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Abstract 

Background Limonene has a variety of applications in the foods, cosmetics, pharmaceuticals, biomaterials, and bio‑
fuels industries. In order to meet the growing demand for sustainable production of limonene at industry scale, it 
is essential to find an alternative production system to traditional plant extraction. A promising and eco‑friendly 
alternative is the use of microbes as cell factories for the synthesis of limonene.

Results In this study, the oleaginous yeast Yarrowia lipolytica has been engineered to produce d‑ and l‑limonene. 
Four target genes, l‑ or d‑LS (limonene synthase), HMG (HMG‑CoA reductase), ERG20 (geranyl diphosphate synthase), 
and NDPS1 (neryl diphosphate) were expressed individually or fused together to find the optimal combination 
for higher limonene production. The strain expressing HMGR and the fusion protein ERG20‑LS was the best limonene 
producer and, therefore, selected for further improvement. By increasing the expression of target genes and optimiz‑
ing initial OD, 29.4 mg/L of l‑limonene and 24.8 mg/L of d‑limonene were obtained. We also studied whether per‑
oxisomal compartmentalization of the synthesis pathway was beneficial for limonene production. The introduction 
of d‑LS and ERG20 within the peroxisome improved limonene titers over cytosolic expression. Then, the entire MVA 
pathway was targeted to the peroxisome to improve precursor supply, which increased d‑limonene production 
to 47.8 mg/L. Finally, through the optimization of fermentation conditions, d‑limonene production titer reached 
69.3 mg/L.

Conclusions In this work, Y. lipolytica was successfully engineered to produce limonene. Our results showed 
that higher production of limonene was achieved when the synthesis pathway was targeted to the peroxisome, 
which indicates that this organelle can favor the bioproduction of terpenes in yeasts. This study opens new avenues 
for the efficient synthesis of valuable monoterpenes in Y. lipolytica.
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Background
Limonene is a well-known monoterpene composed of 
two isoprene (C5) units. Both optical forms of limonene 
are present in essential oils derived from various plant 
species. The main application of limonene has been 
as flavor and fragrance ingredients in cosmetics and 
foods. The flavor characteristics can vary depending 
on the chirality and source of limonene [1, 2]. As well 
as its traditional use as a flavor, limonene has diverse 
applications in pharmaceuticals as anti-microbial and 
anti-cancer compounds, and in chemical and food 
industries as a resin and masticatory agent [2–4]. Fur-
thermore, polymers derived from limonene are utilized 
in various industries as adhesives, sealants, metal coat-
ings, and printing inks [2]. In addition, limonene serves 
as a precursor for valuable compounds such as perillyl 
alcohol, menthol, carveol, and α-terpineol, which have 
significant applications in the foods, cosmetics, phar-
maceuticals, biomaterials, and biofuels industries [5]. 
Therefore, there is a growing demand for sustainable 
production of limonene at a large scale to meet these 
diverse industry needs.

Plants have traditionally been the primary sources of 
limonene and other terpenes. However, plant-derived 
production faces several limitations including low yield, 
dependency on seasonal and climatic conditions, high 
production costs (including downstream processing), and 
environmental pollution resulting from complex extrac-
tion processes [2, 6]. Chemical synthesis of limonene also 
suffers from its own drawbacks including high energy 
consumption or environmental damage [1, 2, 6]. There-
fore, the microbial production of limonene by synthetic 
biology has emerged as a promising alternative in terms 
of sustainability and economic feasibility. Various strat-
egies have been employed to produce limonene, includ-
ing overexpressing heterologous or native genes in target 
pathways, increasing the copy number of limonene syn-
thase genes and improving the tolerance to limonene [4, 
6, 7]. However, despite these efforts, achieving a high pro-
duction of limonene still remains a significant challenge.

The selection of a suitable microbial host plays a cru-
cial role in bioproduction. Factors such as the presence 
of native precursor pathways, tolerance to intermediate 
and final compounds, and genetic amenability are impor-
tant considerations in this selection process. Yarrowia 
lipolytica, a non-conventional yeast, possesses distinctive 
traits that makes it a good host for industrial bioproduc-
tion [8–10]. Due to its safety, robustness, efficient genetic 
modifications, and broad range of possible substrates, 
Y.  lipolytica has strengths as a host microorganism for 
bioproduction [8, 10]. In addition, high carbon flux 
toward acetyl coenzyme A (acetyl-CoA) and NADPH and 
a hydrophobic microenvironment make Y.  lipolytica an 

organism of choice for terpene or lipid production [7, 8, 
11, 12].

