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Abstract

Background: Efficient conversion of lignocellulosic biomass to optically pure lactic acid is a key challenge for the
economical production of biodegradable poly-lactic acid. A recently isolated strain, Thermoanaerobacterium
aotearoense SCUT27, is promising as an efficient lactic acid production bacterium from biomass due to its broad
substrate specificity. Additionally, its strictly anaerobic and thermophilic characteristics suppress contamination from
other microoragnisms. Herein, we report the significant improvements of concentration and yield in lactic acid
production from various lignocellulosic derived sugars, achieved by the carbon flux redirection through
homologous recombination in T. aotearoense SCUT27.

Results: T. aotearoense SCUT27 was engineered to block the acetic acid formation pathway to improve the lactic
acid production. The genetic manipulation resulted in 1.8 and 2.1 fold increase of the lactic acid yield using 10 g/L
of glucose or 10 g/L of xylose as substrate, respectively. The maximum L-lactic acid yield of 0.93 g/g glucose with
an optical purity of 99.3% was obtained by the engineered strain, designated as LA1002, from 50 g/L of substrate,
which is very close to the theoretical value (1.0 g/g of glucose). In particular, LA1002 produced lactic acid at an
unprecedented concentration up to 3.20 g/L using 10 g/L xylan as the single substrate without any pretreatment
after 48 h fermentation. The non-sterilized fermentative production of L-lactic acid was also carried out, achieving
values of 44.89 g/L and 0.89 g/g mixed sugar for lactic acid concentration and yield, respectively.

Conclusions: Blocking acetic acid formation pathway in T. aotearoense SCUT27 increased L-lactic acid production
and yield dramatically. To our best knowledge, this is the best performance of fermentation on lactic acid
production using xylan as the sole carbon source, considering the final concentration, yield and fermentation time.
In addition, it should be mentioned that the performance of non-sterilized simultaneous fermentation from glucose
and xylose was very close to that of normal sterilized cultivation. All these results used the mutant strain, LA1002,
indicated that it is a new promising candidate for the effective production of optically pure L-lactic acid from
lignocellulosic biomass.
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Background
As an important building block of solvents and sub-
stances with biological activities [1,2], lactic acid has
attracted increasing attention. For instance, lactic acid
can be used to produce biodegradable and biocompatible
poly-lactic acid (PLA) [3], which can be used in medical
materials as well as in packaging materials. The micro-
bial fermentative production of lactic acid is interesting
due to several advantages, e.g. low production cost
through using cheap raw materials, low production
temperature and less energy consumption. In addition,
the biological process could produce a desired stereoiso-
mer, optically pure L- or D-lactic acid, which is a pre-
requisite for high quality PLA production [4].
To reduce the cost and increase the economy of

lactic acid production, utilizing cheap raw materials
as resources were extensively investigated, such as
molasses, starchy and cellulosic resources. From an
economical point of view, lignocellulosic biomass is a
potential feedstock for producing lactic acid because
they are cheap, abundant and renewable, and do not
compete with food [5]. The efficient bioconversion of
biomass derived sugars to lactic acid is a key chal-
lenge for economically feasible fermentation processes
[6]. Lactobacillus is the best known commercial strain
for lactic acid production due to their high acid tole-
rance and ability to be genetically engineered for selec-
tively producing optically pure isomers [7,8]. Although
lactic acid bacteria (LAB) could produce lactic acid from
glucose with a theoretical yield of 100%, most LABs
cannot ferment pentose sugars to support growth and
metabolize [9]. A few LAB strains metabolize xylose to
produce lactic acid via the phosphoketolase (PK)
pathway, which exhibits hetero-fermentation of lactic
acid and acetic acid and reaches the maximum theor-
etical lactic acid yield of 1 mol/mol of xylose [9,10].
Abdel-Rahman et al. [9] summarized lactic acid pro-
duction from various types of lignocellulosic biomass
materials by LABs through various fermentation
models. However, few microorganisms can achieve
direct lactic acid fermentation from xylan or dextran.
In addition, most LABs produce lactic acid at tempera-
tures of 30–42°C [10], thus medium sterilization is
necessary to avoid contamination during fermentation.
Members of Thermoanaerobacterium are thermo-

philic and obligate anaerobic bacteria. They can
converse polysaccharide and carbohydrate from ligno-
cellulosic materials to produce primarily L-lactic acid,
ethanol, acetic acid, carbon dioxide and hydrogen. Re-
cently, the metabolic pathway has been regulated to
achieve high yields of ethanol and hydrogen [11,12].
Argyros et al. [13] reported the co-culture fermen-
tation of an organic acid-deficient engineered T.
saccharolyticum with a highly cellulolytic organism,
C. thermocellumi, to produce ethanol from crystalline
cellulose.
Herein, we described a genetic alteration in the strain

