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Abstract

Background: Microbial lipids have drawn increasing attention in recent years as promising raw materials for
biodiesel production, and the use of lignocellulosic hydrolysates as carbon sources seems to be a feasible strategy
for cost-effective lipid fermentation with oleaginous microorganisms on a large scale. During the hydrolysis of
lignocellulosic materials with dilute acid, however, various kinds of inhibitors, especially large amounts of organic
acids, will be produced, which substantially decrease the fermentability of lignocellulosic hydrolysates. To overcome
the inhibitory effects of organic acids, it is critical to understand their impact on the growth and lipid accumulation
of oleaginous microorganisms.

Results: In our present work, we investigated for the first time the effect of ten representative organic acids in
lignocellulosic hydrolysates on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans
cells. In contrast to previous reports, we found that the toxicity of the organic acids to the cells was not directly
related to their hydrophobicity. It is worth noting that most organic acids tested were less toxic than aldehydes to
the cells, and some could even stimulate the growth and lipid accumulation at a low concentration. Unlike
aldehydes, most binary combinations of organic acids exerted no synergistic inhibitory effects on lipid production.
The presence of organic acids decelerated the consumption of glucose, whereas it influenced the utilization of
xylose in a different and complicated way. In addition, all the organic acids tested, except furoic acid, inhibited the
malic activity of T. fermentans. Furthermore, the inhibition of organic acids on cell growth was dependent more on
inoculum size, temperature and initial pH than on lipid content.

Conclusions: This work provides some meaningful information about the effect of organic acid in lignocellulosic

hydrolysates on the lipid production of oleaginous yeast, which is helpful for optimization of biomass hydrolysis
processes, detoxified pretreatment of hydrolysates and lipid production using lignocellulosic materials.
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Background

Biodiesel, a mixture of long-chain monoalkyl fatty acid
esters, has been considered a good alternative to conven-
tional petrodiesel oil because of its green and renewable
characteristics [1]. Although it has been used in many
countries around the world, the high production cost, of
which oil feedstock accounts for about 75%, has become a
hurdle, and the sustainable and stable supply of cheap
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lipids is crucial for their further development and wide
application [2]. Nowadays, the most commonly used feed-
stocks in biodiesel production are vegetable oils and waste
oils from restaurants or industry. However, vegetable oils
such as rapeseed oil and corn oil contribute to the world’s
food supply, and thus their use as feedstock for biodiesel
production has brought about the food versus biofuel
debate [3]. The amount of waste oils is limited and cannot
meet the increasing demand for biofuel. Microbial oils,
namely, single-cell oils (SCOs), which have long been used
as substitutes for high-added-value lipids [4,5] such as
cocoa butter [6,7], are now believed to be a promising
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candidate as biodiesel feedstock because of their fatty acid
composition, which is similar to those of vegetable oils [8].
At present, however, the high fermentation cost of SCOs
limits their use for biodiesel production [7,9]. The adop-
tion of inexpensive media, such as molasses [10], industrial
glycerol [11], monosodium glutamate wastewater [2] and
lignocellulosic hydrolysates [12] for lipid fermentation is
one of the possible resolutions of this problem. Recently,
the use of lignocellulosic materials for SCO production
has attracted increasing attention because these materials
are the most abundant and renewable biomass resources
in nature [8,12].

Lignocellulosic biomass consists of cellulose, hemicellu-
lose and lignin, whose relative proportion depends on
their material sources [13]. The hydrolysis of lignocellulo-
sic materials into soluble, fermentable sugars is necessary
for their efficient utilization by microorganisms. However,
a variety of by-products, mainly organic acids, aldehydes
and alcohols such as acetic acid, furfural from decomposi-
tion of pentoses, 5-hydroxymethylfurfural from degrada-
tion of hexoses and aromatics (aromatic alcohols, acids
and aldehydes) from lignin, are inevitably generated during
hydrolysis with dilute acid [14]. In most cases, these by-
products, known as “inhibitors,” exert negative effects on
the growth, metabolism and product formation of micro-
organism cells in the fermentation process [15].

