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Abstract 

Background  The holistic characterization of different microbiomes in anaerobic digestion (AD) systems can con‑
tribute to a better understanding of these systems and provide starting points for bioengineering. The present study 
investigates the microbiome of 80 European full-scale AD systems. Operational, chemical and taxonomic data were 
thoroughly collected, analysed and correlated to identify the main drivers of AD processes.

Results  The present study describes chemical and operational parameters for a broad spectrum of different AD sys‑
tems. With this data, Spearman correlation and differential abundance analyses were applied to narrow down the role 
of the individual microorganisms detected. The authors succeeded in further limiting the number of microorganisms 
in the core microbiome for a broad range of AD systems. Based on 16S rRNA gene amplicon sequencing, MBA03, Pro-
teiniphilum, a member of the family Dethiobacteraceae, the genus Caldicoprobacter and the methanogen Methanosar-
cina were the most prevalent and abundant organisms identified in all digesters analysed. High ratios for Methanocul-
leus are often described for agricultural co-digesters. Therefore, it is remarkable that Methanosarcina was surprisingly 
high in several digesters reaching ratios up to 47.2%. The various statistical analyses revealed that the microorganisms 
grouped according to different patterns. A purely taxonomic correlation enabled a distinction between an aceto‑
clastic cluster and a hydrogenotrophic one. However, in the multivariate analysis with chemical parameters, the main 
clusters corresponded to hydrolytic and acidogenic microorganisms, with SAOB bacteria being particularly important 
in the second group. Including operational parameters resulted in digester-type specific grouping of microbes. Those 
with separate acidification stood out among the many reactor types due to their unexpected behaviour. Despite 
maximizing the organic loading rate in the hydrolytic pretreatments, these stages turned into extremely robust meth‑
ane production units.

Conclusions  From 80 different AD systems, one of the most holistic data sets is provided. A very distinct forma‑
tion of microbial clusters was discovered, depending on whether taxonomic, chemical or operational parameters 
were combined. The microorganisms in the individual clusters were strongly dependent on the respective reference 
parameters.
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Graphical Abstract

Introduction
The production of biogas through anaerobic digestion 
(AD) can contribute to achieving key sustainability objec-
tives such as the development of a circular economy, the 
transition to a bio-economy and the independent produc-
tion of renewable electricity and gas [1]. Consequently, 
secondary raw materials such as organic waste, municipal 
sewage sludge, green waste, animal excrements, and agri-
cultural residues can be converted into valuable resources 
such as methane and fertilizer. The conversion of these 
various organic materials into biogas is essentially carried 
out by complex microbial communities that constitute 
the AD microbiome [2, 3]. Understanding the microor-
ganisms involved, the conditions in which they occur, 
and the operational and chemical factors that influence 
them, provides an opportunity to make the process more 
robust and efficient. AD is divided into four stages, each 
of which is carried out by different consortia of microor-
ganisms with different environmental requirements [4]. 
In the first phase, hydrolysis, complex organic materials 
such as proteins, fats, and carbohydrates are hydrolysed 
into the corresponding monomers and oligomers. These 
are then metabolized in the second phase, acidogene-
sis, to intermediates such as propionate, butyrate, other 
short-chain volatile fatty acids (VFAs), and alcohols. In 
the third phase, known as acetogenesis, acetic acid, CO2 
and H2 are obtained by fermenting VFAs. Subsequently, 
these products are converted to CH4 and CO2 in a final 
phase, methanogenesis [2, 4]. The microbial commu-
nities of these four phases are generally categorized as 

fermentative bacteria, methanogenic archaea, and syn-
trophic bacteria. Fermentative communities carry out the 
first three phases, while methanogenic archaea use the 
intermediate products of the third phase to produce CH4 
and CO2 in the fourth phase. Syntrophic communities 
are composed of microorganisms that work together in a 
mutualistic relationship [5].

The main added value of studying a broad range of 
AD microbiomes is to make general statements about 
the chemical, taxonomic and operational factors influ-
encing them. As a result, AD processes can be better 
bioengineered in the future to increase the efficiency, 
speed, robustness and adaptability of AD systems [6]. 
Culture-independent methods such as 16S  rRNA gene 
or metagenomics sequencing assist with the complete 
characterization of the microbiome [7]. Analysis of 
16S rRNA gene amplicons has been used in several stud-
ies to investigate microbial communities in AD systems 
[8, 9]. Correlations between microbial profiles and vari-
ous operational or physicochemical operating parameters 
were established to assign changes in microbial commu-
nity structure. In particular, studies of the microorgan-
isms that are always present in AD systems, i.e. the core 
microbiome, are promising. However, current studies 
are lacking in terms of the diversity of AD systems sam-
pled and the completeness of the metadata available. 
Although several studies have provided insights into the 
complexity of the underlying microbiome communities, 
it is not clear how many microorganisms are involved 
in AD, what tasks the individual microorganisms fulfil 
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in this process and what they depend on. Puig-Castellví 
et  al. found 1145 operative taxonomic units (OTUs) in 
a reactor that was co-digesting wastewater sludge [10]. 
Calusinska et al. observed 20 industrial biogas plants and 
confirmed the hypothesis that different systems occur 
with different core microbiomes [11]. Kirkegaard et  al. 
compared nine large-scale fermenters and looked for 
microbes that were present in all of them. This allowed 
the authors to narrow down the core microbiome in 
these fermenters to 300  species, which accounted for 
80% of all reads [12]. As a result, researchers are increas-
ingly using multivariate analyses to compare a large num-
ber of operational and physicochemical parameters with 
large DNA-based data sets [2, 13]. A particularly com-
prehensive study on this topic was conducted by Hassa 
et  al., comparing 67 full-scale digesters from 49  similar 
agricultural plants. This study on similar agricultural AD 
systems shows the presence of microbial indicators for 
certain process conditions such as temperature, ammo-
nia and substrate selection [14]. In summary, individual 
studies on the core microbiome and the chemical and/or 
operational factors influencing the taxonomy have been 
carried out for wastewater treatment plants [15, 16], 
agricultural systems [2, 14], AD systems fed with organic 
food waste [17, 18] and AD systems fed with animal 
excrement [19, 20]. Similar to [69], studies that combine 
such a diversity of AD systems with a complete chemical, 
taxonomic and operational data set are required to make 
generalized statements. The present study fills this gap 
as it contributes to the understanding of the microbial 
ecology of a wide range of AD systems and their inter-
action with the operating conditions of the system. The 
results are validated by one of the largest data sets, which 
includes microbial, chemical and operational data from 
80 different AD systems. The obtained results extend the 
basic understanding of the microbiome in AD, highlight 
the key microbial players in the process and analyse how 
different variables influence the underlying microbial 
communities.