In Y. lipolytica, the production of limonene has been 
achieved by introducing heterologous limonene syn-
thases (LS) from diverse origins. Since the sole expres-
sion of LS was insufficient to have the desired levels 
of production in many cases, further metabolic engi-
neering strategies have been employed. These include 
overexpressing genes in the mevalonate (MVA) path-
way to boost the limonene precursors and expressing 
the limonene synthase genes at high copy numbers. To 
improve acetyl-CoA and upregulate the MVA pathway, 
Arnesen and colleagues overexpressed several native or 
heterologous genes encoding ACL1 (ATP citrate lyase), 
ACS (acetyl-CoA synthetase from Salmonella enterica), 
HMG (3-hydroxy-3-methylglutaryl-CoA reductase), 
ERG12 (mevalonate kinase), IDI (isopentyl diphosphate 
isomerase), ERG20 (farnesyl diphosphate synthase, 
mutated), and lowered the expression of SQS (squalene 
synthase) in Y. lipolytica [11]. The expression of LS from 
Perilla frutescens in this platform strain resulted in the 
production of 35.9  mg/L of limonene. In another study, 
the carbon flux from isopentenyl diphosphate (IPP) and 
dimethylallyl diphosphate (DMAPP) was redirected 
towards neryl diphosphate (NPP) by introducing NPP 
synthase (NDPS1 from Solanum lycopersicum) into Y. 
lipolytica [12]. Through a combination of strain engi-
neering, involving the overexpression of d-LS, HMG1, 
and ERG12, and media optimization including testing 
different carbon sources and using a dodecane over-
lay, the limonene production reached 23.56  mg/L. The 
same group further developed the strain by express-
ing two copies of d-LS and optimizing the fermenta-
tion condition resulting in an increase in limonene up to 
165.3 mg/L [13]. In efforts to enhance the cost-effective-
ness of limonene production, low-cost substrates have 
been utilized in combination with metabolic engineer-
ing strategies in Y. lipolytica. In these studies, limonene 
production levels of 20.57  mg/L and 91.24  mg/L were 
produced from lignocellulosic hydrolysates and waste 
cooking oils, respectively [14, 15].

In this study, we present two distinct strategies for 
enhancing limonene production in Y. lipolytica. The first 
strategy involves the fusion of limonene synthase and 
ERG20m to improve limonene production. The multi-
cassette overexpression of MVA pathway genes coupled 
with the fusion enzyme was shown as an effective strat-
egy in increasing limonene production. The second strat-
egy focuses on compartmentalizing limonene production 
within the peroxisome. This approach aims to minimize 
competition between native metabolic pathways and 
limonene synthesis. By implementing the MVA pathway 
in the peroxisome along with LS, a significant increase 
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in limonene production was shown. In addition, we have 
optimized the culture condition for our best-performing 
strain to maximize production.

Results
Selection of MVA gene to boost limonene production
In this study, we expressed two limonene synthases 
(d-form from Citrus limon, l-form from Mentha spicata) 
in Y. lipolytica after codon-optimization. Previous stud-
ies have demonstrated that the production of monoter-
pene often requires the expression of genes in the MVA 
pathway, as well as the heterologous limonene synthase 
gene, to provide the necessary precursor pools (Fig. 1a). 
Thus, we specifically targeted three genes, HMGR, 
ERG20, and NDPS1 to improve the limonene synthe-
sis. HMGRp (3-hydroxy-3-methylglutaryl-Coenzyme 
A reductase) has been identified as a key enzyme for 
terpene synthesis [7, 15]. In previous studies, the trun-
cation of the N-terminal domain of HMGRp leads to 
increased terpene production by providing better solu-
ble expression [16]. In our study, we utilized the trun-
cated version of HMPRp (tHMGRp) to assess its impact 
on limonene production. ERG20p (geranyl diphosphate 
synthase) is a bifunctional enzyme responsible for two 
consecutive reactions that form GPP and FPP. Overex-
pression of ERG20 often resulted in a moderate increase 

on monoterpene production because the GPP pool is 
insufficient. Mutations in ERG20p (ERG20F88W−N119W, 
ERG20m in this study) have been found to enhance GPP 
availability resulting in higher levels of monoterpenes 
in S. cerevisiae and Y. lipolytica [11, 12, 17, 18]. In addi-
tion, we considered employing an alternative pathway, 
known as the orthogonal pathway, to bypass the native 
sterol pathway to improve the limonene synthesis. This 
approach involved the overexpression of NDPS1 from 
Solanum lycopersicum to synthesize neryl diphosphate 
(NPP), an alternative precursor [19]. The biosynthesis 
of monoterpene derived from NPP has demonstrated an 
increase in monoterpene production in S. cerevisiae and 
Y. lipolytica [12, 19]. Furthermore, enzyme fusion has 
been investigated as a strategy to facilitate the conversion 
of precursors into terpenes [1, 6]. Thus, we expressed 
two fusion enzymes, ERG20m/(d)-LS or ERG20m/(l)-LS 
which fused ERG20m to N-term of limonene synthase 
with linker ‘GSGSGSGSGS’, to evaluate their potential for 
improving limonene production.

