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Abstract

Background: In order to generate biofuels, insoluble cellulosic substrates are pretreated and subsequently
hydrolyzed with cellulases. One way to pretreat cellulose in a safe and environmentally friendly manner is to apply,
under mild conditions, non-hydrolyzing proteins such as swollenin - naturally produced in low yields by the fungus
Trichoderma reesei. To yield sufficient swollenin for industrial applications, the first aim of this study is to present a
new way of producing recombinant swollenin. The main objective is to show how swollenin quantitatively affects

hydrolysis.

relevant physical properties of cellulosic substrates and how it affects subsequent hydrolysis.

Results: After expression in the yeast Kluyveromyces lactis, the resulting swollenin was purified. The adsorption
parameters of the recombinant swollenin onto cellulose were quantified for the first time and were comparable to
those of individual cellulases from T. reesei. Four different insoluble cellulosic substrates were then pretreated with
swollenin. At first, it could be qualitatively shown by macroscopic evaluation and microscopy that swollenin caused
deagglomeration of bigger cellulose agglomerates as well as dispersion of cellulose microfibrils (amorphogenesis).
Afterwards, the effects of swollenin on cellulose particle size, maximum cellulase adsorption and cellulose crystallinity
were quantified. The pretreatment with swollenin resulted in a significant decrease in particle size of the cellulosic
substrates as well as in their crystallinity, thereby substantially increasing maximum cellulase adsorption onto these
substrates. Subsequently, the pretreated cellulosic substrates were hydrolyzed with cellulases. Here, pretreatment of
cellulosic substrates with swollenin, even in non-saturating concentrations, significantly accelerated the hydrolysis. By
correlating particle size and crystallinity of the cellulosic substrates with initial hydrolysis rates, it could be shown that
the swollenin-induced reduction in particle size and crystallinity resulted in high cellulose hydrolysis rates.

Conclusions: Recombinant swollenin can be easily produced with the robust yeast K. lactis. Moreover, swollenin
induces deagglomeration of cellulose agglomerates as well as amorphogenesis (decrystallization). For the first time,
this study quantifies and elucidates in detail how swollenin affects different cellulosic substrates and their

Background

Naturally occurring lignocellulose is a promising starting
material for the sustainable production of platform che-
micals and fuels [1-6]. The hydrolysis of its main com-
ponent cellulose to glucose necessitates a cellulase
system consisting of cellobiohydrolase (CBH, E.C.
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3.2.1.91), endoglucanase (EG, E.C. 3.2.1.4) and B-glucosi-
dase (E.C. 3.2.1.21) [7-9]. Besides enzyme-related factors
(for example, enzyme inactivation and product inhibi-
tion) [10], the enzymatic hydrolysis of cellulose is lim-
ited by its physical properties [11-14]. These properties,
in particular, are the degree of polymerization, accessi-
bility and crystallinity [15-18]. Cellulose accessibility,
which is determined by cellulose particle size (external
surface area) and porosity (internal surface area) [15,19],
is the most important factor for hydrolysis [15,18,20-24].
This accessibility reflects the total surface area available
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for direct physical contact between cellulase and cellu-
lose and, therefore, influences cellulase adsorption as
well as the rate and extent of cellulose hydrolysis
[21,25]. Furthermore, crystallinity is a relevant factor for
cellulose hydrolysis, since it influences the reactivity of
adsorbed cellulases [26]. Here, it should be noted that
crystallinity may also affect cellulase adsorption [26,27]
and, therefore, cellulose accessibility [15,21,28]. Up to
now, the relationship between crystallinity and accessi-
bility has not been clearly understood [15,29]. However,
for high cellulose hydrolysis rates and yields, cellulose
accessibility needs to be increased and, conversely, its
crystallinity reduced [30,31]. To achieve this and accord-
ingly improve subsequent hydrolysis, pretreatment tech-
niques are essential [6,14,16,32].

Since pretreatment can be expensive, there is a prime
motivation to screen and improve it [33-37]. Over time,
many pretreatment technologies have been developed:
physical (for example, milling or grinding), physico-
chemical (for example, steam explosion or ammonia
fiber explosion), chemical (for example, acid or alkaline
hydrolysis, organic solvents or ionic liquids), biological
or electrical methods, or combinations of these methods
[33,35]. Some of these techniques entail expensive
equipment, harsh conditions and high energy input [33].
By contrast, in the past years, non-hydrolyzing proteins
have been investigated that pretreat cellulose under mild
conditions [17,20]. After regular lignocellulose pretreat-
ment, these non-hydrolyzing proteins can be added dur-
ing cellulose hydrolysis [38] or they can be utilized in a
second pretreatment step in which cellulose is the sub-
strate [17].

During this second pretreatment step, cellulose is
incubated under mild conditions with non-hydrolyzing
proteins that bind to the cellulose. As a result, cellulose
microfibrils (diameter around 10 nm [39,40]) are dis-
persed and the thicker cellulose macrofibrils or fibers
(diameter around 0.5 to 10 um, consisting of microfi-
brils [39-41]) swell, thereby decreasing crystallinity and
increasing accessibility [20,42-44]. This phenomenon
was named amorphogenesis [20,42]. Furthermore, cellu-
lose-binding proteins can lead to deagglomeration of
cellulose agglomerates (diameter > 0.1 mm, consisting
of cellulose fibers) [45,46], thereby separating cellulose
fibers from each other and additionally increasing cellu-
lose accessibility. Ultimately, amorphogenesis as well as
deagglomeration promote cellulose hydrolysis [20].

Various authors have described hydrolysis-promoting
effects when pretreating cellulose with single cellulose-
binding domains [17], expansins from plants [38,47-49]
or expansin-related proteins from Trichoderma reesei
[50], Bacillus subtilis [51)], Bjerkandera adusta [52] or
Aspergillus fumigatus [46]. A prominent expansin-
related protein is swollenin from the fungus 7. reesei. In
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contrast to cellulases, the expression levels of swollenin
in T. reesei are relatively low (1 mg/L) [50]. Thus, swol-
lenin from T. reesei has been heterologously expressed
in Saccharomyces cerevisiae [50)], Aspergillus niger [50]
and Aspergillus oryzae [53]. The expression levels in S.
cerevisiae, however, are also low (25 pg/L) [50] and only
A. oryzae produces swollenin in higher concentrations
(50 mg/L) [53]. According to Saloheimo et al. [50],
swollenin can disrupt the structure of cotton fiber or
the cell wall of the algae Valonia macrophysa. Since
swollenin shows a high sequence similarity to plant
expansins [50], it may have a similar function and lead
to the disruption of cellulosic networks within plant cell
walls [20]. Thus, swollenin may have an important role
in the enzymatic degradation of lignocellulose by T. ree-
sei [54]. Up to now, however, there is no systematic and
quantitative analysis of the effects of swollenin on cellu-
losic substrates and their hydrolysis.