Materials and methods
Sample selection and collection
A comprehensive set of 80 samples was taken at 45 sites 
from different full-scale anaerobic digestion plants. 
These reactors have been specially selected to represent 
a variety of different reactor systems, feedstock compo-
sitions and operational conditions such as temperature. 
Sampling took place from August to December 2021. 
A total of 80 distinct digester samples were collected in 
Germany, Austria and the Netherlands (Fig.  1A). The 
Technische Universität Dresden collected the samples 
in Germany and Austria, whereas the samples from the 
Netherlands were collected by Bioclear Earth B.V. In 

both cases, the sampling procedure was based on the 
exact same protocol. Samples for chemical analysis were 
collected in sterile 1-l sampling bottles. Samples for 
metagenomic DNA extraction and sequencing were col-
lected in sterile 50-ml Falcon tubes. In order to preserve 
the DNA and prevent microbial changes, the samples 
were mixed 1:1 with pure ethanol directly upon collec-
tion. Samples for chemical analysis and for 16S rRNA 
gene amplicon sequencing were taken in triplicates. The 
collected samples were stored at − 15 °C to avoid changes 
in the chemical and microbial composition.

Chemical and operational data
Operational data for each biogas plant were provided 
by the respective plant operator, including the operating 
temperature, reactor volume, hydraulic retention time 
(HRT), reactor type, substrate type, substrate quantity, 
years of operation, organic loading rate (OLR), additives, 
biogas yield, methane content, energy production and 
usage. An overview of the collected data is shown in Sup-
plementary Table 1.

During the sampling phase, some parameters were 
directly measured on-site, including pH, conductiv-
ity, and the oxidation–reduction potential (ORP). The 
remaining chemical parameters were measured both at 
the Technische Universität Dresden and at Bioclear Earth 
B.V. These parameters included total solids (TS), organic 
total solids  (oTS), chemical oxygen demand  (COD), 
ammonium, total Kjeldahl nitrogen  (TKN), FOS/TAC, 
the individual and total organic acids, heavy metals and 
trace elements. All these parameters were determined 
using the appropriate norm [21] and the raw data for 
the chemical parameters are shown in Supplementary 
Table 2. The methods used to analyse the parameters and 
the corresponding instruments and units are shown in 
Supplementary Table 3.

DNA extraction and high‑throughput sequencing
An aliquot of 3  ml of each sample, conserved in etha-
nol, was centrifuged and washed with sterile phosphate 
buffered saline (PBS) at least 3  times or until the super-
natant was clear. DNA was extracted from the result-
ing pellets using the NucleoMag DNA Microbiome Kit 
(Macherey–Nagel, Allentown, PA, USA) with the aid 
of the AutoPure96 robot for the purification step, fol-
lowing manufacturer’s instructions. For cell lysis, the 
washed pellets were transferred to MN type A bead 
tubes, together with 700 µL of Lysis Buffer M1. The sam-
ples were incubated for 5 min at 70 °C and subsequently 
shaken for 10  min using a horizontal vortex. DNA was 
quantified using the Qubit 1 × dsDNA (Thermo Fisher 
Scientific, Waltham, Massachusetts, USA), and samples 
were sequenced by Novogene (Cambridge, UK). The 
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extracted metagenomic DNA was used to amplify the 
hypervariable region V3–V4 of the 16S  ribosomal RNA 
gene. The conserved regions V3 and V4  (470 bp) of the 
16S rRNA gene were amplified using the following PCR 
cycle: initial denaturation at 95 °C for 3 min; 25 cycles of 
amplification (30 s at 95 °C, 30 s at 55 °C, 30 s at 72 °C); 
and 5 min of extension at 72 °C [22]. The following prim-
ers were used: 341F (5′ CCT​AYG​GGRBGCASCAG 3′) 
and 806R  (5’  GGA​CTA​CNNGGG​TAT​CTAAT  3’). The 
amplification was carried out using the KAPA HiFi Hot-
Start ReadyMix PCR kit (KK2602). The 16S rRNA ampli-
cons were mixed with Illumina sequencing barcoded 
adaptors (Nextera XT index kit v2, FC-131-2001), and 
libraries were normalized and merged. The pools with 
indexed amplicons were loaded onto the MiSeq reagent 
cartridge v3 (MS-102-3003) and spiked with 10% PhiX 
control to improve the sequencing quality. Sequencing 

was conducted using paired-end 2 × 250pb or 2 × 300pb 
cycle runs on an Illumina MiSeq device.