In the case of l-limonene, we observed that limonene 
production was only detected in the strain harboring the 
fusion enzyme ERG20m/(l)-LS and tHMGRp, as shown 
in Fig. 2. However, the combination of enzymes such as 
tHMGR, ERG20m with (l)-LS, or tHMGR, NDPS1 with 
(l)-LS did not result in limonene production. Regarding 
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d-limonene, the overexpression of tHMGR, ERG20m, 
and (d)-LS led to a very low level of d-limonene. However, 
when NDPS1 was overexpressed instead of ERG20m, 
d-limonene production was not observed. Interestingly, 
the fusion of ERG20m and (d)-LS (S1172) exhibited a 
14.8-fold increase in limonene production compared to 
individual overexpression (S1188). Further overexpres-
sion of NDPS1 (S1175) did not result in an increase in 
limonene production. The introduction of the orthogonal 
pathway by overexpressing NDPS1 commonly had a neg-
ative effect on the production of both l- and d-limonene 
in this study.

Increase the expression level
To enhance the production of limonene, we conducted 
multiround integration of the best producing cas-
sette, tHMGR and the fusion enzyme of ERG20m and 
LS, as illustrated in Fig.  3a. Three expression cassettes 
of selected genes with different selective markers were 
randomly integrated in the genome of Y.  lipolytica. By 
increasing the number of transformation events with the 
expression cassettes with different selective markers, we 
observed a significant increase in both forms of limonene 
(l- and d-) by 51.8- and 5.3-fold, respectively (Fig 3b). To 
further investigate the potential for increased produc-
tion and to demonstrate the effect more clearly, we cul-
tivated the strains under conditions with a high glucose 
concentration  (4%) and a high initial OD of 1.0. Under 
this condition, multi-cassette integration led to a 15.2- 
and 16.0-fold increase in l- and d-limonene, respec-
tively (Fig 3b). The highest production reached 29.4 mg/L 
in l-limonene from the S2341 strain and 24.8  mg/L of 
d-limonene from the S2343 strain. These findings high-
light the effectiveness of increasing expression level in 
enhancing the production of both l- and d-limonene.

Compartmentalization of limonene synthesis
Peroxisome has been identified as a promising organelle 
for terpene production [20]. This is primarily attrib-
uted to its high abundance of acetyl-CoA derived from 
β-oxidation and its ability to sequester toxic molecules, 
thereby detoxifying the rest of the cell [21–23].

To localize the expression of two genes, D-LS and 
ERG20m, in the peroxisome of Y. lipolytica, a peroxiso-
mal targeting sequence (PTS1, MGAGVTEDQFKSKL 
from ICL1) was added [24]. Individual expressions of 
Dd-LS and ERG20m in the peroxisome (S2644) yielded 

Fig. 2 The effects of overexpressing the native or heterologous 
genes involved in the MVA pathway on l‑ and d‑limonene production. 
l‑limonene is in navy and d‑limonene is in dark yellow. The strains 
were cultivated in a YPG (2% glycerol) medium for 5 days. The values 
show the average and standard deviation of two biological replicates
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the highest limonene production at 3.4  mg/L with-
out changes in cell growth (Fig.  4a). This co-expression 
resulted in a 14.9-fold increase in limonene production 
compared to the single overexpression of d-LS (S2642). 
Notably, the expression of fusion enzyme ERG20m/d-
LS in peroxisome (S2649) led to a 4.8-fold increase in 
limonene production compared to the single overex-
pression of d-LS (S2642), but the level of limonene was 
lower than those observed in the individual expression of 
ERG20m and d-LS (S2644).

The single-layer membrane of peroxisome allows for 
the passage of low molecular weight compounds, facili-
tating the utilization of intermediates from cytosol for 
limonene production. The overexpression of key enzymes 
(d-LS and ERG20m) in peroxisome enabled the produc-
tion of limonene by utilizing intermediates from cytosol. 
To test the availability of a high pool of intermediates in 
the MVA pathway, several combinations of genes in the 
MVA pathway were overexpressed in the cytosol along 
with d-LS and ERG20m in the peroxisome. The produc-
tion of limonene was increased from 0.5  mg/L to 3.0, 
4.2, and 11.9  mg/L by overexpressing tHMG + ERG20, 
tHMG + ERG8 + ERG12, and tHMG + ERG8 + ERG20, 
respectively. Among the combinations tested in this 
study, the overexpression of tHMGR, ERG8, and ERG12 
in the cytosol (S2948) resulted in the highest increase in 
limonene production, reaching a level 39.7 times higher 
than that without the boosting of the cytosolic MVA 
pathway (S2644). The results suggest that the precursors 

of limonene can be translocated from cytosol to peroxi-
some in Y. lipolytica as previously observed in S. cerevi-
siae [21].

To investigate whether a direct precursor supply in the 
peroxisome can lead to further improved limonene syn-
thesis, the entire MVA pathway was overexpressed in the 
peroxisome using two different PTSs. PTS2 (GGGSSKL) 
was utilized to localize the entire MVA pathway in the 
peroxisome [22]. In addition, both PTS1 and PTS2 were 
employed for the expression of D-LS to determine which 
PTS is more effective for limonene production. The 
expression of the entire MVA pathway in the peroxisome 
resulted in a significant increase in limonene produc-
tion compared to co-expression of d-LS and ERG20m 
in peroxisome (S2644). There was a 102.6-fold increase 
in limonene production from d-LSPTS1 and a 159.3-fold 
from d-LSPTS2 compared to the control. The highest 
limonene titer reached 47.8  mg/L in the strain S3471, 
which is 8.1 times higher than the best-performing strain 
achieved by a multiround integration in the cytosol 
(S2343) under this experimental condition.