Recently, we reported that despite the oleaginous yeast
Trichosporon fermentans’s production of a poor lipid
yield on nondetoxified, sulfuric acid-treated rice straw
hydrolysate (SARSH), it grew well with efficient lipid
accumulation on detoxified SARSH [12], suggesting that
the inhibitors in the lignocellulosic hydrolysate do have
great effects on lipid fermentation. Among the inhibi-
tors, organic acids are generally the most abundant, and
ten kinds of organic acids, including aliphatic acids
(acetic acid, formic acid, levulinic acid and caproic acid),
aromatic or furan acids (4-hydroxybenzoic acid, syringic
acid, vanillic acid, furoic acid, ferulic acid and gallic
acid) have been found in lignocellulosic hydrolysate. Lit-
tle is known about their inhibition on lipid fermentation,
however [16,17]. To provide some interesting informa-
tion necessary for lipid fermentation on lignocellulosic
hydrolysates, we systematically investigated, for the first
time, the inhibitory effects of the above-mentioned
organic acids on the growth and lipid accumulation of
T. fermentans with a mixture of glucose and xylose at a
ratio of 2:1 (wt/wt) as the carbon source, owing to its
similarity to lignocellulosic hydrolysates.

Results and discussion

All microbial processes are affected by the sugar concen-
tration in the medium, and substrate inhibition may
occur during growth of oleaginous microorganisms on
sugars [18]. Therefore, we first investigated the effect of

Page 2 of 12
N

925- 1140
&0 4120
N—"
=) 20 - -
[5) =
= 4 100\ =
= 15+ S
& 10T 8
< = &
310- 160 & &
B g 2
=0 S g
v 5t 140 = 8
2] —
< =3 =)
g 120 9 &
2 0 1 1 1 1 1 1 1 1 a
M 0 50 100 150 200 250 300 350 400

Initial sugar concentration (g/L)

Figure 1 Effect of initial sugar concentration on the growth
and lipid accumulation of Trichosporon fermentans. Triangles,
biomass; circles, lipid content; squares, lipid yield; inverted triangles,
sugar consumption.

sugar concentration, ranging from 25 to 400 g/L, on cell
growth, lipid accumulation and sugar consumption of 7.
fermentans. As shown in Figure 1, there was no signifi-
cant substrate inhibition on the cell growth of T. fermen-
tans at concentrations up to 100 g/L, but cell growth was
repressed at higher sugar concentrations, especially 2200
g/L. The highest biomass, lipid content and lipid yield
occurred at 100 g/L sugar concentration. At this point,
about 73.3 g/L total sugars were utilized by T. fermentans
after five days’ fermentation, and the biomass and lipid
yield per sugar consumed were 29.1% and 16.1% (g/g),
respectively. Therefore, 100 g/L was chosen as the initial
sugar concentration in the subsequent experiments.

In our previous study, we showed that the optimal
inoculum size, temperature and initial pH for lipid pro-
duction by T. fermentans at 100 g/L glucose are 5%, 25°C
and 6.5, respectively [10]. In our present work, albeit
using a mixture of glucose and xylose (100 g/L) at a ratio
of 2:1 (wt/wt) as a carbon source, there was no change in
the optimal fermentation conditions (inoculum size, tem-
perature and initial pH), as indicated in Table 1. Figure 2
depicts the time courses of cell growth, lipid accumula-
tion and sugar utilization of T. fermentans in the same
medium against fermentation time. As shown in Figure
2A, the biomass increased with the increase of fermenta-
tion time and reached the maximum on day 7. Further
increase in the fermentation time resulted in little varia-
tion in biomass production. The highest lipid content
and lipid yield were also obtained on the seventh day, on
which the SCO produced per total sugar consumed was
17.6% (g/g). Interestingly, T. fermentans could utilize glu-
cose and xylose simultaneously (Figure 2B), which would
be beneficial for large-scale application because it would
shorten the fermentation time.
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Table 1 Effect of fermentation conditions on the cell growth and lipid accumulation of Trichosporon fermentans on the

medium without inhibitor

Inoculum size Initial pH Temperature Biomass (g/L) Lipid content Lipid yield (g/L)
(%, vol/vol) (°C) (%, 9/9)