Metataxonomic and statistical analysis
The raw Illumina sequences were loaded into Qiime2 (v. 
2021.2.0) [23]. The quality of the sequences was checked 
using the plugin Demux and the Qiime2-integrated 
DADA2 pipeline was used for trimming and joining the 
sequences, removing chimeras and detecting amplicon 
sequence variants (ASVs) (> 99.9% of similarity). The tax-
onomy of each sequence variant was determined with 
the classify-Sklearn module from the feature-classifier 
plugin, employing SILVA (v. 138) [24] as reference data-
bases for taxonomic assignment. Microbiome data were 
analysed with the phyloseq package (v 3.16) in R (v 4.2.3) 
[25]. The abundance of each taxon was correlated to the 
abundance of the rest of the microorganisms. Moreover, 

Fig. 1  Overview of all sampled AD systems. A Location of AD systems sampled in Germany (orange) and the Netherlands (green). B Types of AD 
systems sampled. C Main operational data: temperature (y-axis) and the average retention time (x-axis) are shown. The bubble size indicates 
the reactor size and the colours indicate the main substrates in the respective feedstock



Page 5 of 17Otto et al. Biotechnology for Biofuels and Bioproducts           (2024) 17:84 	

correlations between the microbial community and 
metadata were calculated. Due to the high number of 
taxa detected, the statistical tests were performed over 
the 250  most abundant microorganisms and data were 
agglomerated to genus level. Spearman’s rank correlation 
was used to study quantitative variables (content of nitro-
gen, concentration of acetic acid, etc.) and significant 
correlations were plotted into heatmaps using the Pheat-
map package (v 1.0.12). For these analyses, a normaliza-
tion of the data using the TSS (total-sum scaling) method 
was carried out. Qualitative variables (mesophilic, ther-
mophilic) were analysed using the differential abundance 
test DESeq2 (v 3.16) [26]. Core microbiomes were cal-
culated with the “coremicrobiome” function from the 
microbiome package [27] in R (v 4.2.3), which provides 
a list of the most abundant taxa at certain levels of preva-
lence and abundance, in this case set at 99% prevalence 
and 0.001, 0.01 and 0.1% abundance. Raw sequences were 
deposited in the NCBI (BioProject ID:PRJNA1020035, 
Supplementary Table 5).

Results and discussion
Operational process parameters of the AD systems
80  full-scale anaerobic digesters and related systems 
were investigated based on chemical analyses and DNA 
sequencing as described in the material and methods. 
Moreover, the operational parameters of the individual 
systems were determined. Samples were collected at 
45 sites in the Netherlands, Austria and Germany. Sam-
pling points were evenly distributed in the Netherlands. 
In Germany, the majority of the samples were collected 
in Eastern Germany, Bavaria and North Rhine-West-
phalia. One sample was located in Austria, close to the 
German border (Fig. 1A).

The AD systems analysed varied in terms of reactor 
type and general configuration. As shown in Fig. 1B, over 
50% of all samples were taken from continuously stirred 
tank reactors (CSTRs). This high number of CSTR sam-
ples is explained by the fact that it is the most common 
reactor type in the biogas sector [28]. Although most 
plants are CSTRs, they differ in terms of reactor con-
figurations, size, geometry, and agitation. Some used 
agitators, some used sprinklers, and some even used a 
floating roof, which, according to [4], has the potential 
to stabilize the underlying microbiome. 13% of the sam-
ples were taken from plug flow reactors (PFRs). The PFR 
is designed to allow the feed to flow predominantly axial 
with minimal radial mixing, allowing for optimum resi-
dence time and contact between the feed and the micro-
organisms [29]. 10% of the samples were from industrial 
wastewater treatment plants, most of which used an 
upflow anaerobic sludge blanket reactor (UASB). 6% of 
the samples were taken from two-staged AD systems, 

in which the hydrolysis and the acidogenesis phases run 
separately from the acetogenesis and methanogenesis 
phases to meet the different requirements of the micro-
organisms [30]. In order to cover a wider range of AD 
systems, some rarely occurring digester systems were 
sampled as well. These include leach bed systems, a 
unique positive displacement principle system and sam-
ples from other parts of the reactor system such as the 
secondary fermenter and feedstock. The samples used in 
this study are representative of the most common reactor 
systems in the biogas sector [29].

The AD systems analysed differed not only in terms of 
reactor systems, but also in terms of the collected opera-
tional process parameters (Supplementary Tables 1 & 2). 
Figure 1C shows four important operational parameters 
including temperature, hydraulic retention time, reactor 
volume and main substrate. The process temperature of 
the samples taken was in a wide range between 25 and 
65  °C, but the majority of the samples were between 35 
and 50  °C, at the transition from mesophilic to thermo-
philic temperature. This range is advantageous for the 
process and is in line with other studies on the tempera-
ture of biogas plants [14]. Higher process temperatures 
lead to increased microbial activity and thus more bio-
mass is converted to biogas per unit of time, which is why 
temperatures above 35  °C are beneficial [31]. However, 
increased degradation rates that result from higher tem-
peratures can lead to accelerated release of organic acids 
and other potentially process-inhibiting metabolites [32]. 
The HRTs ranged from one day for the UASB and the 
first stage of the two-stage AD systems to 170 days for the 
conventional CSTRs and secondary digesters. Although 
the range of HRTs is relatively broad, most reactors have 
an HRT between 15 and 60  days. Interestingly, small 
reactors tended to have low HRT, while substrates also 
had an impact on HRTs. In this regard, Fig.  1 C shows 
that organic waste, sewage sludge, and industrial waste-
water had short HRTs of about 20 days, which is consist-
ent with the literature and suggests that these substrates 
can be converted quickly [33]. This is followed by a range 
between 20 and 80  days for energy crops, which tend 
to have higher fibre contents and therefore take longer 
to degrade [34]. The last group are the residual crops 
including grass silage, wheat straw and green waste, 
which required HRTs of 80–180 days due to the high pro-
portion of lignin and fibre components that are difficult 
to degrade [35]. The use of manure and/or sewage sludge 
as a part of the substrate was found in all digesters as it 
is a well-suited seed sludge, which is already enriched in 
some key organisms for the methanogenic biogas pro-
cess [36]. The AD systems investigated in this study show 
a high diversity in terms of substrates used, reactor sys-
tems and operational parameters. In addition to the main 