First, this study presents an alternative way of producing
recombinant swollenin in order to generate sufficient
swollenin for industrial applications. Second, the main
objective is to show how recombinant swollenin quantita-
tively affects relevant physical properties of cellulosic sub-
strates and how it affects their subsequent hydrolysis.

Results and discussion

Production and analysis of recombinant swollenin
Swollenin is a cellulase-related protein and consists of
an N-terminal cellulose-binding domain connected by a
linker region to an expansin-homologous domain [50].
The ¢cDNA for swollenin from 7. reesei was used as a
template to clone a recombinant His-tagged swollenin
(data not shown). After cloning, the recombinant swolle-
nin was heterologously expressed by using the yeast K.
lactis as expression host [55]. In addition, a non-trans-
formed K. lactis wild type was cultivated as a reference.
As shown by SDS-PAGE (Figure 1A), the supernatants
of the wild type (lane 1) and the transformed clone
(lane 2) showed only a few differences in protein secre-
tion pattern. These differences could be explained by
the influence of heterologous protein expression on the
native secretome of K. lactis [56]. However, an intense
protein band at about 80 kDa could be observed in the
supernatant of the transformed clone which corresponds
to the size of native swollenin from T. reesei (about 75
kDa, 49 kDa based on the primary sequence) [50].
Furthermore, this protein band was detected as a His-
tagged protein by Western blot analysis (Figure 1B). In
order to quantify the putative swollenin in the superna-
tant of K. lactis, the total protein concentration was
determined and a densitometric analysis of the SDS-
polyacrylamide gel (Figure 1A, lane 2) was conducted.
The expression level of swollenin was approximately 20
to 30 mg/L, which is comparable with the results for
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- Match: Swollenin [Trichoderma reesei], NCBI no.: CAB92328

- Score: 502 (57)

- Identified amino acids (CAB92328 [19-493]): 119/475, 25.05%
- Amino acid sequence of recombinant swollenin:
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Figure 1 SDS-PAGE, Western blot and mass spectrometry of swollenin produced by Kluyveromyces lactis. (A) SDS-PAGE and (B) Western
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35 kDa —— |%a
M 1 2 3 B
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35 kDa ——
native swollenin (CAB92328) without leader peptide.

blot: (M) Molecular mass marker, (1) filtrated culture supernatant of K. lactis wild type, (2) filtrated culture supernatant of K. lactis expressing
recombinant swollenin, (3) recombinant swollenin purified by immobilized metal affinity chromatography. 12% polyacrylamide gel, the same
volume of the samples (15 plL) was loaded onto the particular slots; (C) Mass spectrometric results and primary sequence of recombinant
swollenin. The protein band (around 80 kDa) was analyzed using a mass spectrometer and the Mascot database. The detected peptides are
underlined and written in italic letters. The cellulose-binding domain [6-39], expansinA domain [243-401] and His-tag [476-483] are marked in
grey. Potential areas for N-glycosylation and O-glycosylation are written in bold letters. The black arrows enclose the primary sequence of the

other recombinant proteins expressed in K. lactis
[55,56]. With respect to recombinant swollenin, lower
or comparable expression levels were achieved by using
S. cerevisiae (25 pg/L) [50] or A. oryzae (50 mg/L) [53]
as expression hosts. Finally, this protein was purified by
immobilized metal ion affinity chromatography. Accord-
ing to Figure 1A and 1B, the final fraction (lane 3)
showed a protein band with high purity (around 75%).
To clearly identify the protein band at about 80 kDa
(Figure 1A and 1B), its amino acid sequence was deter-
mined by using mass spectrometry [57] and the Mascot
search engine [58]. Figure 1C shows the results of mass
spectrometry and the expected amino acid sequence of
the recombinant swollenin. As shown by a high Mascot
score of 502 (Figure 1C), the protein at 80 kDa was
clearly identified to be a variant of swollenin from 7.
reesei. Regarding the native swollenin sequence, a pro-
tein score of greater than 57 (homology threshold) indi-
cates identity or extensive homology (P < 0.05). In
addition, potential N- and O-glycosylation sites were
detected by using the NetNGlyc 1.0 and NetOGlyc 3.1
servers [59] (Figure 1C). Here, it should be noted that
the native swollenin contains almost no N-glycosylation
[50]. Therefore, the difference between the calculated

molecular mass of 49 kDa, based on the primary
sequence of swollenin, and the observed molecular mass
of 80 kDa (Figure 1A and 1B) may be explained by O-
glycosylation and other post-translational modifications.
Proofs are given as follows: (i) the linker region of cellu-
lases or cellulase-related proteins is highly O-glycosy-
lated [60]; (ii) swollenin contains potential O-
glycosylation sites within the linker region (Figure 1C);
(iii) no peptides of the linker region were identified by
mass spectrometry, since glycosylation alters the mass/
charge ratio of the peptides (Figure 1C).

Adsorption of swollenin

As the adsorption of proteins is a prerequisite for amor-
phogenesis [20], the adsorption isotherm of purified
swollenin onto filter paper was determined. Preliminary
adsorption kinetics showed that an incubation time of
less than or equal 2 h was needed to reach equilibrium.
Figure 2 illustrates that the adsorption of swollenin was
a characteristic function of free swollenin concentration.
After a sharp increase in adsorbed swollenin at low con-
centrations, a plateau was reached at higher concentra-
tions (> 5 pmol/L). As denatured swollenin, boiled for
20 min, showed no adsorption (Figure 2), the adsorption
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Figure 2 Adsorption isotherm of purified swollenin onto filter
paper. The predicted Langmuir isotherm, according to Equation (1),
is shown as a solid line (R = 0.91) and corresponding parameters
(including standard deviations) are: A ax(swollenin) = 0.089 + 0.006
umol/g, Kp(swollenin) = 0.707 + 0.196 umol/L. The initial swollenin
concentration, added at the start of the incubation, is also shown
for a better understanding of Figure 8; 20 g/ Whatman filter paper
No.1 in 0.05 M sodium acetate buffer at pH 4.8, T=45°C, V, = 1 mL,
n = 1000 rpm, dp = 3 mm, incubation time 2 h.