5% 6.5 25 240 £ 0.7 617 £ 16 148 £ 0.5
10% 6.5 25 224+ 12 586+ 1.7 131 £10
15% 6.5 25 216 £ 1.1 543 +12 11.7 £ 09
5% 55 25 184 £ 09 572+ 17 105 £ 08
5% 7.5 25 215+ 07 563+ 14 121 £ 0.7
5% 6.5 22 199 £ 09 558 £ 1.1 1.1 +£07
5% 6.5 28 236+ 12 589+ 12 139+ 10

Effects of organic acids on the growth and lipid
accumulation of T. fermentans

Among the ten kinds of acids tested, caproic and ferulic
acids showed the strongest inhibitory effects, and the
relative biomass levels of T. fermentans were only about
3% and 23% in the presence of 17.2 mM (2 g/L) caproic

A

30 1100 5
3 E)
ED %)
%5y 180 &
o 2
Y 2
< 20F g
& {60 =
by 5]
315- &
C] 140 &
2 10| =
E 5
5 i =
2 5p %8
=

&

0 0o 3

Fermentantion time (d)

Residual sugars (g/L)
o)
<)

{1

1

0o 1 2 3 4 5 6 7 8 9 10
Fermentantion time (d)

Figure 2 Production of microbial oils on medium without
inhibitors by Trichosporon fermentans. (A) Time courses of
growth and lipid accumulation. Squares, biomass; circles, lipid
content; triangles, lipid yield. (B) Time course of sugar utilization.
Squares, glucose; circles, xylose; triangles, total sugars.

acid and 20.6 mM (4 g/L) ferulic acid, respectively (Fig-
ure 3). Fortunately, caproic and ferulic acids are nor-
mally found at very low concentrations in lignocellulosic
hydrolysates. For example, in brewer’s spent grain and
red oak hydrolysates, the concentrations of ferulic acid
and caproic acid are only around 0.3 mM (0.06 g/L) and
0.17 mM (0.02 g/L), respectively [19,20], which cause
about 4% and 2% inhibition of lipid yield of T. fermen-
tans, respectively (Figure 3), and hardly affect the lipid
production by 7. fermentans. The inhibitory effects of
the other eight kinds of acids are shown in Figure 3.
Similarly, all these organic acids showed only a slight
inhibitory effect on the growth and lipid accumulation
of T. fermentans at their likely concentrations in ligno-
cellulosic hydrolysates [15]. Interestingly, although the
inhibition of furoic acid on cell growth became more
serious with the increase of its concentration, no signifi-
cant decrease in the lipid content was observed, even
when its concentration reached 89.2 mM (10 g/L),
which differs from previous reports that both cell
growth and lipid synthesis of oleaginous yeast Rhodos-
poridium toruloides were seriously suppressed by furoic
acid, even at concentrations as low as 4 mM [17],
demonstrating that the inhibition of an organic acid on
lipid fermentation varies widely with different microor-
ganism strains. Among the organic acids tested, levulinic
acid exerted the least impact on the lipid yield. It is
worth noting that, rather than suppressing cell growth
and lipid accumulation, some organic acids, including
formic acid, acetic acid, levulinic acid, 4-hydroxybenzoic
acid and gallic acid, might even stimulate both cell
growth and lipid accumulation of T. fermentans when
their concentrations are below 16 mM. A similar phe-
nomenon was also observed in that low concentrations
of phenol-type compounds (< 5 mM of gallic acid
equivalent) stimulated biomass production and citric
acid biosynthesis of yeast Yarrowia lipolytica when olive
mill waste waters were used as a substrate for citric acid
production [21]. Also, it has been reported that the bio-
mass and SCO production by another Y. lipolytica strain
was remarkably enhanced when the medium was
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supplemented with Teucrium polium extract (in quanti-
ties of 10 g/L) [22]. More recently, Y. lipolytica has been
further proven to produce substantially higher SCO
quantities in media supplemented with phenol com-
pounds (concentrations ranging from 5 to 10 mM) [23].