Page 6 of 17Otto et al. Biotechnology for Biofuels and Bioproducts           (2024) 17:84 

substrates mentioned above, rare cases with substrates 
such as slaughterhouse waste, grease, industrial waste-
water, supermarket waste, and unique residual materials 
such as sudan grass, sugar beet, millet and manures from 
goats and horses were used (Supplementary Table  1). 
Furthermore, the normalized production of biogas and 
energy are important parameters for evaluating the effi-
ciency of biogas plants. Unfortunately, this data could not 
be obtained from all plant operators, which is why it was 
not possible to obtain clear results due to its incomplete-
ness. All varying parameters mentioned, such as reactor 
systems and configurations, temperature, retention time, 
volume, and feedstock underline the high diversity of the 
presented set of samples. Samples from this study rep-
resent the majority of industrially applied plant types in 
the biogas sector. The combination with the operational, 
chemical and taxonomic data provides one of the most 
comprehensive and diverse data sets on biogas plants to 
date (Supplementary Tables 1 and 2).

Chemical parameters of the AD systems
A comprehensive set of chemical parameters was col-
lected for all the samples analysed in this study (Sup-
plementary Tables  2, 3). Due to the wide variety of 
operational parameters, high variations of the measured 
chemical parameters were observed. Total volatile fatty 
acids (TVFAs) exhibited a large upward scatter, which 
could be explained due to the different systems, their 
specific configurations, varying feeding conditions and 
individual conditions in respect to the physical–chemi-
cal parameters (Fig.  2A). The strong variations of key 
parameters such as VFAs among reactors indicate that 
the sampled reactors bear a high diversity of microbial 
habitats. Generally, one-stage systems are operated and 
designed to keep VFAs as low as possible. In contrast, the 
first stages of two-stage AD reactors have high concen-
trations of VFAs. In such systems, it is aimed to separate 
hydrolysis/acidogenesis from acetogenesis/methanogen-
esis to optimize the respective process conditions. To 
suppress hydrolysis/acidogenesis, the HRT is minimized. 
As a result, VFA concentrations increase and the pH 
drops, which impairs methanogenic archaea and related 
acetogens. This concept has been investigated already 
for 50 years [30] and Holl et al. mention that 50 years of 
research have not led to industrial solutions. This is not 
quite correct, since three industrial two-stage AD sys-
tems were investigated in the present study. However, 
chemical parameters (Supplementary Table  2) revealed 
the presence of methanogenesis in the first stage despite 
high OLRs. To the surprise of the respective plant opera-
tors, the pH was in all cases above 7.0 in all hydrolysis/
acidogenesis stages, which is beneficial for methanogen-
esis. Methane losses in a separated acidification stage 

have also been described by other scientists [37]. One 
of the plant operators highlighted that they had noticed 
high ratios of methane in the hydrolysis/acidification 
stage, which is not expected. The operator tried to pre-
vent this by increasing the OLR further, however, with a 
maximal OLR of 44.6 kg/m−3/d−1, there were still metha-
nogens which indicates, that they were able to adapt due 
to adaptive evolution. A further increase in the OLR 
was not possible without overloading the pumps of the 
respective plants. Thus, the statement by Holl et al. could 
be reformulated in such a way that although several two-
stage industrial-scale plants have already been built, no 
industrial solutions are known that follow the concept of 
a two-stage biogas plant in terms of process technology. 
Apart from two-stage AD systems, high VFA concentra-
tions were also observed in PFR. Although these reactors 
are not considered classical two-stage systems, they still 
have high levels of VFAs due to the high OLR. For this 
reason, all PFR sampled in this study have a downstream 
methane stage to increase the degradation efficiency.

Despite the large upward scatter for VFAs, most digest-
ers had a rather low concentration of VFAs. Therefore, 
it can be assumed that there is no significant inhibition 
of the methanogenic activity due to VFAs. The average 
acetate concentration was 1373 mg/l, which is far below 
inhibiting conditions of ~ 2400  mg/l for one-stage sys-
tems [38]. Despite maximum OLR and high VFA con-
centrations in two-stage systems, long-term inhibition of 
methanogenesis was not observed there. The threshold 
mentioned by Franke-Whittle et al. is therefore depend-
ent on the type of plant and the degree of adaptation of 
methanogenic archaea. The average butyrate concentra-
tion was 52 mg/l, well below inhibiting conditions, which 
start at 1800 mg/l. Propionic acid was the VFA that was 
closest to an inhibiting range, with an average concentra-
tion of 716 mg/l (inhibition starts at 900 mg/l) [38, 39]. 
All other parameters showed lower deviations and thus 
a lower dispersion of the distributions of the 25–75% 
quantile but with a tendency towards higher values. It 
must be emphasized that the values at which inhibition 
occurs vary depending on many factors, for example, due 
to microbial adaptations and the degree of protonation of 
the VFA salts.