was specific and required a functional protein structure.
The Langmuir isotherm (Equation 1) provided a good
fit (Figure 2, R = 0.91). Corresponding parameters - the
maximum swollenin adsorption per g cellulose at equili-
brium, A,,,.(swollenin); and the dissociation constant of
swollenin, Kp(swollenin) - are listed in the legend of Fig-
ure 2. Similar values of A,,,, and K were found when
analyzing the adsorption of purified cellulases onto filter
paper ([61], CBH I: 0.17 umol/g, 0.71 pumol/L; EG I:
0.17 pmol/g, 1.79 pmol/L). This may be attributed to
the fact that swollenin exhibits a cellulose-binding
domain with high homology to those of cellulases [62].
However, A,,,, was lower for swollenin than for single
cellulases. According to Linder et al. [63], single amino
acid substitutions of cellulose-binding domains can lead
to adsorption differences. Furthermore, catalytic
domains of cellulases are known to specifically adsorb
onto cellulose independently of cellulose-binding
domains [41]. In addition, the difference in A,,,, may be
explained by the lower molecular mass of cellulases [64]
and, therefore, a better access to internal binding sites
as described for other proteins and materials [65,66].
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Pretreatment of filter paper with swollenin

To verify a potential effect of recombinant swollenin on
cellulose, filter paper was pretreated with buffer, BSA or
recombinant swollenin. Here, swollenin in an initial
concentration of 20 mg per g cellulose was applied (>
80% saturation, Figure 2). It should be noted that all
pretreatments were initiated with the same initial num-
ber (80) of filter paper agglomerates (initial diameter
approximately 3 mm). As shown in Figure 3A, swollenin
caused a deagglomeration of filter paper agglomerates
(consisting of cellulose fibers). Since the cellulose fibers
of a single agglomerate were separated by pretreatment
with swollenin (Figure 3B), the number of bigger
agglomerates obviously decreased (Figure 3A). This
decrease in the number of bigger agglomerates (> 0.5
mm) was also quantified using image analysis (Figure
3A). During pretreatment, a shaken system with rela-
tively low shear forces was applied. However, to exclude
a sole mechanical effect on cellulose agglomerates due
to shaking and to verify a specific effect of swollenin, fil-
ter paper was accordingly pretreated with buffer or the
protein BSA (references). By contrast, the pretreatments
with buffer or BSA showed much less deagglomeration
(Figure 3A and 3B). Consequently, the deagglomeration
was specifically caused by swollenin. As no reducing
sugars were detected when using the sensitive p-hydroxy
benzoic acid hydrazide assay after an incubation with
swollenin for 48 h, the reduction in the number of large
agglomerates was attributed to the aforementioned
adsorption of swollenin onto filter paper (Figure 2) and
the so-called non-hydrolytic deagglomeration [20].

As described by Saloheimo et al. [50], swollenin is also
able to disrupt and swell cotton fibers. This phenom-
enon results from the dispersion of cellulose microfibrils
and is called amorphogenesis [20,42]. In this current
study, however, the swelling of cellulose fibers was not
detected when Whatman filter paper No.l - a different
substrate - was used (Figure 3B). Reasons for this may
be the different structure of filter paper than that of cot-
ton used by Saloheimo et al. [50] or the low resolution
of light microscopy. Therefore, scanning electron micro-
scopy was applied to visualize the effect of swollenin on
cellulose microfibrils (Figure 4A and 4B). After pretreat-
ments with buffer or BSA, the microfibrils were not dis-
persed, thereby resulting in a smooth and uniform
surface of the whole fiber. By contrast, swollenin caused
the microfibrils to disperse, thereby creating a rough
and amorphic surface on the cellulose fibers. Other
authors found similar results via scanning electron
microscopy after treating cellulose with cellulose-bind-
ing domains of cellulases [17,45,67]. However, the
results of this current study indicate that recombinant
swollenin from K. lactis may induce amorphogenesis of
cellulosic substrates.
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Swollenin
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Figure 3 Photography and light microscopy of filter paper after pretreatment with swollenin. (A) Macroscopic pictures of pretreated filter

paper in petri dishes and number of agglomerates. All pretreatments were initiated with the same initial number (80) of filter paper

agglomerates (initial diameter approx. 3 mm). Number of agglomerates (> 0.5 mm) was measured by image analysis; (B) Light microscopy of

pretreated filter paper. Eclipse E600 (Nikon); Pretreatment: 20 g/L cellulose in 0.05 M sodium acetate buffer at pH 4.8, 04 g/L BSA (approx. 6
umol/L) or swollenin (approx. 5 umol/L), T = 45°C, V, = 1 mL, n = 1000 rpm, dy = 3 mm, incubation time 48 h.

A\

The non-hydrolytic deagglomeration or amorphogen-
esis of cellulose was also described for single cellulose-
binding domains of cellulases [17,45,67] and for other
expansin-related proteins from B. subtilis [51], A. fumi-
gatus [46] or B. adusta [52]. However, there is no
detailed and quantitative analysis of different cellulosic
substrates after pretreatment with non-hydrolyzing pro-
teins, especially with regard to swollenin.

Effect of swollenin pretreatment on the physical
properties of cellulosic substrates

To analyze in detail the effect of recombinant swollenin
on cellulose, different cellulosic substrates were pre-
treated with buffer, BSA or recombinant swollenin.
After pretreatment and removal of bound proteins, the
physical properties of the pretreated cellulosic substrates

were analyzed by laser diffraction, cellulase adsorption
studies and crystallinity measurements.

As seen in Figure 5A-D, the cellulosic substrates
showed broad and inhomogeneous particle-size distribu-
tions. Upon considering the same cellulosic substrate,
the pretreatments with buffer or BSA led to no differ-
ences in particle-size distributions and in the resulting
geometric mean particle sizes (Figure 5E-H). After swol-
lenin pretreatment, however, the particle-size distribu-
tions shifted to lower values, and large cellulose
agglomerates were predominantly deagglomerated to
smaller particles. The bigger the initial particle size of
the corresponding cellulosic substrate was, the greater
the reduction in mean particle size by swollenin pre-
treatment was (filter paper > a-cellulose > Avicel). In
the case of Sigmacell, all particle-size distributions were
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Figure 4 Scanning electron microscopy of filter paper after pretreatment with swollenin. Pictures were taken at two different
magnifications (A, B): see scale markers; Pretreatment: 20 g/L cellulose in 0.05 M sodium acetate buffer at pH 4.8, 0.4 g/L BSA (approx. 6 umol/L)
or swollenin (approx. 5 umol/L), T = 45°C, V, = 1 mL, n = 1000 rpm, dp = 3 mm, incubation time 48 h. Hitachi S-5500 (Hitachi).
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Figure 5 Particle size of cellulosic substrates after pretreatment with swollenin. (A, B, C, D) Volumetric particle-size distribution of
pretreated cellulosic substrates: (A) Whatman filter paper No.1; (B) a.-Cellulose; (C) Avicel PH101; (D) Sigmacell 101; (E, F, G, H) Geometric mean
particle size of pretreated cellulosic substrates: (E) Whatman filter paper No.1; (F) a-Cellulose; (G) Avicel PH101; (H) Sigmacell 101. Errors are given
as standard deviations; Pretreatment: 20 g/L cellulose in 0.05 M sodium acetate buffer at pH 4.8, 0.4 g/L BSA (approx. 6 pmol/L) or 0.4 g/L
swollenin (approx. 5 pmol/L), T = 45°C, V, = 1 mL, n = 1000 rpm, dy, = 3 mm, incubation time 48 h. Particles (< 2 mm) were analyzed using the
particle size analyzer LS13320 (Beckman Coulter).
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identical (Figure 5D), and the mean particle sizes did
not change significantly due to pretreatment with swol-
lenin (Figure 5H). This may be explained by the small
initial particle size of Sigmacell and the absence of cellu-
lose agglomerates.

