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Abstract

Background: Pichia stipitis xylose reductase (Ps-XR) has been used to design Saccharomyces
cerevisiae strains that are able to ferment xylose. One example is the industrial S. cerevisiae xylose-
consuming strain TMB3400, which was constructed by expression of P. stipitis xylose reductase and
xylitol dehydrogenase and overexpression of endogenous xylulose kinase in the industrial S.
cerevisiae strain USM21.

Results: In this study, we demonstrate that strain TMB3400 not only converts xylose, but also
displays higher tolerance to lignocellulosic hydrolysate during anaerobic batch fermentation as well
as 3 times higher in vitro HMF and furfural reduction activity than the control strain USM21. Using
laboratory strains producing various levels of Ps-XR, we confirm that Ps-XR is able to reduce HMF
both in vitro and in vivo. Ps-XR overexpression increases the in vivo HMF conversion rate by
approximately 20%, thereby improving yeast tolerance towards HMF. Further purification of Ps-XR
shows that HMF is a substrate inhibitor of the enzyme.

Conclusion: We demonstrate for the first time that xylose reductase is also able to reduce the
furaldehyde compounds that are present in undetoxified lignocellulosic hydrolysates. Possible
implications of this newly characterized activity of Ps-XR on lignocellulosic hydrolysate

fermentation are discussed.

Background

Commercial production of bioethanol from lignocellu-
losic hydrolysate by yeast requires strains that (i) can fer-
ment all sugars, both hexose and pentose sugars, in the
hydroysate, and (ii) show sufficient tolerance to the inhib-
itors present in the hydrolysate [1,2]. Xylose-fermenting
Saccharomyces cerevisiae strains have been constructed by
heterologous overexpression of xylose isomerase (XI) or

xylose reductase and xylitol dehydrogenase (XR/XDH)
pathways (reviewed in [3]). While in the XI pathway,
xylose is directly converted to xylulose, in the XR/XDH
pathway xylose is initially reduced to xylitol by XR, and
then xylitol is oxidized to xylulose by XDH. So far, effi-
cient fermentation of xylose in lignocellulosic hydro-
lysates has been demonstrated for industrial S. cerevisiae
strains carrying the XR/XDH pathway only [4-8].
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In addition to hexoses and pentoses, the lignocellulosic
hydrolysates may contain phenolic derivatives, acetic acid
and the furaldehydes furfural and 5-hydroxymethyl-fur-
fural (HMF) that inhibit yeast fermentation [2,9,10]. The
effect on the metabolism in S. cerevisiae and the possible
mechanisms conferring tolerance varies according to the
nature of the inhibiting compound. For instance, toler-
ance to acetic acid is obtained by increasing ATPase activ-
ity, which pumps protons out of the cytoplasm [11],
whereas tolerance towards furaldehydes and some phe-
nolic derivatives is obtained by reduction of these com-
pounds to less toxic alcohols [12-15]. Recently, a strong
correlation between fermentation performances of S. cer-
evisiae strains in lignocellulosic hydrolysate and their abil-
ity to reduce HMF and furfural to furan-2,5-dimethanol
(FDM) and 2-furanmethanol (FM) has been highlighted
[13,16-18]. Up to now, two S. cerevisiae enzymes, the alco-
hol dehydrogenase 6 (ADHG6) and an alcohol dehydroge-
nase 1 mutant (mut-ADH1) have been identified as
enzymes responsible for the reduction of HMF and fur-
fural in S. cerevisiae [12,19]. Overexpression of such
enzymes in S. cerevisiae resulted in increased tolerance
towards HMF and lignocellulosic hydrolysates [12,18,19].

The industrial xylose-fermenting strain TMB3400 was
constructed by integration of Pichia stipitis XR/XDH path-
way in the genome of USM21 followed by random muta-
genesis [20]. In the current study, the fermentation
performance of TMB3400 was compared with the paren-
tal strain USM21 in dilute acid spruce hydrolysate. The
difference between the strains prompted us to investigate
the putative role of P. stipitis XR (Ps-XR) in the response to
furaldehyde inhibitors. In vitro and in vivo Ps-XR activity
towards HMF was investigated in strains expressing Ps-XR
at different levels and the kinetic properties of purified Ps-
XR were also determined.