Fed‑batch fermentation
We evaluated the D-limonene production of the best-
performing strain (S3471) harboring the peroxisomal 
pathway in fed-batch cultivation. The fed-batch fermen-
tations were performed using a YP media with an ini-
tial glucose concentration of 100  g/L. Glucose was fed 
to maintain the level around 20  g/L. The fed-batch 
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fermentation resulted in a continuous accumulation of 
d-limonene that was proportional to the biomass (Fig. 5). 
The highest titer of d-limonene, 69.3 mg/L, was achieved 
at 120 h of cultivation which represents the production of 
d-limonene at 1.81 mg/g DCW. The result demonstrated 
that peroxisomal engineering and fed-batch cultiva-
tion are promising strategies for limonene production in 
Y. lipolytica.

Discussion
Limonene boasts a substantial industrial exploitation 
value, finding applications in the fragrance, pharmaceu-
tical, and food industries [1, 25, 26]. While traditionally 
sourced from plants, there is a growing interest in micro-
bial production circumventing the drawbacks associated 
with plant-derived extraction. However, the microbial 
synthesis of limonene has posed challenges, primar-
ily coming from the low expression of the heterologous 
enzyme, competition with native metabolic pathways, the 
inherent toxicity of limonene to host cells, and so on [1]. 
Previous research endeavors into limonene biosynthesis 
have explored diverse strategies, including enhancing the 
MVA pathway, increasing acetyl-CoA availability, and 
mitigating the toxicity of limonene. Here, we explored 
the biosynthesis of limonene within cytosol or the per-
oxisome of Y. lipolytica as a promising strategy to address 
these challenges.

For cytosolic production of limonene, we elevated the 
expression of key enzymes, namely LS, tHMGR, and 
ERG20m. The sole expression of LS did not yield detect-
able limonene which is consistent with prior studies. 
However, limonene was detected upon co-expression of 
a fusion protein comprised of ERG20m and LS, which 
was not the case in the separate expression of these two 
enzymes. It is noteworthy that protein fusion, a strategy 

often employed for enzymes catalyzing sequential reac-
tions, serves to enhance substrate channeling, minimize 
intermediates loss, and thus improve overall enzyme 
activity. This approach has previously had demonstrated 
success in the production of various terpenes including 
farnesene, geraniol, and sabinene [16, 18, 27]. Particu-
larly in the context of monoterpene synthesis, the limited 
availability of GPP, a pivotal precursor for monoterpene 
production, has been identified as a bottleneck due to the 
bifunctional enzyme ERG20p. This enzyme’s proclivity 
for diverting GPP towards the formation of FPP rather 
than monoterpene compounds can lead to inefficien-
cies in monoterpene synthesis. The fusion of ERG20p 
and LSp, as applied in this study, offers a solution by 
promptly sequestering GPP and directing its conver-
sion to limonene before it can be used in FPP synthesis. 
Furthermore, the significant enhancement of limonene 
production, by 5.3- and 51.8-fold, was achieved through 
the elevated expression of target genes by multiple inte-
gration. This strategy represents a synergistic approach 
that combines the strengthening of the upstream path-
way, fusion protein-mediated precursor supply, and the 
enhancement of expression of the key enzymes. These 
results align with previous studies that have improved the 
production of target compounds [14, 22, 28].

Utilizing organelle engineering to compartmentalize 
partial or complete biosynthetic pathways presents dis-
tinct advantages when compared to rewiring cytoplasmic 
metabolic pathways. This approach offers a conducive 
physicochemical environment for target compound 
synthesis, ensuring an adequate supply of precursors 
or enzymes [22, 29]. Peroxisomes, in particular, emerge 
as a valuable organelle for terpene production, owing 
to their rich reserves of acetyl-CoA, a critical precur-
sor for terpene biosynthesis. In addition, the separation 
of monoterpene synthesis from GPP within peroxisome, 
distinct from the native pathway employing GPP in 
cytosol, effectively minimizes competition [21]. In this 
study, we introduced LS into the peroxisome both with 
and without the inclusion of MVA pathway enzyme. The 
overexpression of D-LS and ERG20m within peroxisome 
led to an enhancement in limonene production, yielding 
3.4 mg/L. This represents a significant improvement over 
strains expressing the target genes in the cytosol (Fig. 2), 
underscoring the efficacy of peroxisome-based engineer-
ing for monoterpene synthesis. Additional overexpres-
sion of MVA pathway genes in the cytosol also showed 
an increase in the limonene titer, ranging from 10- to 
39.5-fold, a finding consistent with the previous study 
carried out in S. cerevisiae [21]. This suggests that inter-
mediates from the MVA and terpene biosynthetic path-
ways can be effectively transported into the peroxisome 
in Y. lipolytica. To further enhance precursor transport, 
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the implementation of engineering strategies, such as 
channeling proteins, including peroxisomal ATP-binding 
cassette transporters (PXA1 and PXA2), can be consid-
ered to increase production further [30]. We observed a 
substantial increase in limonene production through the 
incorporation of the entire MVA pathway within the per-
oxisome, achieving 47.8  mg/L. This shows the potential 
of peroxisomes as a key organelle for monoterpene pro-
duction in Y. lipolytica. Future strategies may include 
peroxisome engineering to increase its size and quan-
tity [29] and the optimization of cofactor supply (ATP, 
NADPH) [22, 26, 30].