A wide dispersion can be also observed for the total 
COD, the COD from the solid’s fractions, as well as for 
the total inorganic carbon, Ca, K and P. According to the 
literature, these parameters are strongly influenced by 
the OLR, which means mainly by the substrate, the sub-
strate quantities and the hydraulic retention time [40]. In 
contrast, the quantile for COD liquid, volatile fatty acids 
determined by two-point titration (FOS), total nitrogen 
according to Kjeldahl (TKN), ammonia and all other 
trace elements is narrow. Strong deviations from the 
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Fig. 2  A Boxplots depicting the concentration of the main chemical parameters. Box size indicates the distribution of values between 25 and 75% 
of the values. B Spearman correlation analysis comparing the chemical variables. Positive correlations (i.e. positive Spearman’s rank correlation coefficients) 
are highlighted in red, negative correlations are highlighted in blue and the black dots indicate whether the respective correlation is significant
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norm of these parameter values are often accompanied 
by process interruptions. Therefore, these parameters 
are intended to be kept constantly low [41]. Furthermore, 
most of them are limited by physicochemical effects 
such as solubility limits, precipitation and pH depend-
ence. In addition to the parameters shown in Fig. 2, the 
following additional parameters were determined and 
presented as the mean with a standard deviation of all 
samples: pH = 7.6 ± 0.4; ORP = −  374  mV ± 77; conduc-
tivity = 16.6  µS/cm ± 8.5; total solids (TS) = 10.1% ± 6.7; 
and total organic solids (oTS) = 6.5% ± 3 (Supplementary 
Table 2). Compared to the literature, it is noticeable that 
the values for total COD and COD solids as well as TS 
and oTS are comparatively high and more variable [42] 
which can be explained by the predominant utilization 
of plant-based materials like energy crops and residual 
crops in agricultural biogas plants [43]. The correla-
tion between high TS and high COD has been demon-
strated using a Spearman correlation analysis (Fig.  2B) 
and is consistent with the literature [44]. It is striking 
that there are predominantly significant positive corre-
lations among most of the parameters (Fig.  2B), which 
can be explained by the cascade nature of the process in 
which different processes build on each other [45]. These 
positive correlations include dependencies between the 
individual VFAs, which can be explained by the fact that 
VFAs are degraded stepwise from medium-length fatty 
acids to short-chain organic acids [46, 47]. In addition, 
acids correlate positively with COD, TS, oTS and TKN. 
All of these parameters are indicators of nutrient avail-
ability, so it is reasonable to assume that an increase in 
nutrient availability will also lead to an increase in hydro-
lytic activity and the formation of more VFAs. All values 
that directly or indirectly indicate the amount of organic 
matter, such as COD, TS, and oTS, correlate positively 
with TKN and the trace elements P, S, Mg and K. Both 
trace substances and nitrogen naturally occur in the sub-
strate, especially in manure and plant components, thus 
explaining this correlation. In particular, high levels of 
these elements can be detected in the solid components. 
The trace elements Ni, Mn and Mo also showed signifi-
cant positive correlations with each other. As many plant 
operators use additives containing these trace elements, 
this correlation can be justified by that. Negative cor-
relations between chemical variables mainly concerned 
the site parameters, i.e. pH, conductivity and ORP, with 
only the ORP showing significant negative correlations. 
Overall, the chemical data confirm that the samples 
constitute a very heterogeneous data set. In particular, 
parameters such as organic acids, COD and some trace 
elements showed a wide range of possible values, display-
ing many significant positive correlations according to 

the Spearman correlation analysis, but without exceeding 
the inhibition values indicated in the literature.

Taxonomic profiling of the AD systems
A total of 42,939 different amplicon sequence variants 
(ASVs) were detected in the entire dataset, accounting 
for 1858 genera and 61 phyla. The average richness and 
Shannon indices at the ASV level were 1019.13 ± 279.65 
and 4.43 ± 0.76, respectively. At the phylum level, the 
average AD reactor was dominated by Bacillota (53.5%) 
followed by Bacteroidota (10.0%) and the archaeal phy-
lum Euryarchaeota (10.1%). Actinomycetota (6.4%), 
Pseudomonadota (previously Proteobacteria) (5.2%), Syn-
ergistota (5.3%) and Chloroflexi (3.0%) were also detected 
in lower abundances (Fig. 3C). These results are consist-
ent with previous findings reporting that Bacteroidota 
and Bacillota, especially Clostridia and Bacilli classes 
dominate AD processes [48, 49]. Pseudomonadota and 
Synergistetes phyla are usually found in lower abun-
dances but are still prevalent [48], as well as Acidobac-
teria, Actinomycetota and Chloroflexi. In our samples, 
four phyla covered 80% of the average population and six 
phyla covered 90% of the average population. 

At the genus level, taxonomic profiles were domi-
nated by MBA03 (9.3%), followed by Proteiniphilum 
(5.6%), Gallicola (4.6%) and Clostridium sensu stricto 
(3.9%) (Fig.  3A). Other abundant genera were Acetomi-
crobium, an uncultured Dethiobacteraceae, Syntrophace-
ticus, DTU014 and Caldicoprobacter, which were also 
present in the core microbiome (Fig.  3D, Supplemen-
tary Table  4A). Archaea represented nearly 10% of the 
total microorganisms in the samples, with a maximum 
abundance of 48% in one sample. Methanosarcina was 
on average the most abundant archaeal genera (4.8%) 
(Fig.  3B). This genus was detected in 78/80  samples, 
indicating a high prevalence in full-scale reactors. Other 
abundant archaea were Methanothrix (1.9%), Methanoc-
ulleus (0.9%) and Methanothermobacter (0.9%) (Supple-
mentary Table 4A). It is important to highlight that some 
archaeal genera were assigned to phylum Halobacterota 
according to the SILVA database (v. 138) [24], while the 
“List of Prokaryotic names with Standing in Nomencla-
ture” (LPSN) [50] classifies them as members of the phy-
lum Euryarchaeota. In these cases, the taxonomy was 
manually corrected to match de LPSN criteria.

