forcing process [27]: damage to the catalytic center leads 
to copper release, which again promotes production of 
 H2O2, which again promotes LPMO inactivation.

Considering the above, we tested whether it could be 
beneficial to delay reduction of LPMOs and generation 
of  H2O2 by adding ascorbic acid at specific time points 
later than 0 h, thus increasing the chance of keeping the 
LPMOs functional during the later phase of the reaction. 
The results show that, for the setup used here, delaying 
the reduction of the LPMOs was not beneficial (Fig.  4). 
Addition of ascorbic acid at the beginning of the reac-
tion gave, as expected, the fastest initial glucose solubi-
lization. Solubilization yields after 72 h were similar for 
reactions in which ascorbic acid was added at 0 or 24 h 
and reduced for the reaction in which ascorbic acid was 

added after 48  h. These results support the theory of a 
time-dependent amorphization of the material follow-
ing the LPMO oxidation rather than the direct creation 
of access points, and hence, overall making the substrate 
more accessible for the cellulases.

Non-sufficient removal of unbound copper from the 
LPMO preparation after copper saturation, "copper-
polluted" substrates, and copper leakage from the active 
site of inactivated LPMOs will influence the activity and 
inactivation of LPMOs [27, 46, 59]. Copper will speed up 
production of  H2O2 through abiotic oxidation of ascor-
bic acid [60] and production of hydroxyl radicals through 
Fenton-like reactions [61]. To assess possible copper 

Fig. 4 Initiating LPMO activity by adding ascorbic acid at different 
time points. In the reactions, 25% (w/w) Avicel was incubated 
with 3.2 mg/g Celluclast 1.5 L + 0.4 mg/g NZ-BG + 0.4 mg/g 
of either TaAA9A or TtAA9E. The LPMO activity was initiated 
by adding AscA (10 mM) at different time points. If added, EDTA 
was present at 6.3 mM. Panel A shows glucose release; panel B shows 
the release of soluble oxidized sugars. Standard deviations are shown 
as error bars, for three biological replicates
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effects, we used ethylenediaminetetraacetic acid (EDTA), 
which is a good chelator and, hence a scavenger of diva-
lent metal cations such as Cu(II). The dissociation con-
stant for Cu(II) binding by EDTA is between  10–6 M and 
3.1 ·  10–16 M [62], i.e., quite similar to published Kd values 
for LPMOs, which are in the order of 1 nM for Cu(I) and 
50 nM for Cu(II) [63–65]. Addition of 6.3 mM EDTA to a 
reaction with Celluclast 1.5 L and TtAA9E led to a slight 
decrease in apparent LPMO activity (Fig. 4B), which may 
be due to reduced levels of available  H2O2 as a result of 
reduced levels of transition metals in the reaction solu-
tion. Interestingly, despite the lower LPMO activity, the 
presence of EDTA was beneficial for the overall sacchari-
fication yield after 48 h; however, no significant effect was 
observed after 72 h (Fig. 4A). This suggests that chelation 
of free copper by EDTA may play a role in preventing 
additional side reactions that otherwise would damage 
the enzymes during the course of the reaction.

To gain a deeper insight into the potential impact of 
abiotic reactions involving ascorbic acid,  H2O2, and free 
copper on the inactivation of cellulases, Celluclast 1.5 L 
was preincubated with various combinations of ascorbic 
acid,  H2O2, Cu(II)SO4, and EDTA for 24 h before initiat-
ing a saccharification reaction by the addition of Avicel. 
In general, no significant effects from preincubation with 
10 mM  H2O2, 10 mM ascorbic acid, or 0.63 mM Cu(II) 
alone were observed, except for the 24  h reaction with 
 H2O2 pretreatment and the 48  h reaction with Cu(II) 
pretreatment (Fig.  5). However, when  H2O2 or ascorbic 
acid was combined with Cu(II) during the preincuba-
tion, the 24 h conversion yield dropped to only 18% and 
30%, respectively, compared to the yields obtained with 
the cellulase mixture that had not been exposed to any 
of these compounds. Incubating the cellulase mixture 
with  H2O2 and free copper had the strongest impact on 
the cellulase mixture: next to giving the strongest reduc-
tion in the 24 h conversion yield, all cellulase activity was 
lost at this point. Although the applied concentrations 
of  H2O2 and Cu(II) are higher than what would be seen 
in the enzyme reactions, a similar molar ratio of these 
compounds could be expected with  H2O2 concentrations 
probably being lower than 100 µM [66]. The detrimental 
effect of  H2O2 and free copper was counteracted by the 
addition of EDTA, which completely restored the activity 
of the cellulase cocktail (Fig. 5).