ICy5 and ICs, which represent the molar concentra-
tions of the tested organic acids that cause 25% and 50%
inhibition of the lipid yield of T. fermentans,

respectively, are summarized in Table 2. The relative
biomass and lipid content at IC,5 and ICsy concentra-
tions are also given in Table 2. Apparently, there is no
direct relationship between the toxicity and hydrophobi-
city of organic acid, which does not agree with the pre-
vious report describing ethnologenic Escherichia coli, in
which the investigators found that the more hydropho-
bic the organic acid, the stronger its inhibitory effect
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Table 2 Concentration of organic acids required to inhibit the lipid yield of Trichosporon fermentans
Organic acid 1C,57 Relative biomass Relative lipid ICs0? Relative biomass Relative lipid LogP¢
(mM) (%) content (%) (mM) (%) content (%)
Formic acid 434 92 81 80.4 72 68 -0.54
Acetic acid 30.0 87 83 66.6 68 78 -0.17
Levulinic acid 1464 90 82 3100 79 61 -049
4-hydroxybenzoic acid 97.7 84 89 188.2 67 80 1.58
Vanillic acid 155 80 93 60.7 63 79 143
Syringic acid 96 79 94 782 58 86 1.04
Furoic acid 17.8 70 106 93.7 52 98 1.06
Gallic acid 67.6 88 86 1352 63 74 0.7
Ferulic acid 3.1 76 99 7.7 51 97 1.51
Caproic acid 30 88 83 56 71 69 1.92

“Molar concentration of 25% inhibition on lipid yield. PMolar concentration of 50% inhibition on lipid yield. “The LogP data are from work by Zaldivar and Ingram

[24].

[24]. In most cases, the molar concentrations of IC,5
and ICs, for organic acids are higher than the corre-
sponding values for aldehydes [25]. For example, the
ICs of vanillic acid was 60.7 mM but 6.6 mM for vanil-
lin, suggesting that organic acids are less toxic than
aldehydes to lipid production of 7. fermentans.

The sugar consumption in the medium containing the
selected organic acid was also recorded after fermenta-
tion for seven days at which the control without inhibi-
tor gave the maximum lipid yield and the residual sugar
was xylose with a concentration of about 15.7 g/L (Fig-
ure 3). Interestingly, except for furoic and caproic acids,
the relative sugar consumption was above 100% in the
presence of a small amount of organic acids. However,
improved sugar utilization did not necessarily lead to an
enhanced lipid yield. For example, T. fermentans could
utilize more sugars than the control in the presence of 5
mM syringic acid, but the corresponding relative lipid
yield was only 81.1%. At higher concentrations, however,
all the tested organic acids suppressed the sugar utiliza-
tion, and the higher the concentration, the more pro-
nounced the suppression. Among the organic acids
examined, levulinic acid showed the least influence on
sugar utilization, which is in accordance with the obser-
vation that levulinic acid displayed the lowest toxicity to
lipid production of T. fermentans.

To gain deeper insight into the sugar assimilation, the
time course of sugar utilization in the medium contain-
ing the selected organic acid at its ICy5 was further
investigated. As shown in Figures 4A and 4D, the glu-
cose consumption rate decreased in the presence of
acids, but it still could be exhausted by 7. fermentans
with an increase in time, as reported by Narendranath
et al. [26] and Huang et al. [12]. Similarly, aliphatic
acids decreased the xylose consumption rate throughout
the fermentation process, and less xylose was utilized
compared with the control (Figure 4B). In the presence
of aromatic or furan acids such as vanillic, syringic,

furoic and ferulic acids, however, T. fermentans can uti-
lize xylose at a faster rate than the control from day 5,
and more xylose was consumed at the end of fermenta-
tion (Figure 4E). Obviously, in some cases, organic acids
can stimulate the utilization of xylose. However, the
enhanced sugar conversion did not result in improved
lipid production. A similar phenomenon was also
observed in our previous work on the effect of aldehyde
on the growth and lipid accumulation of T. fermentans
[25]. The reason for this is now under investigation in
our laboratory.