Results

Fermentation performance of TMB3400 and USM2] in
spruce hydrolysate

The fermentation performance of the industrial xylose-
consuming strain TMB3400 was compared with its paren-
tal strain USM21 in dilute acid spruce hydrolysate. The
strains were grown in defined mineral medium supple-
mented with glucose and once the biomass concentration
reached approximately 2.5 g/L, a pulse addition of one
volume of spruce hydrolysate (i. e. 300 ml) was added to
the fermentor. After addition of the hydrolysate, carbon
dioxide evolution rate (CER), glucose consumption, etha-
nol production and HMF and furfural conversion were
followed (Fig. 1). Initially, the CER decreased rapidly for
both strains. This is in agreement with what has been
observed previously in similar types of addition experi-
ments with spruce hydrolysates [16]. Thereafter, the CER
was maintained at a constant level for approximately 8 h
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Figure |

Fermentation profile of the control strain USM21
(top) and the xylose-fermenting strain TMB3400
(down) in batch fermentation of dilute-acid spruce
hydrolysate. Strains were grown in defined mineral medium
until biomass concentration reached approximately 2.5 g/L.
Then hydrolysate was added at approximately time |18 hours
(dashed line). CER is represented by the continuous line. Fur-
fural (A), HMF (@), Glucose (O), Ethanol (A). Data for
USM21 is taken from [16].

for strain TMB3400, whereas it continued to decrease for
the control strain USM21 (Fig. 1). Clearly, strain
TMB3400 had a higher fermentation rate in spruce hydro-
lysate, which cannot be explained by the fermentation of
the low level of xylose that was present in the hydrolysate.
During the first 8 h after hydrolysate addition, the average
specific ethanol productivity for USM21 and TMB3400
was 0.21 (g/g/h) (data from [16]) and 0.35 (g/g/h),
respectively. The higher ethanol productivity obtained
with TMB3400 correlated with a higher HMF reduction
rate, 0.016 g/g/h compared with 0.007 g/g/h for USM21
(data from [16]). The concentration of furfural was too
low in the hydrolysate to determine any significant differ-
ence in furfural conversion.
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TMB3400 and USM21 reduction ability

The ability to ferment dilute acid hydrolysates has previ-
ously been associated with the ability to reduce furalde-
hydes [16-18]. For this reason, HMF and furfural
reduction in strains TMB3400 and USM21 were compared
by in vitro measurements using crude extracts from cells
grown aerobically in glucose. In parallel, XR activity was
measured as a control. As expected, TMB3400 showed
high XR activity while USM21 only displayed background
activity (Fig. 2). Furthermore, the cofactor preference of
Ps-XR was confirmed, i.e. XR activity was higher when
using NADPH rather than NADH as cofactor (Fig. 2) [21].
Both strains were able to reduce HMF and furfural; how-
ever TMB3400 showed higher specific activity in most
cases (Fig. 2). TMB3400 was able to reduce HMF using
NADH or NADPH as co-factor, whereas USM21 showed 3
times lower activity with HMF either using NADH or
NADPH as co-factor. NADH-dependent furfural reduc-
tion was high in both strains, but TMB3400 showed
approximately 3-fold higher NADPH-dependent activity
with furfural than USM21 (Fig. 2).

http://www.biotechnologyforbiofuels.com/content/1/1/12

In vitro HMF and furfural reduction by Ps-XR

Since the industrial strain TMB3400 was obtained from
USM21 not only by targeted integration of the xylose
pathway but also by further random mutagenesis, three S.
cerevisiae strains derived from the same strain background
without mutagenesis, which produce Ps-XR at different
levels were used to confirm that Ps-XR was the enzyme
responsible for HMF and furfural improved reduction in
TMB3400. The control strain TMB3290 does not produce
Ps-XR, whereas TMB3001 produces low level of Ps-XR and
TMB3260 overproduces Ps-XR [22]. All three strains were
grown aerobically in defined mineral medium supple-
mented with glucose and used to prepare crude cell
extracts for enzymatic measurement of xylose, HMF and
furfural reduction (Fig. 3). As expected, the control strain
showed only background activity for xylose, whereas
TMB3001 and TMB3260 shown increased specific activity
against xylose using both NADH and NADPH (Fig. 3). Ps-
XR was able to reduce HMF and furfural but the specific
activity was approximately 6 times lower than with xylose
(Fig. 3). The higher Ps-XR, the higher HMF and furfural
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Figure 2