Monoterpenes, including limonene, often exhibit tox-
icity to cells by affecting membrane integrity, a phenom-
enon recognized as a significant impediment to achieve 
high-titer production [1, 3]. In this study, we applied a 
two-phase cultivation approach, incorporating dodecane 
to mitigate the toxic effect of the produced limonene 
on the cell. However, even with the dodecane phase, we 
observed a reduction in biomass in the strain containing 
the MVA pathway within the peroxisome. This might be 
attributed to an internal metabolic imbalance and exter-
nal environment interference, potentially stemming from 
metabolic burden [25]. This result contrasts with previ-
ous result where growth was maintained after the implan-
tation of the entire MVA pathway within peroxisome for 
producing sesquiterpene, α-humulene, in Y. lipolytica 
[22]. In other contexts, engineering peroxisomes as a 
production module for fatty alcohol in Ogataea poly-
morpha resulted in reduced growth [30]. However, the 
introduction of further engineering strategies aimed at 
reducing stress on peroxisome homeostasis, enhancing 
precursor and cofactor supply, led to improved growth 
and production. Consequently, further peroxisome engi-
neering holds promise for alleviating limonene toxicity 
and improving biomass and production.

To further enhance limonene production, it would be 
interesting to explore several strategies aimed at increas-
ing acetyl-CoA levels, a tactic previously demonstrated 
to be effective for improving the production of farnesene 
and squalene [31–34]. Moreover, it is important to con-
sider that monoterpene synthesis necessitates four mole-
cules of NADPH, six molecules of ATP, and six molecules 
of acetyl-CoA. Therefore, engineering cofactor avail-
ability by modifying the pentose phosphate pathway or 
inhibiting NADPH-consuming pathway may contribute 
to more efficient and productive limonene biosynthesis, 
as shown in S. cerevisiae [25, 26].

Conclusions
Limonene is of great interest in the field of biotechnol-
ogy due to its versatile application. However, achiev-
ing microbial production of limonene at economically 

feasible titers remains a substantial challenging. Here, Y. 
lipolytica was engineered to produce limonene by meta-
bolic engineering both in the cytosol or peroxisome. By 
combining precursor supply enhancements with elevated 
gene expression, we accomplished the biosynthesis of 
d- and l-limonene, yielding 24.8  mg/L and 29.4  mg/L, 
respectively, in flask cultivation. Notably, the strategic 
incorporation of peroxisomal compartmentalization 
elevated d-limonene production, reaching 47.8  mg/L in 
flask cultivation. Through the fed-batch fermentation, we 
achieved a yield of 69.3 mg/L of d-limonene. This study 
presents a pioneering approach of using peroxisomes as 
a platform for limonene production in Y. lipolytica and 
opens new avenues for the efficient synthesis of other 
monoterpenes in Y. lipolytica via harnessing the high 
potential of organelle compartmentalization strategies.

Materials and methods
Strains, media, and culture conditions
The E. coli strain DH5α and TOP10 were used as the host 
in this study for the cloning and plasmid construction. 
E. coli strains were grown at 37 °C in Luria–Bertani (LB) 
medium (containing 1% tryptone, 0.5% yeast extract, and 
1% sodium chloride) or on an LB agar plate. When nec-
essary, appropriate antibiotics such as chloramphenicol, 
spectinomycin, ampicillin, or kanamycin were added at 
concentrations of 34 µg/mL, 50 µg/mL, 100 µg/mL, and 
50 µg/mL, respectively.

Y. lipolytica was routinely grown at 30  °C in YPD 
medium which consists of 1% yeast extract, 2% peptone, 
and 2% glucose, or yeast synthetic medium (YNBD) 
which includes 0.17% yeast nitrogen base without amino 
acids and ammonium sulfate, 0.5% ammonium chlo-
ride, 50  mM phosphate buffer  (KH2PO4–Na2HPO4, 
pH 6.8), and 2% glucose. To prepare the solid medium, 
1.5% agar was added to the respective liquid medium. To 
complement auxotrophic processes, uracil, leucine, or 
tryptophan was added at a concentration of 0.1  g/L, as 
necessary. The strains and plasmids used in this study are 
listed in Table 1.

Construction of plasmids
Restriction enzymes were obtained from New Eng-
land Biolabs (Ipswich, MA, USA). PCR amplifications 
were performed in a PCR ProFlex™ (Applied Biosys-
tems, Waltham, USA) with GoTaq DNA polymerases 
(Promega, Madison, USA) and Q5 High-Fidelity DNA 
Polymerase (New England Biolabs, Ipswich, USA). PCR 
fragments were purified with a QIAgen Purification Kit 
(Qiagen, Hilden, Germany).