In our previous studies [10,12], we found that when
glucose is almost exhausted, cellular lipids can be used
as a carbon source to maintain the growth of 7. fermen-
tans. In general, microorganisms consume their accu-
mulated lipids mainly through the glyoxylate bypass
pathway, and, more specifically, different microbes
might preferentially consume different kinds of fatty
acids to maintain their growth [6]. In this work, there is
also apparent cellular lipid degradation between the
seventh and tenth days for control without inhibitors. A
similar tendency was observed in the culture of T. fer-
mentans on the media containing various organic acids
(data not shown). The lipid degradation rate is slower
than the control, however, because of the presence of
acids, especially the aromatic acids, suggesting that
organic acids repress lipid turnover as well. This is an
interesting phenomenon because repression of accumu-
lated lipid degradation has been observed only in multi-
ple limited media [27].

Malic enzyme is considered the key enzyme for lipid
synthesis in oleaginous microorganisms because it is
one of the main enzymes providing a supply of NADPH
(nicotinamide adenine dinucleotide phosphate oxidase)
to microorganisms [28,29]. In this work, the effects of
the selected organic acids (each at its IC,5 concentra-
tion) on the malic enzyme activity were tested after the
second day of fermentation, when the lipid formation
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rate reached the maximum in culture without an inhibi-
tor. As shown in Figure 5, the malic enzyme activity was
inhibited by all the organic acids tested except furoic
acid, which can well explain the delay in lipid accumula-
tion in the media containing these acids. Interestingly,
for furoic acid, there was no significant change in the
specific activity of malic enzyme, and even a higher
malic enzyme activity was detected, which partly
explains the small influence of furoic acid on the lipid
synthesis of T. fermentans mentioned above (Figure 3).

In many cases, addition of natural compounds, such
as sterculia oil [4,5], essential oils [30], plant extracts
[31] or phenol-type compounds [20], even in small
concentrations, can have profound effects upon the
fatty acid composition of microbial lipids. High-added-
value microbial lipids such as cocoa butter substitutes
can be produced by modifying the fatty acid composi-
tion of lipids under various conditions [4,5]. The effect
of organic acids on the fatty acid composition of lipids
from T. fermentans is shown in Table 3. Apparently,
oleic acid was the most abundant fatty acid, being
about 50% to 60% of the total fatty acids, followed by
palmitic acid, stearic acid and linoleic acid. In most
cases, organic acid had no significant influence on the
composition of unsaturated acids, including oleic acid
and linoleic acid. However, the presence of organic
acid would increase the palmitic acid content. The
stearic acid content varied with the organic acid. It is
worth noting that acetic acid, the most abundant acid
in the lignocellulosic hydrolysates, had little influence
on the fatty acid composition of lipid produced by T.
fermentans.
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Effects of inoculum size, temperature, and initial pH on
the inhibition by organic acids

It has been reported that the toxicity of organic acids to
microorganism can be relieved by increasing cell density
in fermentation [24]. Therefore, each selected organic
acid was added to the medium at its IC5, concentration
to examine the effect of inoculum size on the inhibition
of the organic acid (Figure 6). In most cases, increasing
inoculum size cannot reduce the inhibitory effects of
acids on cell growth and lipid accumulation. Unexpect-
edly, in the case of caproic acid, high inoculum size
(10% and 15%) not only eliminated its inhibition on cell
growth but also enhanced cell growth, as indicated by a
relative biomass of more than 100%.

The effects of temperature and initial pH on the inhibi-
tion by organic acids at their respective IC5, concentra-
tions were also recorded. No direct correlation between
the culture temperature and the inhibitory effect of acids
was observed (Figure 7). Similarly, there was no relation-
ship between the initial pH and the inhibition by acids
(Figure 8). Initial pH, however, exerted a greater impact
than temperature on inhibition. Within the range of pH
levels tested, for most of aliphatic acids, a higher initial pH
resulted in a lower relative biomass. Interestingly, an
opposite result was obtained in the presence of most aro-
matic or furanacids. It is worth noting that in some cases,
a suitable pH can remarkably relieve and even eliminate
the inhibitory effect of acids. For example, in the presence
of gallic acid, the biomass and lipid content were only 0.8
g/L and 12.6%, respectively, at pH 7.5 (with corresponding
relative biomass and lipid content being 3.8% and 22.4%).
However, the toxicity of gallic acid dropped sharply with
the decrease of pH and even an enhanced effect on cell
growth and lipid accumulation was observed at pH 5.5, at
which the biomass and lipid content reached as high as
23.1 g/L and 59.9%, respectively (with the relative biomass
and lipid content being 125.3% and 104.8%).