Xylose (left graph), HMF (middle graph) and furfural (right graph) reduction activity measured in crude cell
extracts from cells of strains USM21 and TMB3400. Cells were grown aerobically overnight in defined mineral medium.
The assays were performed using NADH (top) or NADPH (bottom) as cofactor. The values are averages of two independent
measurements. The bars represent the deviation from the average.
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activity. As for TMB3400 (Fig. 2), Ps-XR HMF reduction
was coupled with NADH and NADPH whereas furfural
reduction was coupled only with NADPH (Fig. 3). Like for
xylose, NADPH-dependent HMF reduction activity was
higher than NADH-dependent activity (Fig. 3). All strains
presented a high NADH-dependent furfural reduction
activity (~1000 mU/mg), independent of Ps-XR level (Fig.
3).

In vivo HMF and furfural reduction by Ps-XR

In order to analyze the in vivo effects of Ps-XR overexpres-
sion in HMF and furfural reduction, batch fermentations
in defined medium were performed with strains
TMB3001 (control), TMB3260 (low Ps-XR) and TMB3290
(high Ps-XR) in the absence or presence of HMF or fur-
fural. In the absence of inhibitor, all strains showed simi-
lar growth rates (Table 2) and product distribution (data

http://www.biotechnologyforbiofuels.com/content/1/1/12

4). In the presence of furfural, the growth rate of the three
strains was also reduced but similar growth pattern and
product distribution were observed for the three strains
(data not shown).

XR purification and kinetic characterization

Ps-XR was purified from the overproducing strain
TMB3260 in order to determine the kinetic properties
with HMF as substrate. The purification using gel filtra-
tion and affinity chromatography (Table 3) provided a
12-fold enrichment of the enzyme to a final specific XR
activity of 8000 mU.mg protein-!. The purity of the
enzyme was confirmed by SDS-Page. The kinetics of
xylose and arabinose reduction by Ps-XR could be
described by a Michaelis-Menten model (equation 1),

v s
not shown). In the presence of HMF, the control and V= 7Kmafs (1)
TMB3001 strains presented similar grow rates whereas m
TMB3260 which overproduces Ps-XR had slightly higher
growth rate and higher HMF reduction rate (Table 2, Fig.
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Figure 3

Xylose (left graph), HMF (middle graph) and furfural (right graph) reduction activity measured in crude cell
extracts from cells of strains TMB3290 (no Ps-XR), TMB300| (low Ps-XR) and TMB3260 (high Ps-XR). Cells
were grown aerobically overnight in defined mineral medium. The assays were performed using NADH (top) or NADPH (bot-
tom) as cofactor. The values are averages of two independent measurements. The bars represent the deviation from the aver-

age.
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Table |: Saccharomyces cerevisiae strains used in the study.

http://www.biotechnologyforbiofuels.com/content/1/1/12

Strain Description Reference
USM21 Polyploid industrial strain [35]
TMB3400 USM21 (his3:: YipXR/XDH/XK) + random mutagenesis — produces XR, XDH, XK [20]
CEN.PK 113-7A Laboratory strain MATa his3-Al MAL2-8c SUC2 [36]
TMB3290 CEN.PK 113-7A (MATa his3-Al MAL2-8c SUC2) his3::YipXDH/XK — produces XDH, XK This work
TMB3001 CEN.PK 113-7A (MATa his3-Al MAL2-8c SUC2) his3::YipXR/XDH/XK — produces XR, XDH, XK [34]
TMB3260 TMB300!| PGK[p-XYLI — Overproduces XR [22]

in which the estimated Km values for xylose and arab-
inose 89.5 and 50 mM, respectively, were in agreement
with previous reports [22,23]. In contrast, HMF reduction
did not follow Michaelis-Menten kinetics as HMF concen-
trations above 60 mM appeared to strongly inhibit the
enzyme (Fig. 5). Instead, the experimental data best fitted
a substrate-inhibition model including a hill coefficient
(Equation 2; Fig. 5) [24].