T. aotearoense SCUT27 for producing optically pure
L-lactic acid via blocking the acetic acid formation path-
way. In addition to the ability of metabolizing monosac-
charides and disaccharides, the engineered mutant,
LA1002, retains the capability of using xylan or dextran
as the sole carbon to support cell growth and produce
lactic acid in high yield. A non-sterilized anaerobic
process to efficiently produce L-lactic acid was also
achieved without contamination during fermentation by
LA1002. These results indicate that LA1002 could be a
promising new optically pure L-lactic acid producer
from renewable resources.

Results and discussion
Construction of pta-ack deficient strains
To block the acetic acid production that consumed the
carbon source, the homologous recombinant vector
pPuKAd (Figure 1) was transformed into T. aotearoense
SCUT27 competent cells. Electro-pulsed cells were
recovered in liquid medium for 4 h and then plated on
agar plates containing 50 μg/mL of kanamycin. After
incubation in anaerobic jars at 55°C for 2–3 days,
hundreds of colonies grew out. Chromosomal DNA of
two picked colonies were extracted. All strains showed
positive results analyzed by amplification using primer
pair of pta-F and ack-R. As shown in Figure 2A, negative
control with the wild type SCUT27 genomic DNA as
template yielded a 2.2 kb fragment. While for the two
positive isolates, the amplification obtained 3.3 kb frag-
ments being consistent with the expected size of double-
crossover event for chromosomal recombination. The
disruption of pta and ack genes was further confirmed
by southern blotting (Figure 2B) using the amplified
486 bp probe. After the genomic DNA digested by Pst I,
the probe detected a 1.2 kb and a 2.2 kb band for
SCUT27 and LA1002, respectively.

Improved lactic acid production by T. aotearoense
SCUT27 mutant
For the wild and mutant strains, the cell growth and lactic
acid production entered into their stationary state after
24 h culturing. So the corresponding metabolites were
recorded after 24 h fermentation. During the fermentation
in defined media with 10 g/L of glucose or xylose as the
carbon source, no acetic acids were detected for the strain
LA1002 (Figure 3A). The results further confirmed that
the acetic acid formation pathway was disrupted com-
pletely in the LA1002. Along with the blocking of acetic
acid formation pathway, the hydrogen released by LA1002
was much less than that by SCUT27 (Figure 3B). To test
the stability of the kanamycin gene insertion into LA1002



Figure 1 Schematic diagram of the knockout strategy for the pta and ack genes. The pta-ack locus on the T. aotearoense SCUT 27
chromosome, the pBluescript II SK(+) derived knock out plasmid pPuKAd used to disrupt the pta-ack gene locus and the predicted pta-ack gene
locus after double cross over integration are shown. The endonucleolytic cleavage sites used in the pPuKAd construction are indicated. The
location of the probe and the expected sizes of the fragments detected by southern blot analysis of the genomic DNA digested with Pst I
are shown.
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chromosome, the cells were transfer cultured (~100
generation) for 30 days successively in antibiotic-free
medium. The cells were plated on media without kana-
mycin. Genomic DNA was extracted from 20 single col-
onies of generation 100 and used as template for the
Figure 2 Screening and confirmation of pta and ack genes
knockout. (A) polymerase chain reaction (PCR) screening using
genomic DNA as template. Lane 1, 1 kb DNA ladder (TaKaRa), Lane
2, SCUT27, Lane 3&4, positive isolates. (B) Southern blot analysis of
genomic DNA from wild type SCUT27 (Lane 1) and the pta and ack
deletion clones, LA1002 (Lane 2) digested with Pst I. The probe with
the expected sizes of 486 bp (position shown in Figure 1),
hybridized to one 1.2 kb fragment of wild type DNA, and to one
2.2 kb fragment of the mutant DNA.
insertion amplification with the primers of pta-F and ack-
R. All the LA1002 cells were found containing the 3.3 kb
kanamycin insertion fragments, indicating the stability of
the phosphotransacetylase and acetate kinase knockout
(Additional file 1: Figure S1).
Improving potential production and yielding target