Since cellulosic particle sizes (external surface areas)
influence cellulose accessibility [15,19], they also affect
the adsorption of cellulases [21,25] and they are an indi-
cation for the maximum cellulase adsorption [21]. To
investigate if swollenin pretreatment actually affected cel-
lulose accessibility, cellulase adsorption was analyzed
after pretreatment with buffer or swollenin. According to
various authors, the adsorption of total cellulase mixtures
is not interpretable by simple Langmuir isotherms due to
multicomponent cellulase adsorption [10,68]. Conse-
quently, only the maximum cellulase adsorption per g
cellulose A,,,.(cellulase) was determined by applying dif-
ferent incubation times and a total cellulase mixture at
high concentrations. Since no further increase in cellulase
adsorption was detected after 1.5 h (data not shown),
adsorption equilibrium was verified. According to the lit-
erature, cellulase adsorption is rapid and adsorption equi-
librium is usually reached within 0.5 to 1.5 h [41,64].
Saturation of all applied cellulosic substrates was reached
when using the following cellulase/cellulose ratios: > 100
mg/g (in the case of filter paper or a-cellulose), > 150
mg/g (Avicel), > 200 mg/g (Sigmacell). Table 1 sum-
marizes the maximum cellulase adsorption per g cellu-
lose (adsorption capacity) onto all applied cellulosic
substrates after pretreatment with buffer or swollenin. In
general, the determined A,,,,.(cellulase) values are consis-
tent with the adsorption data reported in the literature
[10,41,69]. However, the pretreatment with swollenin
caused a significant increase in maximum cellulase
adsorption except for Sigmacell. The relative increase in
cellulase adsorption between the pretreatment with swol-
lenin and the pretreatment with buffer (filter paper > a.-
cellulose > Avicel > Sigmacell) showed a similar series as
the relative reduction in mean particle size (filter paper >
Avicel > a-cellulose > Sigmacell; Figure 5). Consequently,

Table 1 Maximum cellulase adsorption onto cellulosic
substrates after pretreatment with swollenin.

Substrate

Pretreatment with Pretreatment with

buffer swollenin
Anax(cellulase) (mg/g)  Anax(cellulase) (mg/g)
Whatman filter paper 16 31
No.1
a-Cellulose 21 35
Avicel PH101 52 73
Sigmacell 101 119 122

The coefficients of variation were below 7.5% for each value. A, q(cellulase)
denotes the maximum cellulase adsorption per g cellulose at equilibrium.
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the increase in adsorption capacities of the swollenin-
pretreated samples resulted primarily from the reduction
in particle size and the corresponding increase in cellu-
lose accessibility. However, in the case of a-cellulose, the
increase in maximum cellulase adsorption was dispropor-
tionately higher. This can be explained by the effect of
swollenin on other physical properties of cellulose, such
as crystallinity, which may influence cellulase adsorption
according to various authors [26,27]. Moreover, since all
applied cellulosic substrates do not contain lignin, its
influence on cellulose accessibility [31,70-72] could be
neglected.

To additionally determine the influence of swollenin
on the crystallinity of cellulose, the crystallinity index
(Crl) of all pretreated cellulosic substrates was analyzed
by X-ray diffraction (XRD) measurements (Figure 6A-
D). A recrystallization of cellulose by incubation with
aqueous solutions [73,74] was not observed, because the
initial Cr/ of untreated substrates was higher than that
of cellulosic substrates treated with buffer (data not
shown). As illustrated by Figure 6, the pretreatment
with buffer or BSA caused no differences in CrI; the Crl
values were identical upon considering the same cellulo-
sic substrate. By contrast, swollenin pretreatment speci-
fically reduced the CrI as follows: filter paper (-10%), o.-
cellulose (-22%) and Avicel (-13%). However, in the case
of Sigmacell, no effect of swollenin pretreatment on Cr/
was detected (Figure 6D) which can be explained by the
low initial CrI and the amorphous structure of Sigmacell
[75]. The strongest reduction in Crl was recorded in the
case of a-cellulose (Figure 6B). Since a-cellulose is
fibrous [64] and can consist of up to 22% xylan [76], it
may be more sensitive to non-hydrolytic decrystalliza-
tion [77]. However, the strong reduction in the Cr/ of
a-cellulose explains the disproportionate increase in
maximum cellulase adsorption onto a-cellulose (Table
1), since cellulase adsorption can increase with decreas-
ing Crl [26]. As reported in the literature, similar reduc-
tions in crystallinity were found by using other non-
hydrolyzing proteins: (i) the Crl of Avicel decreased by
9% to 12% after pretreatment with single cellulose-bind-
ing domains [17]; (ii) the CrI of filter paper decreased
by 11.8% after pretreatment with Zea h, a protein from
postharvest corn stover [48]. Up to now, however, the
influence of swollenin on the Cr/ of different cellulosic
substrates has not been quantified. Therefore, this study
provides the first proof that swollenin does induce deag-
glomeration of cellulose agglomerates as well as amor-
phogenesis (decrystallization) [20,42].

Hydrolysis of cellulosic substrates pretreated with
swollenin

Upon using the same cellulase mixture, enzymatic
hydrolysis rates are especially affected by the physical
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properties of the applied cellulose [10,14]. Since swolle-
nin pretreatment affected cellulose particle size and
maximum cellulase adsorption as well as crystallinity,
the resulting effects on subsequent hydrolysis of all pre-
treated cellulosic substrates were analyzed by using
rebuffered Celluclast®. As shown in Figure 7A-C, swol-
lenin pretreatment significantly accelerated cellulose
hydrolysis, and the saccharification after 72 h was
increased. In contrast, the corresponding hydrolysis
curves for buffer and BSA were almost the same by
comparing the same cellulosic substrate. This is attribu-
ted to the fact that pretreatment with buffer and BSA
had no significant effect on particle size (Figure 5), max-
imum cellulase adsorption (Table 1) or on CrI (Figure
6). In the case of filter paper (Figure 7A), the hydrolysis-
accelerating effect of swollenin pretreatment was stron-
ger than that for a-cellulose (Figure 7B) and Avicel (Fig-
ure 7C). This may be explained by the substantial
decrease in mean particle size (Figure 5) and the strong
increase in maximum cellulase adsorption (Table 1) for
filter paper by swollenin pretreatment. Figure 7D shows
that the hydrolysis curves of Sigmacell were almost the
same, since swollenin pretreatment did not change the
physical properties of Sigmacell.