(Km/s )+1+(s/K; )n

vV =

(2)

An inhibition coefficient (K;) equal to 95.0 and a hill coef-
ficient (n) = 3.51 were obtained in the calculations for the
model best fit The apparent K, and V., with HMF as sub-
strate were 40 mM and 0.37 pmol min'! mg protein‘!,
respectively. The proportion of variance (R2 = 0.95) given

by the model indicated a good fit to the experimental data
(Fig. 5).

Discussion

S. cerevisize NADPH-dependent alcohol dehydrogenase 6
(ADHG6) and NADH-dependent alcohol dehydrogenase 1
mutant (mut-ADH1) have previously been identified as
reductases able to reduce HMF, both in vitro and in vivo
[12,19]. In this work, we demonstrate that P. stipitis xylose
reductase (Ps-XR) can perform the same reaction using
either NADH or NADPH. P. stipitis XYL1 gene encoding
Ps-XR was the first XR gene to be efficiently expressed in S.
cerevisiae [25-27] and Ps-XR was purified and the kinetic
properties were determined for a wide range of substrates

Table 2: Specific growth rate and HMF consumption rate for
strains growing aerobically on glucose mineral medium
supplemented or not with 2 g/L HMF.

No HMF With HMF
n(hh u (b qHMF (g.g'.h-1)*
Control 036+001 0.0 0.00 0.36 + 0.02
Low Ps-XR 037+000 020 0.00 0.37 £ 0.02
High Ps-XR 036000 023200l 0.45 £ 0.03

*Calculated after 6 hours.

[21-23]. However, XR activity towards lignocellulosic
inhibitors has never previously been reported.

As for ADHG6 or mut-ADH1 [12,18,19], overexpression of
Ps-XR in laboratory strains increased tolerance towards
HMF and improved growth in the presence of the inhibi-
tor. However, in contrast with ADH6 and mut-ADH1, Ps-
XR could use both NADH and NADPH in HMF reduction,
which may be favorable since strict use of NADH or
NADPH by the alcohol dehydrogenases appear to change
product distribution in defined mineral medium [18].

Despite higher in vitro HMF reduction activity for the lab-
oratory strain TMB3001 than for the industrial strain TMB
3400, in vivo improvement of HMF conversion rate in lab-
oratory strains was only evident with the highest Ps-XR
activity (strain TMB3260). Variation in the HMF conver-
sion rate and fermentation performance among the indus-
trial and laboratory strains might be related with the
experimental conditions. The industrial strains were eval-
uated under anaerobic conditions in hydrolysate contain-
ing media whereas the laboratory strains were tested
under aerobic conditions in defined mineral medium
supplemented with HMF. The industrial strains were
exposed simultaneously to HMF, furfural, acetic acid and
phenolic derivatives, which can have synergistic inhibi-
tory effects on yeast [28]. Therefore the in vivo advantage
given by Ps-XR may have been more easily distinguishable
in TMB3400 than in the laboratory strains because the
industrial strains were dealing and converting different
compounds concurrently, with resulting low HMF reduc-
tion rate. The higher background for HMF and furfural
reduction activities in the control strains might also have
contributed to the absence of in vivo improvement of the
laboratory strain with low Ps-XR level (TMB3001). The
control strain USM21 had total furaldehyde reduction
activity 3.5 times lower than the control TMB3290 (~270
mU/mg protein and ~940 mU/mg protein).

A possible role of Ps-XR in the in vivo conversion of other
compounds like furfural and phenolics derivatives cannot
be excluded. For instance, the in vitro Ps-XR ability to
reduce furfuralwas demonstrated, but strains overexpress-
ing this enzyme did not show any significant improve-
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ment in the fermentation performance in the presence of
this inhibitor.

As demonstrated by kinetics studies, HMF inhibits alcohol
dehydrogenase (ADH; EC 1.1.1.1), aldehyde dehydroge-
nase (AIDH; EC 1.2.1.5) and the pyruvate dehydrogenase
(PDH) activities in vitro [29]. In our study, we demon-
strated that HMF was also a substrate-inhibitor of Ps-XR,
although the strongest inhibitory effects appeared when
concentrations above 60 mM HMF were used. Consider-
ing that HMF concentrations in different hydrolysates
vary between 10 mM and 40 mM, the HMF inhibition
effects on Ps-XR are most probably not present in vivo.
However, further studies may be required to analyze the in
vivo Ps-XR response to HMF and the intracellular HMF
level in yeast.