Effects of binary combinations of organic acids on cell
growth and lipid accumulation of T. fermentans

It has been reported that the synergistic effect of differ-
ent inhibitors present in the lignocellulosic hydrolysates
is complex [32-34]. Therefore, the effects of binary com-
binations of organic acids on the cell growth and lipid
accumulation of T. fermentans were tested at their
respective IC,5 concentrations listed in Table 2. Acetic
and 4-hydroxybenzoic acids, the typical aliphatic and
aromatic acids in lignocellulosic hydrolysate, respec-
tively, were chosen for binary combinations with other
organic acids. In the experiments, whenever two acids
were combined, the predicted relative biomass, lipid
content and lipid yield represented the values after
deduction of the summed inhibition on biomass, lipid
content and lipid yield by each of the two tested
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Table 3 Effect of organic acids on the fatty acid composition of lipids

Fatty acid composition (%)

Organic acid® Palmitic acid (C16:0)

Linoleic acid (C18:2)

Oleic acid (C18:1) Stearic acid (C18:0) Others

Acetic acid (2 g/L) 19.8
Syringic acid (0.5 g/L) 229
Vanillic acid (0.5 g/L) 236
Caproic acid (0.25 g/L) 24
Furoic acid (0.5 g/L) 26.1
4-hydroxybenzoic acid (0.5 g/L) 212
Formic acid (1 g/L) 195
Levulinic acid (4 g/L) 226
Ferulic acid (2 g/L) 20.7
Gallic acid (4 g/L) 17.2
Control 174

6.6 559 16.5 1.2
59 476 226 1

58 47.1 22.5 1

6.8 56.9 10.9 14
56 53 144 09
58 54.1 17.9 1

6.6 578 15.2 09
56 542 158 1.8
4.8 604 11.8 23
73 56.6 18.3 06
6.1 579 174 1.2

Values in parentheses represent the organic acid’s concentration tested.

inhibitors at their IC,5 concentrations. If the actual
experimental value exceeded the predicted value, the
inhibition was referred to as “synergistic.”

As shown in Figure 9A, taking lipid yield into account for
the binary combinations of acetic acid with other organic
acids, the inhibition caused by most of the binary combina-
tions was roughly equal to the predicted value. However,
the combination of acetic acid with formic or gallic acid
showed a synergistic inhibition on lipid yield. For example,
the combination of acetic acid and gallic acid led to a 95%
decrease in lipid yield compared to the predicted value.
Likewise, in the cases of binary combinations of 4-hydroxy-
benzoic acid with other organic acids (Figure 9B), most of
the binary combinations caused no synergistic inhibition.
Interestingly, the binary combination of 4-hydroxybenzoic
acid and caproic acid greatly reduced the inhibition on cell
growth and lipid accumulation and resulted in a 60%
increase in the lipid yield compared to the predicted value.

Conclusions

The inhibitory effect of organic acids on the cell growth
and lipid accumulation of T. fermentans can be relieved
or even eliminated at low concentrations. Thus, more
efforts should be made to improve the stress assistance of
T. fermentans to inhibitors by genetic engineering and/or
domestic methods. The development of cost-effective
hydrolytic or detoxification processes to obtain lignocel-
lulosic hydrolysates with lower inhibitor concentrations
would also be useful. The inhibition of organic acids can
also be reduced by optimizing culture conditions, such as
inoculum size, temperature and initial pH of the medium.

Methods

Microorganism and chemicals

Oleaginous yeast 7. fermentans CICC 1368 was obtained
from the China Center of Industrial Culture Collection
and kept on wort agar at 4°C. Levulinic acid, 4-

hydroxybenzoic acid, syringic acid, vanillic acid and
furoic acid were purchased from Alfa Aesar (Heysham,
UK). Acetic acid, formic acid, caproic acid, ferulic acid,
gallic acid and other chemicals were obtained from com-
mercial sources and were of the highest purity available.