Furthermore, the relationship between the hydroly-
sis-accelerating effect and the amount of swollenin
applied during pretreatment was investigated (Figure
8). Compared to the aforementioned experiments (Fig-
ure 7 and 8; 20 mg swollenin per g cellulose), less
swollenin (5 mg per g cellulose) caused a less acceler-
ated hydrolysis and the final concentration of reducing
sugars was 0.85-fold smaller. However, when the
amount of swollenin was decreased merely from 20
mg/g to 15 mg/g, the same reducing sugar concentra-
tion was detected after 72 h. Since maximum swollenin

adsorption was reached at higher initial swollenin con-
centrations (> 60 mg/g for 95% saturation, Figure 2),
these results show that even non-saturating swollenin
concentrations of 15 to 20 mg/g are sufficient for a
maximum hydrolysis-accelerating effect. This may be
explained as follows: (i) not all accessible cellulose-
binding sites must be occupied for a maximum hydro-
lysis-accelerating effect; (ii) swollenin reversibly binds
to cellulose, thereby performing further deagglomera-
tion and amorphogenesis at multiple cellulose-binding
sites. The reversible adsorption onto cellulose-binding
sites was already reported for cellulases containing cel-
lulose-binding domains [78].

Finally, an empirical correlation for initial hydrolysis
rates based on Crl and mean particle size was deter-
mined for the pretreated cellulosic substrates (Figure 9).
In this investigation, the correlation showed that the
swollenin-induced reduction in Cr/ and particle size
resulted in high cellulose hydrolysis rates. Furthermore,
Figure 9 illustrates the aforementioned differences in
cellulose hydrolysis rates (Figure 7) for various sub-
strates and pretreatments. In addition, it confirms the
findings of other authors: (i) since smaller cellulose par-
ticle sizes lead to increased cellulase adsorption [25] (see
previous section), hydrolysis rates increase with decreas-
ing cellulose particle size [22-24]; (ii) since a reduction
in Crl leads to increased cellulase adsorption and higher
reactivity of adsorbed cellulases, hydrolysis rates corre-
late inversely with the CrI of the applied cellulose
[24,26]. It should be noted that Figure 9 shows an
empirical correlation for the conducted hydrolysis
experiments. By applying other concentrations or types
of cellulases and cellulosic substrates, different physical
properties of the substrate (for example, porosity, [79])
might predominate.
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Conclusions

Recombinant swollenin was easily produced with the
yeast K. lactis and purified by affinity chromatography.
Additionally, the adsorption of swollenin onto cellulose
was quantified for the first time, and its adsorption
parameters were comparable to those of individual cel-
lulases. The pretreatment with swollenin caused a signif-
icant decrease in particle size as well as in crystallinity
of the cellulosic substrates, thereby substantially increas-
ing maximum cellulase adsorption. Moreover, pretreat-
ment of the cellulosic substrates with swollenin - even
in non-saturating concentrations - significantly acceler-
ated the hydrolysis. By correlating particle size and

crystallinity with initial hydrolysis rates, it could be
shown that high initial hydrolysis rates resulted from
the swollenin-induced reduction in particle size and
crystallinity. Consequently, this study shows an efficient
means to produce recombinant swollenin with the
robust yeast K. lactis. Moreover, this study shows that
swollenin induces deagglomeration of cellulose agglom-
erates as well as amorphogenesis (decrystallization). For
the first time, this study quantifies and elucidates in
detail how swollenin affects cellulosic substrates and
their hydrolysis.

A pretreatment of cellulosic substrates has been pre-
sented here which is simply based on the incubation of
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recombinant swollenin under mild conditions. Since the
enzymatic hydrolysis of cellulose is a rate-limiting pro-
cessing step in biorefineries [41], this pretreatment
could significantly improve hydrolysis rates. To exclude
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Figure 9 Influence of crystallinity and mean particle size on
hydrolysis of cellulosic substrates. Data points for cellulosic
substrates were obtained from Figure 5 (mean particle size), Figure
6 (crystallinity index) and Figure 7 (initial hydrolysis rate from 0 to 6
h). TableCurve 3D was used to determine an empirical surface fit (R’
= 0.93) based on a non-linear Gaussian cumulative function.
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possible side effects between swollenin and cellulase,
swollenin pretreatment was performed as a separate
step within this study. In future studies, swollenin
should be directly added during cellulose hydrolysis.
Since standard assays are missing for deagglomeration,
amorphogenesis and for the comparison of different
non-hydrolyzing proteins, this study may serve as an
initial means to establish such assays.

Methods

Cellulosic substrates and cellulases

The cellulosic substrates Whatman filter paper No.1, o.-
cellulose, Avicel PH101 and Sigmacell 101 were pur-
chased from Sigma-Aldrich (MO, USA). Physical prop-
erties and product information have been summarized
by various authors [10,64]. Agglomerates of Whatman
filter paper No.1 were prepared by using a hole-punch
and quartering the resulting filter paper discs. The final
filter paper agglomerates had an average diameter of
approximately 3 mm. The cellulase preparation Cellu-
clast® 1.5 L (Novozymes, Bagsveerd, DK) - a filtrated
culture supernatant of T. reesei [80] - was used for the
hydrolysis of the pretreated cellulosic substrates.
According to various authors, Celluclast® contains
CBHs (Cel7A and Cel6A), EGs (for example, Cel7B and
Cel5A) as well as B-glucosidases [81,82]. To remove
salts, sugars and other interfering components, Cellu-
clast®™ was previously rebuffered with an Akta FPLC (GE
Healthcare, Little Chalfont, UK). Celluclast® was loaded
on Sephadex G-25 Fine (2.6 cm x 10 cm, GE Health-
care), and 0.05 M sodium acetate (pH 4.8) was used as a
running buffer at 110 cm/h. Sephadex G-25 Fine exhi-
bits an exclusion limit of 1-5 kDa which is comparable
to the molecular mass cut-off of dialysis membranes for
protein desalting. Since cellulases have a molecular mass
of > 25 kDa [62,83,84], the mixture of cellulases was not
changed during rebuffering. Chromatography was con-
ducted at room temperature, and the automatically col-
lected fractions were directly cooled at 4°C. To
determine specific filter paper activities, different dilu-
tions of Celluclast® and the rebuffered Celluclast® -
applied for all hydrolysis experiments - were tested
according to Ghose [85]. Here, the following specific fil-
ter paper activities (per g protein) were measured: 201
Ulg (Celluclast®) and 279 U/g (rebuffered Celluclast®).