Previous studies have identified members of the 
orders Methanosarcinales, Methanobacteriales and 
Methanomicrobiales as the dominating methanogenic 
archaea in AD systems [48, 51] Moreover, Methano-
sarcinales occurs in the core microbiome and can be 
detected in averages up to 5% [52]. According to the 
results, the MBA03 genera and Caldicoprobacter from 
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the Bacillota phylum, the genus Proteiniphilum from 
the Bacteroidota phylum, and an uncultured organ-
ism from Dethiobacteraceae family compose the core 
microbiome of anaerobic digesters, as they are present 
in 100% of the processed samples with an abundance 
higher than 0.1% (Fig. 3D). When looking at the func-
tions of the detected core bacteria in AD, two main 
roles can be identified. On one hand, the microorgan-
isms of the MBA03 genera, the DTU14 genera and 
a genus of the Dethiobacteraceae family show high 
ammonia tolerance and syntrophic acetate oxidation 
(SAO) activities, thus contributing to hydrogenotrophic 
methanogenesis [8]. On the other hand, MBA03, Cal-
dicoprobacter, Proteiniphilum, Acetomicrobium and 
Defluviitoga show mainly hydrolytic activities [8, 53]. 
MBA03 and Defluviitoga can degrade complex carbo-
hydrates such as xylan, cellulose and lignocellulose [54, 

55]. Proteiniphilum and Acetomicrobium can degrade 
both peptides and complex carbohydrates [8, 56, 57], 
and Caldicoprobacter is considered to have the ability 
to hydrolyse lipids, peptides and carbohydrates [58]. It 
must be highlighted that MBA03 is the only taxon that 
performs both major functions in the system, display-
ing both syntrophic acetate oxidation (SAO) and cel-
lulolytic and xylanolytic activities, potentially playing a 
key role in AD systems. [8, 54, 59].

Multivariate Spearman correlation analysis
In this study, Spearman correlation analysis showed 
many associations between microorganisms and the 
analysed chemical variables, whereas for the operational 
parameters, only temperature and substrate amounts 
showed significant correlations with the taxonomic pro-
files (Fig. 4, Supplementary Table 4B).

Fig. 3  Illustration of the highest relative abundance for all samples on average at genus level for bacteria (A), genus level for archaea (B) 
and phylum level for bacteria and archaea (C). Visualisation of the core micobiome present in all samples with a minimum abundance of 0.1 %, 0.01 
% and 0.001 % (D)
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Hierarchical clustering revealed two distinct clusters 
of microorganisms showing similar trends concern-
ing chemical variables. The first cluster showed a higher 
number of bacteria belonging to phyla Pseudomonadota, 
Actinomycetota, Chloroflexi and Bacteroidota, report-
ing negative correlations with all the organic acids, 
nitrogen and COD. These bacterial genera are involved 
in hydrolysis by degrading complex molecules such as 
chitin, peptide, lignocellulose and/or cellulose [8, 60]. 
When acidogenesis begins after the hydrolytic reactions, 
the concentration of organic acid begins to increase, 
while the concentration of complex macromolecules 
decreases. Consequently, the abundance of these bacte-
ria may decrease accordingly. Both phyla, Chloroflexi and 
Bacteroidota are known to be typical acidogenic classes 
with hydrolytic activity, capable of metabolizing simple 
compounds such as amino acids, glycerol, glucose and 
complex polysaccharides [8, 61, 62]. Within Bacteroi-
dota, a higher presence of the Paludibacteraceae family 
(i.e. Paludibacter) has been reported in the earlier steps 
of AD processes [8]. Members of the Anaerolineaceae 
family (i.e. Longilinea, Anaerolinea), which is the most 
abundant in the Chloroflexales order, metabolize poly-
saccharides such as pectin and xylan and produce acetic 
and lactic acid and hydrogen [63]. Some microorganisms 
belonging to the Bacillota phylum, such as Gallicola, 
were also found in the first cluster, negatively correlating 
with organic acids. These non-saccharolytic genera can 
metabolize peptone and amino acids to organic acids [8, 
64, 65]. There may be two reasons for this negative cor-
relation: first, Gallicola can occur in a small window of 
organic acid concentration, and with increased organic 
acid content, the activity decreases. Second, Gallicola 
only metabolizes peptides, so its occurrence is limited by 
the presence of peptides [64].

The second cluster of microorganisms showed positive 
correlations with organic acids (i.e. acetic acid, butyric 
acid and iso-butyric acid), ammonia, nitrogen, COD, 
substrate quantities and negative correlations with Fe, P 
and Mo. Despite being close to the inhibition point, pro-
pionic acid has no significant positive or negative correla-
tion with the shown microorganisms. According to some 
studies, the Syntrophaceticus genera, MBA03, DTU014 
and the Dethiobacteraceae family within the Bacil-
lota phylum are potential syntrophic acetate oxidizing 

bacteria (SAOB) [66–68]. Therefore, these bacteria would 
oxidize acetate to CO2 and H2, which would then be used 
to produce methane by hydrogenotrophic archaea. In 
addition, the orders DTU014 and MBA03 and members 
of the Dethiobacteraceae family have been reported to 
increase their abundance with the progression of AD [8], 
which fits with the hypothesis that the genera in the first 
cluster represent microorganisms performing hydroly-
sis and acidogenesis. In contrast, the microorganisms in 
the second cluster are involved in the steps closer to ace-
togenesis and methanogenesis.