The heterologous genes, (d)-Limonene synthase (Citrus 
limon, Sequence ID: AAM53946.1), (l)-LS (Mentha spi-
cata, Sequence ID: AAC37366.1), and NDPS1 (Solanum 
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Table 1 Plasmids and strains used in this study

Plasmid Description References

RLA P995 ZUS1.2‑pTEF‑ERG20‑TLip2 This study

RLA P996 ZUS1.2‑pTEF‑ERG20/(D)LS‑TLip2 This study

RLA P997 ZUS1.2‑pTEF‑ERG20/(L)LS‑TLip2 This study

RLA P998 ZUS1.2‑pTEF‑NDPI‑TLip2 This study

RLA P999 ZUS1.2‑pTEF‑(D)LS‑TLip2 This study

RLA P1000 ZLA2.II‑pTEF‑tHMG‑TLip2‑pTEF‑ERG20/(L)LS‑TLip2 This study

RLA P1001 ZLA2.II‑pTEF‑tHMG‑TLip2‑pTEF‑ERG20/(D)LS‑TLip2 This study

RLA P1022 ZUS1.1‑pTEF‑tHMG‑TLip2 This study

RLA P1063 ZUS1.3‑pTEF‑ERG20/(D)LS‑TLip2 This study

RLA P1064 ZUS1.3‑pTEF‑ERG20/(L)LS‑TLip2 This study

RLA P1065 ZUA2.III pTEF‑tHMG‑TLip2‑pTEF‑NDPI‑TLip2‑pTEF‑Erg20/(L)LS‑TLip2 This study

RLA P1226 pZLA2.III‑pTEF‑tHMG‑TLip2‑pTEF‑ERG8‑TLip2‑pTEF‑ERG19‑TLip2 This study

RLA P1440 pZLA2.II‑pTEF‑tHMG‑TLip2‑pTEF‑ERG20‑TLip2 This study

RLA P1441 ZLA2.III‑pTEF‑tHMG‑TLip2‑pTEF‑ERG20‑TLip2‑pTEF‑(L)LS‑TLip2 This study

RLA P1442 ZLA2.III‑pTEF‑tHMG‑TLip2‑pTEF‑NDPI‑TLip2‑pTEF‑(L)LS‑TLip2 This study

RLA P1534 ZLA2.III‑pTEF‑tHMG‑TLip2‑pTEF‑ERG8‑TLip2‑pTEF‑ERG12‑TLip2 This study

RLA P2224 ZUS1.1‑pTEF‑ERG20pero‑TLip2 This study

RLA P2225 ZUS1.2‑pTEF‑(D)LSpero‑TLip2 This study

RLA P2229 ZLS1.1‑pTEF‑ERG20pero‑TLip2 This study

RLA P2232 ZUS1.2‑pTEF‑ERG20/(D)LSpero‑TLip2 This study

RLA P2693 ZUA2.III‑pTEF‑IDI‑TLip2‑pTEF‑ERG20‑TLip2‑pTEF‑ERG19‑TLip2 This study

RLA P2695 ZTA2.III‑pTEF‑ERG10‑TLip2‑pTEF‑(D)LS‑TLip2‑pTEF‑ERG13‑TLip2 This study

RLA P2697 ZT4A2.III‑pTEF‑ERG10‑TLip2‑pTEF‑(D)LSpero‑TLip2‑pTEF‑ERG13‑TLip2 This study

RLA P2698 ZT4A2.III‑pTEF‑ERG10‑TLip2‑pTEF‑(D)LSpero2‑TLip2‑pTEF‑ERG13‑TLip2 This study

RLA P2749 ZLA2.III‑pTEF‑tHMGpero‑TLip2‑pTEF‑ERG8pero‑TLip2‑pTEF‑ERG12pero‑TLip2 This study

RLA P2750 ZUA2.III‑pTEF‑IDIpero‑TLip2‑pTEF‑ERG20pero‑TLip2‑pTEF‑ERG19pero‑TLip2 This study

RLA P2752 ZTA2.III‑pTEF‑ERG10pero‑TLip2‑pTEF‑(D)LSpero‑TLip2‑pTEF‑ERG13pero‑TLip2 This study

RLA P2753 ZTA2.III‑pTEF‑ERG10pero‑TLip2‑pTEF‑(D)LSpero2‑TLip2‑pTEF‑ERG13pero‑TLip2 This study

Y. lipolytica Description This study

RLA S3 Po1d MATA ura3‑302 leu2‑270 xpr2‑322 This study

RLA S1708 Po1d MATA ura3‑302 leu2‑270 xpr2‑322 Δtrp4 This study

RLA S1171 Po1d ZLA‑pTEF‑tHMG‑TLip2‑pTEF‑Erg20/(L)LS‑TLip2 + URA3 This study

RLA S1172 Po1d ZLA‑pTEF‑tHMG‑TLip2‑pTEF‑Erg20/(D)LS‑TLip2 + URA3 This study

RLA S1173 Po1d ZLA‑pTEF‑tHMG‑TLip2‑pTEF‑NDPI‑TLip2‑pTEF‑(D)LS‑TLip2 + URA3 This study