Conclusion

We demonstrate for the first time that Ps-XR has furalde-
hyde reduction abilities, which helps S. cerevisiae detoxify-
ing spruce hydrolysate. These results indicate a possible
advantage in using XR instead of XI pathway for the con-
struction of recombinant S. cerevisiae strains to be used in
hydrolysates with high HMF content.

Methods

Yeast strains

Saccharomyces cerevisiae strains used in this work are listed
in Table 1. The strains were maintained on agar plates
containing yeast nitrogen base medium (YNB) (Difco
YNB without amino acids 6.7 g/L) and 20 g/L glucose.

Fermentation in spruce hydrolysate

The growth medium in inoculum cultures was a defined
medium according to [30]. The hydrolysate used was pro-
duced from forest residue originating mainly from spruce
in a two-stage dilute-acid hydrolysis process using sulphu-
ric acid as the catalyst [31]. The composition of the hydro-
lysate was 24.3 g/l glucose, 12.1 g/l mannose, 2.9 g/l
galactose, 5.6 g/l xylose, 1.4 g/l arabinose, 2.0 g/l acetic
acid, 1.9 g/l HMF, and 0.5 g/ furfural. Adjustment of the
hydrolysate to pH 5 with 6 M NaOH was made prior to
use.

The inoculum cultures were grown in 300 ml cotton
plugged shake-flasks containing 100 ml media supple-
mented with 15 g/l glucose in a rotary shaker at 160 rpm

http://www.biotechnologyforbiofuels.com/content/1/1/12
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Figure 4

Glucose batch fermentation with the S. cerevisiae
strains TMB3290 (control - top), TMB3001 (low Ps-
XR - middle) and TMB3260 (high Ps-XR - bottow) in
the presence of 2 g/L HMF. Glucose (O), HMF (@), bio-
mass (CJ) and ethanol (A). The experiments were done in
duplicate and the figure shows a representative profile for
each strain.

and at 30°C for 24 h. Batch fermentations were inocu-
lated with 6 ml of the preculture and carried out in Belach
BR 0.5 fermentors (Belach Bioteknik AB, Solna, Sweden).

Table 3: Purification of Pichia stipitis XR from strain TMB3260 grown in defined mineral medium supplemented with glucose.

Method Amount Protein (mg) Total Activity (U) Specific Activity (U/mg) Purification fold
X-Press 725 4785 0.66 |
Red-Sepharose 9 325 3.6l 5.5
Gel Filtration 2.8 22.5 8.04 12.2
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Measured (black boxes) and model (line) values of
HMF conversion rate obtained with Pichia stipitis
xylose reductase.

Initial concentrations of medium components were 2.67
times higher compared to the inoculum cultures in order
to compensate for the dilution. The batch fermentations
were started by growing cells on 30 g of glucose in an ini-
tial working volume of 300 mL. Next, a single addition of
300 ml of hydrolysate was made when growth reached
mid/late exponential phase, which corresponded to a bio-
mass concentration of approximately 2.5 g/l in the reac-
tor. The stirrer speed and the temperature were 600 rpm
and 30°C, respectively. The pH was kept constant at 5.0
by addition of 0.75 NaOH. Anaerobic conditions were
obtained by continuously sparging the fermentor with 0.3
L/min nitrogen gas, which was controlled by a mass flow
meter (Bronkhurst Hi-Tec, Ruurlo, The Netherlands).

In vivo HMF and furfural reduction by Ps-XR

Inoculum cultures were grown overnight at 30°C in 250
mL cotton plugged shake-flasks with 25 mL of double-
concentrated defined mineral medium (46) supple-
mented with 40 g L1 glucose and 200 ml L! phthalate
buffer (10.2 g/L medium KH phthalate, 2.2 g/l medium
KOH). The same media was used in the growth curves,
except for the addition of 2 g/l HMF where indicated.
Growth curves were started at ODy,, 0.5 and were carried
outin 100 mL media at 30°Cin 1 L cotton plugged shake-
flasks. The stirring rate was 200 rpm. Samples for biomass
measurements were withdrawn regularly.