Medium, precultivation and cultivation

The composition of the precultivation medium (pH 6.0)
was as follows: glucose and xylose 20 g/L (ratio 2:1 wt/wt),
10 g/L peptone and 10 g/L yeast extract. The composition
of the fermentation medium (pH 6.5) was as follows: 100 g/
L glucose and xylose (ratio 2:1 wt/wt), 1.8 g/L peptone, 0.5
g/L yeast extract, 0.4 g/L MgSO,4-7H,0, 2.0 g/L KH,PO,,
0.003 g/L MnSO,4-H,O and 0.0001 g/L CuSO,4-5H,0.

The preculture was performed in a 250-ml conical
flask containing 50 ml of precultivation medium in a
rotary shaker at 28°C and 160 rpm for 24 hours. Next,
5% seed culture (2.5 ml) was inoculated in a 250-ml
conical flask containing 47.5 ml of fermentation med-
ium, and cultivation was carried out in a rotary shaker
at 25°C and 160 rpm for seven days.

Effect of sugar concentration on the growth and lipid
accumulation of T. fermentans

A mixture of glucose and xylose at a ratio of 2:1 (wt/wt)
was used as the carbon source. The medium, at an
initial sugar concentration of 25, 50, 75, 100, 125, 150,
200, 300 or 400 g/L, respectively, was used for the sub-
strate inhibition study. After five days’ fermentation, the
biomass, lipid content, lipid yield and sugar concentra-
tion of T. fermentans on the medium with different
initial sugar concentrations were compared.

Effects of organic acids on the growth and lipid
accumulation

After precultivation, 2.5 ml of seed culture were inoculated
in 47.5 ml of fermentation medium containing the selected
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C and 28°C were, respectively, 19.9 g/L, 55.8% and 11.1 g/L; 24.0 g/

L, 61.7% and 14.8 g/L; and 23.6 g/L, 589% and 13.9 g/L. Ac, acetic
acid; Fo, formic acid; Le, levulinic acid; Hy, 4-hydroxybenzoic acid;

Fu, furoic acid; Ca, caproic acid; Ga, gallic acid; Fe, ferulic acid; Sy,

syringic acid; Va, vanillic acid.

Figure 7 Effect of temperature on the inhibition of organic
acids. All organic acids were tested at their respective molar
concentrations of the tested organic acids that caused 50%
inhibition of the lipid yield. Cultures with 5% inoculum size were
incubated at initial pH 6.5 and 160 rpm for 7 days. Results are
expressed relative to controls without organic acids. Biomass, lipid
content and lipid yield of cultures lacking organic acids at 22°C, 25°

Organic acid

Each organic acid was tested at the molar concentration of
lipid yield of cultures in the absence of organic acids with 5%, 10%
and 15% inoculum sizes were, respectively, 24.0 g/L, 61.7% and 14.8

g/L; 224 g/L, 58.6% and 13.1 g/L; and 21.6 g/L, 54.3% and 11.7 g/L.

Ac, acetic acid; Fo, formic acid; Le, levulinic acid; Hy, 4-
hydroxybenzoic acid; Fu, furoic acid; Ca, caproic acid; Ga, gallic acid;

pH 6.5, 25°C and 160 rpm for 7 days. The results are expressed
relative to controls without organic acids. Biomass, lipid content and
Fe, ferulic acid; Sy, syringic acid; Va, vanillic acid.