Excess levels of  H2O2 have been shown to inactivate 
both LPMOs and cellulases [23, 28, 67]. The present 
results show that the enzymes are relatively stable in the 
presence of high  H2O2 concentrations (10 mM) as long as 
transition metals are absent (Fig. 5). Adding copper ions 
to the system leads to the production of reactive oxygen 
species such as superoxide and hydroxyl radicals. Thus, 
observations that seem to indicate that autocatalytic 

inactivation of LPMOs is accompanied by decreased cel-
lulase activity [28], do not relate only to high  H2O2 lev-
els. Instead, this phenomenon likely arises from side 
reactions triggered by copper leakage from inactivated 
LPMOs combined with elevated  H2O2 levels. As a result, 
the inactivation of LPMOs has significant implications on 
reaction kinetics and yields.

Cellulase feedback inhibition
It is well established that the initial substrate loading 
and the accumulation of products during the reaction, 
i.e., feedback inhibition, influence the saccharification 
rate, where high concentrations of cellobiose and glu-
cose are known to be inhibitory for cellobiohydrolases 
and β-glucosidases, respectively [18, 68, 69]. In the pre-
sent study, Celluclast 1.5 L was supplemented with BG to 
ensure complete conversion of cellobiose to glucose, and 
as expected, cellobiose levels in cellulose hydrolysates 
were negligible. To probe a possible effect of accumu-
lating glucose levels on the saccharification efficiencies 
described above, cellulose saccharification reactions were 

Fig. 5 Preincubation of Celluclast 1.5 L prior to Avicel degradation. 
A 90% Celluclast 1.5 L + 10% NZ-BG mixture was preincubated 
at 50 °C for 24 h in the presence of  H2O2 (10 mM), AscA (10 mM), Cu(II)
SO4 (0.63 mM), and/or EDTA (6.3 mM). Following the preincubation, 
the saccharification reactions were initiated by adding 25% 
(w/w) Avicel to the preincubated cellulase cocktails, followed 
by incubation for 24 or 48 h under the same conditions as for the 
preincubation. The symbols * and *** indicate significant differences 
(p ≤ 0.05 and  p≤0.01, respectively) between no preincubation 
and the different preincubation conditions (by Student’s t test). 
Standard deviations are shown as error bars, for three biological 
replicates
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carried out with the Celluclast 1.5  L +  NZ-BG cocktail 
spiked with TaAA9A:TtAA9E in a 1:1 ratio in the pres-
ence of externally added glucose (Fig.  6). The result 
shows approximately 10, 20, and 40% decrease in glucose 
release after 72 h when 2.5, 5.0, and 10% (w/w) glucose 
was included in the reactions from the start, respectively. 
The results presented illustrate the high-solids effect and 
show that glucose feedback inhibition plays a role.

However, several studies suggest that the high-solids 
effect primarily stems from rate-limiting reorganization 
of constrained water at the substrate surface upon enzy-
matic removal of soluble sugars and oligosaccharides [2, 
5, 68, 70]. Water coordinating the released soluble mono- 
and oligosaccharides will take away water from the 
surface of the insoluble substrate, leading to limited avail-
ability of water at the site of catalysis and, consequently, 
lower enzymatic reactivity. As outlined above, it is con-
ceivable that the substrate polarity and decrystallization 
that follow LPMO action contribute positively to water 
accessibility near the site of cellulase catalysis and show 
that LPMO action is important for overcoming the nega-
tive impact of high substrate concentrations. Of note, it 
has recently been shown that LPMOs are not inhibited by 
high glucose concentrations [45].

Saccharification efficiency of steam‑exploded wheat straw
The high-solids effect, i.e., a decrease in saccharification 
efficiency at increasing substrate concentrations, is not 
only enzyme-dependent (as shown in Fig. 1) but also sub-
strate-dependent. Yields at low- and high-solids concen-
trations do not correlate for a given biomass, and, thus, 

industrial evaluation of biomass saccharification should 
be carried out at high-solids conditions and with the tar-
get feedstock [19]. Therefore, we assessed the efficiency 
of the studied cellulase–LPMO cocktails on a commer-
cial lignocellulosic feedstock, steam-exploded wheat 
straw provided by Novozymes, at 15% (w/w) substrate 
loading. Compositional analysis of the steam-exploded 
wheat straw showed that the feedstock contains around 
22% (w/w) hemicelluloses, 22% (w/w) lignin, and 8% 
(w/w) ash in addition to 48% (w/w) glucan (Table 1).

The results of the saccharification reactions showed 
that the cellulase cocktail with 10% LPMO inclusion led 
to drastically increased cellulose solubilization. In this 
case, TaAA9A, rather than TtAA9E in the case of Avi-
cel (Fig. 3A), had the largest effect: replacing 10% of the 
Celluclast 1.5 L + NZ-BG cocktail by TaAA9A alone or 
by a 1:1 mixture of TaAA9A and TtAA9E improved the 
saccharification by about 75% both after 48 and 72  h 
(Fig. 7A). On the contrary to the Avicel reaction  spiked 
with  TaAA9A, where the glucose release stopped after 
24  h, a prolonged period of sugar release was observed 
in the wheat straw reactions. This shows that the LPMOs 
are even more important for cellulose solubilization when 
working with wheat straw at high solid loadings and that 
the choice of an optimal LPMO is substrate-dependent. 
The latter conclusion was also reached by Kim et al., in a 
2017 study with 1–5% substrate loadings [71].