Spearman correlation analysis with taxonomic data 
showed which prokaryotes were influenced by the abun-
dance of other microorganisms, providing relevant 
information about the relationship between taxa during 
the AD processes (Fig. 5, Supplementary Table 4C). The 
Methanothermobacter genera, Methanoculleus genera 
and Methanosarcina genera, which are hydrogenotrophic 
methanogens [48], positively correlated with potential 
SAOB, such as DTU014, MBA03, Syntrophaceticus and 
Dethiobacter, forming a cluster (Fig. 5), whereas Methan-
othrix, an acetoclastic methanogen, negatively correlated 
with these bacterial genera. This supports the hypothesis 
that the abundance of SAOB is tightly related to hydrog-
enotrophic archaea; these bacteria would compete for 
acetate with acetoclastic methanogens and use acetate 
to generate hydrogen, thus producing a shift of the bal-
ance towards hydrogenotrophic methanogenesis [48, 
69]. The above explanation makes sense if you consider 
Methanothrix as an acetoclastic methane producer. How-
ever, it is important to emphasize that a switch from ace-
toclastic metabolism to hydrogenotrophic metabolism 
has recently been described for Methanothrix [70]. The 
relationships described above could therefore be more 
complex. 

Most Chloroflexota genera, mainly dominated by the 
Anaerolineaceae family, negatively correlated with the 
genera in the cluster of syntrophs (DTU014, MBA03, 
Syntrophaceticus, Clostridium sensu stricto 1), while 
displaying positive correlations with Christensenel-
laceae-R7-group and Gallicola. Some bacteria within 
the syntrophic cluster were also positively correlated 
with temperature (Fig.  4), indicating that their growth 
is favoured in thermophilic conditions. In this sense, 
members of class Clostridia are known to be more 

(See figure on next page.)
Fig. 4  Spearman correlation analysis of 66 genera showing at least 14 correlations with chemical variables were plotted in a heatmap using 
the complete linkage method for hierarchical clustering. In this heatmap, red colours represent positive correlations and blue colours represent 
negative Spearman correlations. The full description of all the correlations detected is shown in Supplementary Table 4B. All the correlations 
plotted are significant (p-value < 0.05). Halobacterota is highlighted because the Silva database incorrectly assigns the methanogen Methanoculleus 
to the genus
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Fig. 4  (See legend on previous page.)
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abundant in high temperatures and increasing ammo-
nia levels [71]. Although high levels of ammonia can 
cause the inhibition of the process, SAOB seemed to 
be particularly tolerant to ammonia (Fig.  4), and this 
may result in a shift to hydrogenotrophic methano-
genesis since these methanogens grow in syntrophy 
with SAOBs [48]. Interestingly, other authors have also 
reported positive correlations between ammonia and 
hydrogenotrophic methanogens and SAOB [69, 71].

Influence of temperature and nitrogen content 
on the microbiome
Both temperature and ammonia variables were used 
as categorical variables for further comparisons. As 
reported by several authors, a reactor was considered 
“mesophilic” when displaying operational temperatures 
up to 45  ºC, and “thermophilic” if the temperature was 
above 45 ºC [48, 72].

In total, 41  genera were significantly more abundant 
in thermophilic conditions, while 171 increased their 
abundance in mesophilic conditions (Supplementary 
Table  4D). Different archaea, such as Methanomethylo-
vorans, Methanothrix (previously Methanosaeta), Metha-
nolinea and Methanospirillum, were more abundant in 
mesophilic conditions. The methanogenic community 
is especially sensitive to process instability [48, 73], and 
thermophilic reactors have been reported previously 
to be less stable in comparison to mesophilic ones [74]. 
Moreover, the Fastidiosipila genera and the Petrimonas 
genera were more abundant in mesophilic conditions, 
which is consistent with previous reports [53]. Accord-
ing to the results obtained (Fig.  4), the most abundant 
microorganisms in thermophilic conditions belong to the 
Bacillota phylum (70% of them to class Clostridia). Spe-
cifically, thermophilic reactors were enriched in MBA03, 

Fig. 5  Correlations between the most abundant 30 bacteria and 10 archaea. The different shades of purple show the value of the correlation 
(legend below), while the size of the dot shows the significance of the correlation. The full description of all the correlations detected is shown 
in Supplementary Table 4C
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DTU014, Syntrophaceticus, Lentimicrobium, Defluviitoga 
and Tepidimicrobium (Supplementary Fig. 1).

It is well known that high amounts of nitrogen, espe-
cially ammonia, can inhibit the AD process [75, 76]. 
However, there is no consensus on the concentration 
above which this molecule negatively affects biogas pro-
duction, as the ammonia concentration depends on the 
pH value, the temperature and the processing state of 
the ammonia, which in turn depends on the substrate 
and the underlying microbiome. Some authors have 
reported that a critical threshold concentration of ammo-
nia, which causes first inhibition and subsequently tox-
icity is between 1500 and 7000  mg/l [75]. To prove the 
effect of ammonia levels on the microbial community, 
the quantitative variable was divided into “low ammonia 
content” for values up to 5000 mg/l and “high ammonia 
content” for values above 5000 mg/l and the differential 
abundance in both situations was calculated (Supple-
mentary Table 4E). In low ammonia conditions, a higher 
abundance of archaeal genera (such as Methanosarcina, 
Methanothrix, Methanospirillum, Methanoplasma or 
Methanolinea) was detected. There is previous evidence 
that high ammonia conditions can affect the whole 
microbial community, but methanogenic archaea are the 
ones which suffer this stress the most, particularly ace-
toclastic methanogens [69, 77]. Regarding the bacterial 
community, Clostridium sensu stricto  1, Proteiniphilum 
and Defluviitoga, among others, were more abundant in 
reactors with ammonia concentrations above 5000 mg/l 
(Supplementary Fig. 2). Both Clostridium sensu stricto 1 
and Proteiniphilum have been reported to be abundant in 
high ammonia conditions [77, 78]. This could be due to 
their main ability to degrade proteins/amino acids [8]. In 
addition, Acetomicrobium, Christensenellaceae R7 group 
and Gallicola were more abundant in lower ammonia 
conditions (Supplementary Fig. 2).