Biomass and metabolites

Cell concentration was determined from absorbance
measurements at 610 nm and dry-weight measurements
were made from duplicate 10 ml samples, which were
centrifuged, washed with distilled water and dried for 24
h at 105°C. The biomass concentration was correlated
with OD by the dry weight measurements. The metabolite

http://www.biotechnologyforbiofuels.com/content/1/1/12

samples were immediately centrifuged, filtered through
0.2 pum filters and stored at -20°C until analysis. The con-
centrations of ethanol, glycerol and acetic acid were ana-
lyzed using HPLC system (Waters, Milford,
Massachusetts, USA) equipped with Aminex HPX-87H
column (Bio-Rad, Hercules, California) at 45°C. The
mobile phase was 5 mM sulphuric acid with a flow of 0.6
ml/min. The concentrations of glucose, mannose, galac-
tose, xylose, arabinose, HMF and furfural were measured
on an Aminex HPX-87P column (Bio-Rad, USA) at 85°C,
eluted with ultra-pure water at 0.6 ml/min. All com-
pounds were detected with a refractive index detector,
except for HMF and furfural which were detected with a
UV-detector (210 nm). The carbon dioxide evolution rate
was monitored on-line by measuring the concentrations
of carbon dioxide and oxygen in the outgoing gas from
the reactor with a CP460 gas analyser (Belach Bioteknik
AB, Solna, Sweden). The gas analyzer was calibrated using
a gas containing 20% oxygen and 5% carbon dioxide.

Enzymatic activity measurements

Cell extracts were prepared with Y-PER reagent following
the recommendations of the supplier (Pierce, Rockford,
IL). The protein content in the cell free preparation was
determined using Micro BCA Protein Assay Kit (Pierce).
XR activity was measured in cell free extracts based on
[32]. The reaction mixture contained 115 uM NAD(P)H
and the reaction was started by adding 350 mM xylose in
100 mM Triethanolamine buffer (pH 7.0). Reductions of
HMF and furfural reduction were measured as described
in [33]. The reactions were performed in 100 mM phos-
phate buffer (pH 7.0) (50 mM KH,PO, and 50 mM
K,HPO,) and NAD(P)H was added to a concentration of
100 uM. The reaction was started by addition of 10 mM
HMF or furfural. All assays were performed at 30°C and
the oxidation of NAD(P)H was followed as the change in
absorbance at 340 nm.

Xylose reductase purification

Cells of TMB3260 from aerobic batch fermentation in 1.5
L defined medium [11] supplemented with 40 g glucose
were used as starting material for the purification of XR.
Once the culture reached early-stationary phase, the cells
were harvested and used for Ps-XR purification following
the protocol described in [22]. All purification steps were
carried out at 4°C, and 5 mM 2-mercaptoethanol was
added in all buffers to stabilize the enzyme activities. After
each purification-step the enzyme activity of the different
fractions were measured and the purification was proofed
by SDS-gel-electrophoresis.

Kinetic parameters

The kinetic constants for Ps-XR were determined using dif-
ferent substrates and NADPH as cofactor. The kinetic
parameters V.. (umol min! mg protein'!) and the
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Michaelis-Menten constant K, (mM) were estimated
using non-liner regression analysis. The non-linear least-
squares statistic tool from Microsoft-Excel (Microsoft) was
used to parameter fitting. Typically, duplicate measure-
ments at 10 different substrate concentrations spanning
the K, value were used.

Construction of TMB3290

Plasmid YIpXRXDHXK [34] containing the overexpres-
sion cassettes for XR and XDH from P. stipitis and xyluloki-
nase from S. cerevisiae was cut with BamHI. The restriction
generated 3 fragments: 1.5 Kb XR cassette, 1.0 Kb HIS3
gene and the 12 Kb remaining plasmid. The HIS3 gene
was re-ligated into the plasmid and used to transform
DH5a Escherichia coli cells. The final plasmid YIpXDHXK,
which does not express XR was used to transform S. cere-
visiae CEN.PK113-7A. The positive clones were selected by
growth in YNB media without amino acids and the strain
was named TMB3290.
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