Xylan solubilization was not affected by replacing 10% 
of the cellulase cocktail, which includes xylanases, by 
LPMO (Fig. 7B). Although TtAA9E has been shown to be 
active on cellulose-bound xylan [72], this activity did not 
have an apparent effect on the xylan conversion. While 
the efficiency of the Celluclast 1.5L + NZ-BG + LPMO 
cocktails surpassed that of Cellic CTec2 in reactions with 
pure cellulose (Avicel, containing about 1% (w/w) xylan 
[73]) (Fig. 3A), Cellic CTec2, a modern enzyme cocktail 
with improved hemicellulolytic activity and with LPMOs 
included, was more efficient on the xylan-rich wheat 
straw, releasing higher amounts of glucose and xylose 
throughout the saccharification reaction (Fig.  7). This 
aligns well with a study by Hu et  al., who showed that 
supplementation of Celluclast 1.5 L with both xylanases 
and TaAA9A is required to reach similar levels of cel-
lulose saccharification of steam pretreated pine as when 
using Cellic CTec2 [32]. Of note, literature speculates 
that TaAA9A is the dominant LPMO in Cellic CTec2 [29, 
32].

Conclusion
In recent years, multiple studies have addressed the 
interplay between LPMOs and cellulases. Many of these 
studies were done with low substrate concentrations, lim-
iting their direct applicability to real-world high-solids 

Fig. 6 Probing feedback inhibition by glucose. External glucose, 
up to 10% (w/w), was added to reactions containing 25% (w/w) 
Avicel and 3.2 mg/g Celluclast 1.5 L + 0.4 mg/g NZ-BG + 0.4 mg/g 
TaAA9A and TtAA9E in a 1:1 ratio. The figure shows the net glucose 
release where the externally added glucose concentrations have 
been subtracted. Standard deviations are shown as error bars, 
for three biological replicates
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processing scenarios. Our study addresses the chal-
lenges associated with high-solids systems and shows the 
pivotal role of LPMOs in cellulolytic enzyme cocktails 
operating at high DM reactions that run over 24–72  h. 
Our results show that the positive impact of LPMOs 
increases throughout the reaction and with increasing 
DM concentrations.

Accumulating data in studies cited above suggest 
that the positive LPMO effect is multi-faceted. The 
increased importance of LPMOs late in saccharifi-
cation reactions may be attributed to the increasing 

recalcitrance of the remaining substrate during the 
reaction, as well as to the relatively slow impact of 
oxidized cleavage sites on the substrate hydrophilic-
ity and decrystallization. As to negative effects of the 
presence of LPMOs, recent discoveries highlight the 
potentially detrimental effects of copper leakage from 
damaged LPMOs, which may facilitate several side 
reactions. Our findings demonstrate that maintaining 
LPMO activity is crucial for the overall saccharifica-
tion efficiency, not only because LPMO activity is use-
ful, but also because free copper in solution results in 

Fig. 7 Degradation of steam-exploded wheat straw with various cellulolytic enzyme cocktails. The degradation of 15% (w/w) steam-exploded 
wheat straw was performed by incubation with either 3.6 mg/g Celluclast 1.5 L + 0.4 mg/g NZ-BG or with 3.2 mg/g Celluclast 1.5 L + 0.4 mg/g 
NZ-BG + 0.4 mg/g TaAA9A, TtAA9E or a 1:1 TaAA9A:TtAA9E mixture, or with 4 mg/g Cellic CTec2. Panel A shows glucan solubilization; panel B shows 
xylan solubilization. The symbols ** and *** indicate significant differences (p ≤ 0.025 and p ≤ 0.01, respectively) between Celluclast 1.5 L/NZ-BG 
and Celluclast 1.5 L/ NZ-BG spiked with LPMO(s) or Cellic CTec2 (by Student’s t-test). Standard deviations are shown as error bars, for three biological 
replicates
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detrimental side reactions with  H2O2 that may damage 
all enzymes in the reaction. Using a different experi-
mental approach and unaware of the fact that LPMOs 
catalyze productive peroxygenase and potentially dam-
aging peroxidase reactions Scott et  al. [67] reached a 
similar conclusion.

Importantly, our study shows that LPMO effects dif-
fer between C1- and C4-oxidizing LPMOs in a DM- and 
substrate-dependent manner. Thus, despite substantial 
research efforts in the past decades, there remains a 
necessity for further optimization and customization of 
enzyme cocktails tailored to individual feedstocks with 
specific compositions to attain economically sustain-
able lignocellulose valorization.
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