Figure 6 Effect of inoculum size on the inhibition of organic
yield of Trichosporon fermentans. Cultures were incubated initially at

acids.
the tested organic acids that caused 50% inhibition of the lipid
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Figure 8 Effect of initial pH on the inhibition of organic acids.
All organic acids were tested at their respective molar
concentrations of the tested organic acids that caused 50%
inhibition of the lipid yield. Cultures with 5% inoculum size were
incubated at 25°C and 160 rpm for 7 days. Results are expressed
relative to controls without organic acids. Biomass, lipid content and
lipid yield of cultures lacking organic acids at pH 5.5, pH 6.5 and pH
7.5 were, respectively, 184 g/L, 57.2% and 10.5 g/L; 24.0 g/L, 61.7%
and 14.8 g/L; and 21.5 g/L, 56.3% and 12.1 g/L. Ac, acetic acid; Fo,
formic acid; Le, levulinic acid; Hy, 4-hydroxybenzoic acid; Fu, furoic
acid; Ca, caproic acid; Ga, gallic acid; Fe, ferulic acid; Sy, syringic acid;
Va, vanillic acid.
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organic acid. To facilitate averaging, results throughout the
text are expressed as percentages of the control values
without addition of the tested inhibitor (with the biomass,
lipid content, lipid yield and residual sugar concentration
after seven days’ fermentation being 24.0 g/L, 61.7%, 14.8
g/L and 15.7 g/L, respectively). ICy5 and ICs, defined as
the molar concentrations of the tested organic acids that
cause 25% and 50% inhibition of the lipid yield of T. fer-
mentans, respectively, were measured according to the
data shown in Figure 3. All reported data were averages of
experiments performed at least in triplicate.

Effects of inoculum size, temperature and initial pH on
the inhibition of organic acids

The effects of inoculum size, temperature or initial pH
on the potency of organic acids were examined using
acid concentrations of IC5,. For inoculum size, 5%, 10%
and 15% seed culture were inoculated in the fermentation
media containing the selected acids (ICsg). For tempera-
ture, the cultures with 5% inoculum size were maintained
at 22°C, 25°C and 28°C, respectively. Fermentation media
containing the assayed acids were adjusted to pH 5.5, 6.5
or 7.5 prior to inoculation to test the effect of initial pH.
Biomass, lipid content and lipid yield were all measured
after seven days’ fermentation.

Binary combinations of organic acids

Two selected organic acids with each concentration at
IC,5 were added to the fermentation medium. Cultures
were inoculated as described above and incubated for
seven days (5% inoculum size, pH 6.5, and 25°C). Cul-
tures grown without adding organic acids were used as
the control.

Effects of organic acids on sugar utilization and malic
enzyme activity

The effects of organic acids on sugar utilization were
examined with the acid concentration being IC,5. The
relative sugar consumption was defined as the ratio of
the amount of glucose and xylose consumed by the
yeast cells grown on the culture medium containing the
selected organic acid for seven days to that without the
acid. The malic enzyme activity of T. fermentans was
measured according to our previous work [25] with a
SHIMADZU UV-2550 spectrophotometer (Kyoto,

Japan).

Analytical methods

Biomass was harvested by centrifugation and weighed in
its lyophilized form [35]. Extraction of lipid from lyophi-
lized biomass was performed according to a procedure
modified from the one described by Folch et al. [36],
with a mixture of chloroform and methanol (2:1 vol/
vol). The extracted lipid was centrifuged to obtain a
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clear supernatant, and the solvent was removed by eva-
poration under a vacuum at 100 hPa, 55°C and 100 rpm
(EYELA NE series rotary evaporator; Tokyo Rikakikai
Co, Ltd, Tokyo, Japan). Lipid yield is expressed as the
amount of lipid extracted from the cells in per liter of
fermentation broth (g/L), and lipid content is defined as
the percentage of lipid to dry biomass (% wt/wt). The
fatty acid profile of the lipid from 7. fermentans was
determined by gas chromatography (GC-2010 Plus;
Tokyo Rikakikai Co, Ltd) with an ionization detector
and a DB-1 capillary column (0.25 cm x 30 m; Agilent
Technologies Inc, Santa Clara, CA, USA) according to
previously published procedures [10]. D-xylose and D-
glucose were measured by high-performance liquid
chromatography (Waters Corp, Milford, MA, USA) with
a differential refractive index detector (Waters 2410;
Waters Corp) and an Aminex HPX-87P column (300
mm x 7.8 mm; Bio-Rad Laboratories, Hercules, CA,
USA) at 85°C. Deionized water was used as the mobile
phase at 0.5 mL/minute.
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