Genetic engineering for recombinant swollenin

The below-mentioned cloning procedure was designed
for secreted protein expression according to the K. lactis
Protein Expression Kit (New England Biolabs, MA,
USA). The ¢cDNA of the swollenin-coding region was
synthesized by reverse-transcription PCR using mRNA
isolated from 7. reesei QM9414 (swol gene [GenBank:
AJ245918], protein sequence [GenBank: CAB92328])
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and reverse transcriptase (M-MLV, Promega, WI, USA)
according to the manufacturer’s protocol. Specific pri-
mers were applied to synthesize a cDNA starting from
the 19" codon of the swollenin-coding region and,
therefore, missing the secretion signal sequence of T.
reesei [50]. By using the aforementioned primers, Sall
and Spel restriction sites were added upstream and
downstream of the swollenin-coding region, respectively.
The amplified cDNA was cloned into the pCR2.1-
TOPO vector (Invitrogen, CA, USA) according to the
manufacturer’s protocol. After DNA sequencing and iso-
lation of a correct clone, the DNA was excised from
pCR2.1-TOPO and cloned into the pKLAC1-H vector
using Xhol and Spel restriction enzymes (New England
Biolabs, MA, USA) according to the manufacturer’s pro-
tocol. The pKLAC1-H is a modified version of the inte-
grative pKLAC1 vector (New England Biolabs;
[GenBank: AY968582]). The pKLAC1 - developed by
Colussi and Taron [55] - exhibits the o-mating factor
signal sequence and can be used for the expression and
secretion of recombinant proteins in K. lactis [55]. The
pKLACI-H was constructed by including an additional
Spel restriction site directly followed by a His-tag cod-
ing sequence (6xHis) between the Xhol and AvrIl
restriction sites of pKLAC1. The DNA sequence of the
final pKLACI1-H construct (containing the DNA coding
for recombinant swollenin) is shown in Additional file 1.
Moreover, the final amino acid sequence of recombinant
swollenin (without the o.-mating factor signal sequence)
is given in Figure 1C.

Expression and purification of recombinant swollenin

All below-mentioned transformation, selection and pre-
cultivation procedures - developed by Colussi and
Taron [55] - were performed according to the manufac-
turer’s protocol (K. lactis Protein Expression Kit, New
England Biolabs). After cloning, K. lactis GG799 cells
were transformed with pKLACI-H (containing the DNA
coding for recombinant swollenin), and transformed
clones were selected (acetamide selection). One clone
was precultivated in YPGal (yeast extract, peptone and
galactose) medium, consisting of 20 g/L galactose, 20 g/
L peptone and 10 g/L yeast extract - all media compo-
nents were purchased from Carl Roth (Karlsruhe, Ger-
many). After inoculation with 2.5 mL of the preculture,
the main culture was cultivated in triplicates in 2 L
Erlenmeyer flasks with YPGal medium under the follow-
ing constant conditions: temperature 7" = 30°C, total fill-
ing volume V; = 250 mL, shaking diameter d, = 50
mm, shaking frequency n = 200 rpm. Additionally, a
non-transformed K. lactis wild type was cultivated as a
reference. After incubation for 72 h, the main cultures
were centrifuged (6000 g, 20 min, 4°C), and the pooled
supernatants of the triplicates were treated with
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endoglycosidase Hy by using 20 U per ug protein for 12
h [50] according to the manufacturer’s protocol without
denaturation (New England Biolabs). Afterwards, the
protein solution was concentrated 100-fold at 4°C using
a Vivacell 100 ultrafiltration system with a molecular
mass cut-off of 10 kDa (Sartorius Stedim Biotech, Got-
tingen, Germany). For affinity chromatography, the
recombinant swollenin was previously rebuffered using
Sephadex G-25 Fine (2.6 cm x 10 cm, GE Healthcare)
at 110 cm/h with a running buffer (pH 7.4) consisting
of 0.05 M sodium dihydrogen phosphate, 0.3 M sodium
chloride and 0.01 M imidazole. The rebuffered sample
was loaded on Ni Sepharose 6 Fast Flow (1.6 cm x 10
cm; GE Healthcare) at 120 cm/h. The bound swollenin
was eluted with the aforementioned running buffer, con-
taining 0.25 M imidazole.

SDS-PAGE and Western blot analysis

SDS-PAGE and Western blot analysis were applied to
analyze the purity and to identify the recombinant swol-
lenin. Novex 12% polyacrylamide Tris-Glycine gels (Invi-
trogen), and samples were prepared according to the
manufacturer’s protocol. The Plus Prestained Protein
Ladder (Fermentas, Burlington, CA, USA) was used as a
molecular mass marker. Finally, the proteins were
stained with Coomassie Brilliant Blue and analyzed den-
sitometrically [86] using the scanner Perfection V700
(Epson, Suwa, Japan). The molecular mass and purity of
swollenin was determined using the software TotalLab
TL100 (Nonlinear Dynamics, Newcastle, UK). For Wes-
tern blot analysis, gels were blotted onto a nitrocellulose
membrane (Whatman, Springfield Mill, UK) according
to the manufacturer’s protocol (Invitrogen). The mem-
branes were blocked at room temperature with 50 g/L
skim milk dissolved in phosphate buffered saline con-
taining 0.5 g/L Tween-20 (PBST) for 30 min. To detect
the recombinant swollenin, the membranes were incu-
bated at room temperature for 1.5 h with a rabbit poly-
clonal antibody against His-tag (Dianova, Hamburg,
Germany) diluted 1:10,000 in PBST. After the mem-
brane was washed thrice with PBST, it was incubated
with alkaline phosphatase conjugated goat anti-rabbit
IgG (Dianova) diluted 1:5,000 in PBST at room tem-
perature for 1 h. Finally, bound antibodies were visua-
lized by incubating the membrane for 5 min with nitro
blue tetrazolium/5-Bromo-4-chloro-3-indolyl phosphate
(NBT/BCIP) diluted 1:100 in phosphatase buffer (100
mM Tris-HCl, 100 mM NaCl, 5 mM MgCl,, pH 9.6).

Measurement of protein concentration

Protein concentrations were analyzed with the bicincho-
ninic acid assay [87] using the BCA Protein Assay Kit
(Thermo Fisher Scientific, MA, USA) and BSA as a
standard. Depending on the protein concentration of
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the samples, the standard procedure (working range:
0.02 to 2 g/L) or the enhanced procedure (working
range: 0.005 to 0.25 g/L) was performed according to
the manufacturer’s protocol. The absorbance at 562 nm
was measured with a Synergy 4 microtiter plate reader
(BioTek Instruments, VT, USA). To quantify swollenin
in the culture supernatant of K. lactis, the bicinchoninic
acid assay was combined with the aforementioned SDS-
PAGE (including densitometric analysis). Here, total
protein concentrations were determined and multiplied
with the ratio of swollenin to total protein (purity).