RLA S1175 Po1dZUA‑pTEF‑tHMG‑TLip2‑pTEF‑NDPI‑TLip2‑pTEF‑Erg20/(D)LS‑TLip2 + LEU2 This study

RLA S1176 Po1d ZUA‑pTEF‑tHMG‑TLip2‑pTEF‑NDPI‑TLip2‑pTEF‑Erg20/(L)LS‑TLip2 + LEU2 This study

RLA S1185 po1d + ZLA2.III‑pTEF‑tHMG‑TLip2‑pTEF‑NDPI‑TLip2‑pTEF‑(L)LS‑TLip2 + URA3 This study

RLA S1186 po1d + ZLA2.III‑pTEF‑tHMG‑TLip2‑pTEF‑NDPI‑TLip2‑pTEF‑(D)LS‑TLip2 + URA3 This study

RLA S1187 po1d + ZLA2.III‑pTEF‑tHMG‑TLip2‑pTEF‑ERG20‑TLip2‑pTEF‑(L)LS‑TLip2 + URA3 This study

RLA S1188 po1d + ZLA2.III‑pTEF‑tHMG‑TLip2‑pTEF‑ERG20‑TLip2‑pTEF‑(D)LS‑TLip2 + URA3 This study

RLA S2285 Po1d pTEF‑tHMG‑TLip2‑pTEF‑Erg20/(L)LS‑TLip2 This study

RLA S2286 Po1d pTEF‑tHMG‑TLip2‑pTEF‑Erg20/(D)LS‑TLip2 This study

RLA S2341 Po1d (pTEF‑tHMG‑TLip2‑pTEF‑Erg20/(L)LS‑TLip2)X3cassettes This study

RLA S2343 Po1d (pTEF‑tHMG‑TLip2‑pTEF‑Erg20/(D)LS‑TLip2)X3cassettes This study

RLA S2642 Po1d ZUS1.2‑pTEF‑(D)LSpero‑Tlip2 + LEU2 This study

RLA S2644 Po1d ZUS1.2‑pTEF‑(D)LSpero‑TLip2 ZLS1.1‑pTEF‑ERG20pero‑TLip2 This study

RLA S2649 Po1d ZUS1.2‑pTEF‑(D)LSpero‑Tlip2 + LEU2 This study

RLA S2945 Po1d ZUA2.II‑pTEF‑(D)LSpero‑TLip2‑pTEF‑ERG20pero‑TLip2 + ZLA2.II‑pTEF‑tHMG‑TLip2‑pTEF‑ERG20‑TLip2 This study

RLA S2948 Po1d ZUA2.II‑pTEF‑(D)LSpero‑TLip2‑pTEF‑ERG20pero‑TLip2 + ZLA2.II‑pTEF‑tHMG‑TLip2‑pTEF‑ERG8‑TLip2‑pTEF‑ERG12‑TLip2 This study
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lycopersicum, Sequence ID: 7VPC_A) were codon opti-
mized to Y. lipolytica and then synthesized by TWIST 
Biosciences HQ (CA, USA). Native genes were amplified 
from Y. lipolytica by PCR. The sequences of heterologous 
proteins are listed in the supplementary Table 1.

The plasmids used in this study were constructed by 
Golden Gate Assembly, as described in Yuzbashev et al. 
[35]. In brief, each gene was cloned to Lv0 plasmid using 
BsmBI. Lv1 plasmid containing the specific overhang for 
Lv2 plasmid was then constructed by assembling the Lv0 
plasmid of promoter, gene, and terminator using BsaI. 
Finally, the Lv2 plasmid containing two or three tran-
scription units was constructed using BsmBI. To verify 
the correct construction of plasmids, colony PCR and 
digestion by restriction enzyme were carried out. The 
primers used for cloning and verification are listed in 
supplementary Table 2.

Construction of Y. lipolytica strains
To introduce gene expression cassette into Y. lipolytica, 
the plasmids were first linearized using NotI and then 
transformed into competent cells using the lithium ace-
tate/DTT method. The gene expression cassettes were 
randomly integrated into the genome of Y. lipolytica 
with the zeta sequence. Transformants were selected on 
YNBD media containing the appropriate amino acids 
for their specific genotype. Positive transformants were 
then confirmed by colony PCR with Phire Plant Direct 
PCR master mix (Thermo Fisher, Waltham, USA). The 
removal of the selection marker was carried out via the 
Cre-LoxP system.

Cultivation of Y. lipolytica for producing limonene at flask 
scale
Y. lipolytica seed cultures were cultivated overnight at 
28  °C and 220  rpm in 50  mL culture tubes containing 
5 mL of YNBD media, supplemented with the appropri-
ate amino acids if necessary. Pre-cultured cells were inoc-
ulated with initial OD at 0.05 in 50  mL of YP medium 

consisting of 10  g/L yeast extract and 20  g/L peptone 
with either glucose (40 g/L) or glycerol (20 g/L) as sub-
strate and cultivated at 28  °C and 220  rpm. An overlay 
of 20% (v/v) dodecane was added to each flask, and the 
flasks were covered with aluminum foil and sealed with 
parafilm to prevent the evaporation. We used two bio-
logical replicates and calculated the value of average and 
standard deviation.