Relation between microbial, operational and site‑related 
factors
To study the relationship between the microbial com-
munities and the substrates used in AD, the feedstocks 
were divided into three different groups, based on their 
chemical composition [32]: organic biological waste 
(cluster “biowaste”), energy crops and agricultural 
animal waste (cluster “agricultural waste”) and waste-
water sludge and industrial wastes (cluster “industrial 
waste”). It is important to highlight that the feedstocks 
used in full-scale reactors are a mixture of substrates 
from different sources, which complicated the analy-
sis. However, some relevant conclusions were obtained. 
The Pseudomonadota phylum was more abundant in 
the AD systems inoculated with substrates coming 
from industrial waste, this phylum has been previously 

related to UASB reactors treating sludges [48]. Moreo-
ver, some core genera such as MBA03 and UCG-010, 
together with the hydrogenotrophic archaea Metha-
noculleus showed higher abundances in agricultural 
wastes and biowaste-based feedstock. In contrast, 
Syntrophaceticus, Clostridium sensu stricto 1 and the 
hydrogenotrophic archaea Methanothermobacter were 
more abundant in substrates from agricultural origins 
(Supplementary Fig.  4) which was previously reported 
in the literature [79].

The operational design of the AD process is another 
factor affecting the resulting microbial community and 
the final biogas yield. Different parameters, such as 
shear, granule formation, hydraulic retention time, liquid 
upflow velocity or feed rate [80] can be determined for 
one microbial community to find their optimal condi-
tions for growth. Regarding reactor type, the most com-
mon ones among the samples were continuously stirred 
tank reactors (CSTR; 44  samples), plug flow digest-
ers (PFD, 10  samples), upflow anaerobic sludge blanket 
digesters (UASB; 8  samples) and two-stage AD reactors 
with hydrolysis (5  samples). The differential expression 
analysis revealed that Syntrophaceticus and Caldicopro-
bacter were overexpressed in CSTRs, Coprothermobacter 
was overexpressed in PFRs, while other microorganisms 
present in the core microbiome, such as Fastidiosipila, 
Gallicola and Christensenellaceae R7 group were more 
abundant in UASB digesters (Supplementary Fig.  5). 
Two hydrogenotrophic archaea, Methanothermobacter 
and Methanolinea, were overexpressed in CSTRs and 
two-stage reactors, respectively, while Methanothrix 
was more abundant in UASB reactors. Genera from the 
Pseudomonadota phylum were particularly abundant in 
UASB, which is in line with the results obtained for sub-
strates coming from industrial wastes and with previous 
developments [81].

Statistical differences were found in the taxonomic 
profiles between Dutch and German digesters (Supple-
mentary Fig. 6, Supplementary Table 6). This could have 
several reasons (i.e. unequal sampling of the different 
reactor types or differences in the substrates) and should 
be investigated in the future.

Limitations and outlook
Despite research efforts made in recent years, AD is still 
a microbial black box due to the complexity of micro-
bial transformations, and interactions, the variability 
of process designs, and the high number of operational 
and chemical variables that affect the underlying micro-
biomes. For this reason, the present study faced three 
challenges. First, the substrates used in full-scale reactors 
were diverse and complex, consisting mainly of mixtures 
of different feedstocks in unknown proportions, which 
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made it difficult to determine the true influence of each 
substrate on the AD microbiomes. Moreover, this study 
focused on studying bacteria and archaea, but viruses, 
protozoa or anaerobic fungi, are also important members 
of the AD microbiomes and their role in industrial biogas 
production should be addressed in future works. Finally, 
it must be highlighted that not all the industrial plant 
operators measured and evaluated the relevant opera-
tional parameters like methane content, biogas yield, etc., 
which makes it difficult to compare. This prevented the 
establishment of correlations between methane produc-
tion/efficiency and the various chemical, taxonomic and 
operational parameters.

Conclusions
The core microbiome of 80 full-scale anaerobic digest-
ers consisted of MBA03, Proteiniphilum, a member of 
Dethiobacteraceae and Caldicoprobacter. Methanosar-
cina was detected in 98% of the samples. Based on Spear-
man analyses of the multivariate data sets, different 
clusters of microorganisms were identified. For the purely 
taxonomic analysis, two exclusive clusters of microorgan-
isms were identified: one group included microorgan-
isms associated with acetoclastic archaea, while another 
group was associated with hydrogenotrophic archaea 
and related to syntrophic acetate-oxidizing bacteria. 
However, the multivariate analysis based on the taxo-
nomic and chemical parameters revealed two exclusive 
microbial clusters: one including hydrolytic and acido-
genic microorganisms, and the other comprising bacteria 
related to acetogenesis (i.e. syntrophic acetate-oxidizing 
bacteria). In particular, the chemical parameters organic 
acids, ammonia, total nitrogen, chemical oxygen demand, 
the trace elements Fe, Mo and the macronutrient P sig-
nificantly influenced the formation of the respective AD 
microbiome. Among the operational parameters, tem-
perature, reactor type, substrate composition and quan-
tity have a major influence on the microbiome, but only 
on the formation of certain microorganisms in the AD 
system. Further, the reactor type with separate acidifica-
tion stood out due to its unexpected behaviour. Despite 
maximizing the organic loading rate in the hydrolytic 
pretreatments, these stages converted into extremely 
robust methane production units. Microbial clusters 
were generally highly dynamic depending on whether 
taxonomic, chemical or operational parameters were 
combined. Overall, this work identifies the most impor-
tant microbial players for a wide range of AD systems.
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