Mass spectrometry and glycosylation analysis

Mass spectrometry was applied to identify the expressed
and purified recombinant swollenin. The protein band
(approximately 80 kDa) was excised from the SDS-poly-
acrylamide gel, washed in water, reduced with dithio-
threitol, alkylated with iodoacetamide, and digested with
trypsin [88]. Peptide analysis was carried out using a
nanoHPLC (Dionex, Germering, Germany) coupled to
an ESI-QUAD-TOF-2 mass spectrometer (Waters
Micromass, Eschborn, Germany) as previously described
[89]. The Mascot algorithm (Matrix Science, London,
UK) was used to correlate the mass spectrometry data
with amino acid sequences in the Swissprot database.
Thereby, the sequences of the analyzed peptides could
be identified, and, ultimately, protein matches could be
determined. The Mascot score is derived from the ions
scores of the detected peptides matching the peptides in
the database and reflects a non-probabilistic basis for
ranking protein hits [90]. By using this database, the
peptide mass tolerance was set at + 0.3 Da. Additionally,
the following modifications to the amino acids in brack-
ets were allowed: carbamidomethyl (C), carboxymethyl
(C), oxidation (M), propionamide (C). Moreover, poten-
tial areas for N-glycosylation and O-glycosylation were
identified by using the NetNGlyc 1.0 and NetOGlyc 3.1
servers http://www.cbs.dtu.dk/services/[59].

Adsorption experiments

Adsorption experiments were performed in 0.05 M
sodium acetate buffer (pH 4.8) using 20 g/L untreated
filter paper and various concentrations (0.05 to 1.25 g/
L) of purified swollenin. Solutions with filter paper and
solutions with swollenin were preincubated separately at
45°C for 10 min, and experiments were started by mix-
ing both solutions. The final mixtures were incubated in
2 mL Eppendorf tubes on a thermomixer MHR23
(simultaneous shaking and temperature control; HLC
Biotech, Bovenden, Germany) under the following con-
stant conditions for 2 h: T = 45°C, V; = 1 mL, d, = 3
mm, # = 1000 rpm. The shaking frequency was chosen
to ensure the complete suspension of cellulose particles
[64,91]. Three different blanks were incubated similarly:
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(i) without swollenin, (ii) without filter paper, or (iii)
without filter paper and without swollenin. The incuba-
tion was stopped by centrifugation (8000 g, 1 min), and
the supernatants were immediately analyzed for
unbound swollenin by using the bicinchoninic acid
assay. The adsorbed swollenin concentration was calcu-
lated as the difference between initial (blanks) and
unbound swollenin concentration. Adsorption isotherm
parameters were determined using the Langmuir iso-
therm [92]:

Amax - E
A = (imax 1)

KD +E

in which A denotes the amount of adsorbed protein
per g cellulose (umol/g), A, the maximum protein
adsorption per g cellulose at equilibrium (umol/g), E,
the free protein concentration (umol/L), and Kp, the
dissociation constant (umol/L). Within the literature
[61], the association constant K4 (L/pmol) is sometimes
used instead of the dissociation constant Kp.

To analyze the effect of swollenin pretreatment (see
below) on cellulase adsorption [44,93], the maximum
cellulase adsorption was also determined by incubating
various concentrations (0.7 to 2.5 g/L) of rebuffered Cel-
luclast® with 10 g/L pretreated cellulosic substrates.
Here, all incubations were conducted under the afore-
mentioned conditions for 1 h, 1.5 h and 2 h.

Pretreatment with swollenin

Pretreatment experiments were performed with 20 g/L
cellulosic substrates and various concentrations of swol-
lenin in 0.05 M sodium acetate buffer (pH 4.8). The
mixtures were incubated as triplicates in 2 mL Eppen-
dorf tubes on a thermomixer under the following con-
stant conditions: T = 45°C, V; = 1 mL, dy = 3 mm, n =
1000 rpm. To exclude a sole mechanical effect on cellu-
losic substrates due to shaking and to verify a specific
effect of swollenin, blanks without swollenin (buffer) or
with 0.4 g/L BSA instead of swollenin were incubated
similarly. To detect a possible hydrolytic activity of
recombinant swollenin, the sensitive p-hydroxy benzoic
acid hydrazide assay [94] was applied by using glucose
as a standard. After incubation for 48 h, the superna-
tants of the pretreatment solution were analyzed and
the absorbancies were measured at 410 nm in a Synergy
4 microtiter plate reader. Subsequently, all cellulosic
samples were washed to remove adsorbed proteins.
Therefore, the mixtures were centrifuged (14,000 x g, 10
min, 4°C), and the cellulosic pellets were washed four
times with 800 puL 0.05 M citrate buffer (pH 10) [95],
and once with 800 pL distilled water. Finally, the tripli-
cates were pooled. According to Zhu et al. [95], citrate
buffer (pH 10) is an appropriate washing solution, and a


http://www.cbs.dtu.dk/services/

Jager et al. Biotechnology for Biofuels 2011, 4:33
http://www.biotechnologyforbiofuels.com/content/4/1/33

single washing step with 0.05 M citrate buffer (pH 10)
leads to a desorption efficiency of 61% in case of fungal
cellulases and Avicel. Since no acids or bases are formed
during the washing procedure, the weak buffer capacity
of citrate buffer at pH 10 can be neglected. In this
study, the washing procedure was conducted four times
to ensure a high desorption of swollenin. The measure-
ments of protein concentration in the washing superna-
tants - by applying the aforementioned bicinchoninic
acid assay (working range starting from 0.005 g/L) -
showed that swollenin desorbed almost completely.
Already after three washing steps, a total swollenin des-
orption efficiency of > 90% was achieved.

Photography and microscopy

Photography and microscopy were applied to visualize
the effect of swollenin pretreatment on filter paper.
After pretreatment with buffer, BSA or swollenin, the
different filter paper solutions were transferred into
petri dishes, the particles were evenly distributed and
images were taken with an Exilim EX-FH100 camera
(Casio, Tokyo, Japan). Afterwards, the number of filter
paper agglomerates (> 0.5 mm) was determined by
image analysis using the software UTHSCSA ImageT ool
3.0 (freeware) and a ruler as a reference. Light micro-
scopic pictures were taken with an Eclipse E600 (Nikon,
Tokyo, Japan). Additionally, scanning electron micro-
scopy was performed using a Hitachi S-5500 (Hitachi,
Tokyo, Japan) and a field emission of 5 kV. All washed
filter paper samples were covered with a layer of carbon
(3 nm) and, subsequently, with a layer of PtPd (3 nm,
80% to 20%). The images were taken by using secondary
electrons.