Cultivation of Y. lipolytica for producing limonene 
at a bioreactor scale
The strain was initially cultivated in YNBD medium at 
28  °C and 220 rpm overnight. Subsequently, the culture 
was inoculated into 2000  mL YPD medium (10% glu-
cose) within a 6.6 L Sartorius BIOSTAT bioreactor (Sar-
torius, Germany), incorporating a 20% (v/v) dodecane 
phase as an organic extractant. Fermentation conditions 
were maintained at 28 °C, with agitation speeds ranging 
from 300 to 900 rpm and an airflow of 2 Lpm, while pH 
was adjusted to 5.4 using 20% (w/v) KOH or 20% (w/v) 
 H3PO4. A fed-batch strategy was implemented, main-
taining glucose at around 20 g/L by feeding of 70% (w/v) 
glucose.

Analysis (OD, Limonene)
Cell growth was monitored by measuring OD at 600 nm 
using either a spectrophotometer Biowave II (WPA, 
UK) or a 96-well TECAN Infinite® 200 PRO plate reader 
(TECAN, CH).

Limonene was quantified by an Accela 1250 pump 
(Thermo Fischer Scientific, USA) connected to an 
Accucore C18 column (Thermo Fischer Scientific, 
USA), heated to 60 °C, and coupled with a TSQ Quan-
tum Access MAX MS/MS mass spectrometer (Thermo 
Fischer Scientific, USA). The sample injection volume 
was 10 μL with the mobile phase consisting of 85% (v/v) 
methanol and 12% (v/v) Milli-Q water with a flow rate 
of 500 mL/min. Milli-Q water was obtained through a 
Milli-Q Millipore filter system (Millipore Co., USA). 

Table 1 (continued)

Y. lipolytica Description This study

RLA S2951 Po1d ZUA2.II‑pTEF‑(D)LSpero‑TLip2‑pTEF‑ERG20pero‑TLip2 + ZLA2.II‑pTEF‑tHMG‑TLip2‑pTEF‑ERG8‑TLip2‑pTEF‑ERG20‑TLip2 This study

RLA S3448 Po1d ZUA2.III‑pTEF‑IDI‑TLip2‑pTEF‑ERG20‑TLip2‑pTEF‑ERG12‑TLip2 + ZLA2.III‑pTEF‑tHMG‑TLip2‑pTEF‑ERG8‑TLip2‑pTEF‑
ERG12‑TLip2 ZTA2.III‑pTEF‑ERG10‑TLip2‑pTEF‑(D)LS‑TLip2‑pTEF‑ERG13‑TLip2

This study

RLA S3450 Po1d ZLA2.III‑pTEF‑tHMG‑TLip2‑pTEF‑ERG8‑TLip2‑pTEF‑ERG12‑TLip2 + ZUA2.III‑pTEF‑IDI‑TLip2‑pTEF‑ERG20‑TLip2‑pTEF‑
ERG19‑TLip2 ZTA2.III‑pTEF‑ERG10‑TLip2‑pTEF‑(D)LSpero2‑TLip2‑pTEF‑ERG13‑TLip2

This study

RLA S3470 Po1d ZLA2.III‑pTEF‑tHMGpero‑TLip2‑pTEF‑ERG8pero‑TLip2‑pTEF‑ERG12pero‑TLip2 + ZUA2.III‑pTEF‑IDIpero‑TLip2‑pTEF‑ERG‑
20pero‑TLip2‑pTEF‑ERG19pero‑TLip2 ZTA2.III‑pTEF‑ERG10pero‑TLip2‑pTEF‑(D)LSpero‑TLip2‑pTEF‑ERG13pero‑TLip2

This study

RLA S3471 Po1d ZLA2.III‑pTEF‑tHMGpero‑TLip2‑pTEF‑ERG8pero‑TLip2‑pTEF‑ERG12pero‑TLip2 + ZUA2.III‑pTEF‑IDIpero‑TLip2‑pTEF‑ERG‑
20pero‑TLip2‑pTEF‑ERG19pero‑TLip2 ZTA2.III‑pTEF‑ERG10pero‑TLip2‑pTEF‑(D)LSpero2‑TLip2‑pTEF‑ERG13pero‑TLip2

This study
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APCI was used for sample ionization, the vaporizer 
temperature was set to 450  °C, and the scan width 
was set to 1000 m/z with a scan time of 0.2 s and a MS 
acquire time of 10  min. Limonene in the dodecane 
phase was quantified by HPLC–MS/MS with a standard 
curve of limonene, with a linear response from 0.8 to 
100 mg/L. Two biological replicates were used for each 
measurement and the data presented are the calculated 
average and standard deviation.
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