Laser diffraction and X-ray diffraction

The particle-size distributions of all pretreated cellulosic
substrates were measured by laser diffraction [96] using
a LS13320 (Beckman Coulter, CA, USA). In the case of
filter paper, particles with an average diameter of greater
than 0.75 mm were manually removed before laser dif-
fraction to exclude a disturbance of measurement sig-
nals. The geometric mean particle size was calculated
using the software LS 5.01 (Beckman Coulter). More-
over, the Crl was determined by powder XRD. XRD pat-
terns were obtained using a STOE STADI P
transmission diffractometer (STOE & Cie GmbH, Darm-
stadt, Germany) in Debye-Scherrer geometry (CuKo
radiation, A = 1.54060 A) with a primary monochroma-
tor and a position-sensitive detector. Thereby, XRD pat-
terns were collected with a diffraction angle 26 from 10°
to 30° (increments of 0.01°) and a counting time of 6 s
per increment. The sample was adhered to a polyester
foil (biaxially-oriented polyethylene terephthalate) by
using a dilute solution of glue. After drying the sample
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in open-air, the sample was covered with a second
polyester foil. This set was then fixed in a sample
holder. To improve statistics and level out sample orien-
tation effects, the sample was rotated at around 2 Hz
during XRD measurement. The Crl was calculated using
the peak height method [28] and the corresponding
equation:

_ ooz — Iam

Crl (2)

Too2

where Iy, is the maximum intensity of the crystalline
plane (002) reflection (26 = 22.5°) and 14, is the inten-
sity of the scattering for the amorphous component at
about 18° in cellulose-I [97]. Here, it should be noted
that there are several methods for calculating CrI from
XRD data and these methods can provide significantly
different results [28,70]. Although the applied peak
height method produces Cr! values that are higher than
those of other methods, it is still the most commonly
used method and ranks Cr/ values in the same order as
the other methods [28].

Hydrolysis experiments and dinitrosalicylic acid assay

Hydrolysis experiments with 10 g/L pretreated cellulosic
substrate and 1 g/L rebuffered Celluclast® were con-
ducted in 0.05 M sodium acetate buffer (pH 4.8). The
mixtures were incubated as triplicates in 2 mL Eppen-
dorf tubes on a thermomixer under the following con-
stant conditions: 7' = 45°C, total filling V; = 1 mL, dy =
3 mm, n = 1000 rpm. In general, attention has to be
paid to cellulase inactivation, which would reduce the
final yield of cellulose hydrolysis [98]. In this current
study, however, a shaken system with relatively low
shear forces was applied. According to Engel et al. [99],
rebuffered Celluclast® is stable under the applied incu-
bation conditions, so that cellulase inactivation could be
neglected. The shaking frequency was chosen to ensure
the complete suspension of cellulose particles [64,91].
Thus, mass transfer limitations are excluded, and the
whole cellulose particle surface becomes accessible to
the cellulases, thereby optimizing cellulase adsorption
and activity [64]. Three different blanks were incubated
similarly: (i) without cellulase, (ii) without substrate, or
(iii) without substrate and without cellulase. The dinitro-
salicylic acid assay [100] was applied to quantify the
reducing sugars released during hydrolysis by using glu-
cose as a standard. After defined time intervals, samples
were taken, and the hydrolysis was stopped (10 min,
100°C). According to Wood and Bhat [101], low redu-
cing sugar concentrations were quantified by adding
1.25 g/L glucose to the samples. The absorbancies were
measured at 540 nm in a Synergy 4 microtiter plate
reader. Since the dinitrosalicylic acid assay exhibits a
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lower sensitivity towards cellobiose than glucose, redu-
cing sugar concentrations may be underestimated when
glucose is used as a standard and f-glucosidase is not in
excess [102]. However, under the applied hydrolysis
conditions, cellobiose did not accumulate (the highest
cellobiose to glucose ratio was measured in the case of
Sigmacell after 10 h at 0.12) and, therefore, this under-
estimation was minimal and the addition of B-glucosi-
dase was not needed. Initial hydrolysis rates (g/(L*h))
were calculated by applying a linear fit to the reducing
sugar concentration data from 0 to 6 h.

Computational methods

Parameters (including standard deviations) of the
adsorption model were calculated by nonlinear, least
squares regression analysis using MATLAB R2010 (The
MathWorks, Natick, USA). TableCurve 3D 4.0 (Systat
Software, San Jose, CA, USA) was used to empirically
correlate Crl and mean particle size with initial hydroly-
sis rates via the non-linear Gaussian cumulative func-
tion:

z = GCUMX(a, b, ¢) + GCUMY (d, e, f) + GCUMX(g, b, c) - GCUMY(1, ¢, f) (3)

in which a, b, ¢, d, e, fand g denote the various fitting
parameters of the non-linear Gaussian cumulative func-
tion (-).

Additional material

Additional file 1: DNA sequence of pKLAC1-H construct (containing
the DNA coding for recombinant swollenin).

List of abbreviations

a: non-linear Gaussian cumulative function parameter (-); A: adsorbed protein
per g cellulose (UMol/g); Aax: Maximum protein adsorption per g cellulose
at equilibrium (umol/g or mg/qg); b: non-linear Gaussian cumulative function
parameter (-); BSA: bovine serum albumin; ¢: non-linear Gaussian cumulative
function parameter (-); CBH: cellobiohydrolase; Crf: crystallinity index (%); d:
non-linear Gaussian cumulative function parameter (-); dy: shaking diameter
(mm); e: non-linear Gaussian cumulative function parameter (-); E: free
protein concentration (umol/L); EG: endoglucanase; f. non-linear Gaussian
cumulative function parameter (-); g: non-linear Gaussian cumulative
function parameter (-); lpgz: maximum intensity of the crystalline plane (002)
reflection (1/5); Iay: XRD scattering for the amorphous component at 18° in
cellulose-I (1/s); K4: association constant (L/umol) Kp: dissociation constant
(umol/L); A: wavelength (A); n: shaking frequency (rpm); NBT/BCIP; nitro blue
tetrazolium/5-Bromo-4-chloro-3-indolyl phosphate; P: probability for
significant scores (protein matching) (-); PBST: phosphate buffered saline
containing Tween-20; R’ coefficient of determination (-); T: temperature (°C);
0: diffraction angle (°); V;: filling volume (mL); XRD: X-ray diffraction; YPGal:
medium containing yeast extract, peptone and galactose.
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