products are two of the most anticipated benefits of a
metabolic regulation effort. Based on the theoretical
analysis of metabolic flux of T. aotearoense SCUT27
[11], the carbon flow of mutant strain LA1002 should
be redirected to other metabolites, i.e. lactic acid and/
or ethanol. As shown in Table 1, lactic acid yields by
LA1002 from glucose or xylose were increased by
1.79 and 2.07 fold compared to that by SCUT27, res-
pectively. The lactic acid concentration was dramati-
cally enhanced to 2.85 (from glucose) and 2.43 g/L
(from xylose) at the end of fermentation by the mu-
tant strain, respectively (Figure 3C). Meanwhile, the
maximum lactic acid productivities were improved. It
should be noted that the increases of lactic acid yields
and specific lactic acid productivities (gram lactic
acid/gram cells) from glucose or xylose were almost
the same (Table 1), suggesting that the higher lactic
acid production was owed to the lactic acid produ-
cing ability of single cell. It is interesting that the pH
profiles of fermentation broth by SCUT and LA1002
were almost same, at the final pH values of around
3.7 (Figure 3D).



Figure 3 Fermentation profiles of the SCUT27 and LA1002 strain in 125 mL serum bottles (modified MTC medium containing 10 g/L
glucose or xylose as the unique carbon source). Fermentations were performed in triplicate. All the data were derived from three
independent experiments. (A) Acetic acid; (B) H2; (C) Lactic acid; (D) pH; (E) Ethanol; (F) DCW; (G) Residual sugar.
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Figure 3E shows that the output of ethanol was re-
duced to about 50% of that produced by the SCUT27
using glucose or xylose as substrate. Actually, the
descended lactic acid production rate during the late
fermentation (Figure 3C) was accompanied by the
increase of ethanol production (Figure 3E), declination
of cell growth (Figure 3F) and decrease in the glucose
consumption (Figure 3G). Several hypotheses have been
proposed to explain the regulation of lactic acid and
glycolytic flux pathway on LABs [14,15], yeasts [16] and
other microorganisms [17]. In principle, the redox
potential and the energy carriers can be potential modu-
lators of the primary metabolism. Although a lot of
modeling strategies were used for the flux analysis, there
is no clear scenario to determine the catabolic flux dis-
tribution [15]. In this work, the ratio of NADH/NAD+

and the pool concentrations of ATP and Pi were all
changed through the alteration of acetic acid pathway
on the basis of academic analysis. This might account
for the drop in ethanol titer produced by LA1002 com-
pared to SCUT27.
As shown in Table 1, the growth of strain LA1002 was

inhibited by about 30% of the wild strain SCUT27,
measured by DCW (Figure 3F), with almost the same
decrease of substrate consumption (Figure 3G). For the
acetic acid pathway could generate ATP, the alternation
of acetic acid formation resulted in a lower ATP yield by
LA1002 than SCUT27. And the lack of energy even-
tually caused the growth stop [18].

Effects of carbon sources on the lactic acid production by
LA1002
In order to evaluate the performance of LA1002 using
different sugars derived from lignocellulosic biomass, we
conducted fermentation to produce lactic acid using
cellobiose, mannose, dextran T110 and beechwood xylan
as the sole carbon source. Glucose was used as a control
sample. In a 48 h batch fermentation in 125 mL serum



Table 1 Batch fermentation comparison of SCUT27 and LA1002 of T. aotearoense a

Glucose Xylose

SCUT27 LA1002 Foldg SCUT27 LA1002 Fold

Carbon recoveryb 106.02 93.8 - 95.26 99 -

Final pH 3.76 3.77 - 3.81 3.65 -

DCW (g/L) 0.93 0.65 0.70 0.79 0.55 0.69

Consumed sugar (g/L) 7.08 4.83 0.68 6.43 4.23 0.66

CLA
c (g/L) 2.36 2.85 1.21 1.82 2.43 1.34

YLA
d (g/g) 0.33 0.59 1.79 0.28 0.58 2.07

PLA
e (g/L/h) 0.19 0.29 1.53 0.20 0.22 1.10

SPLA
f (g/g cells) 2.54 4.39 1.73 2.29 4.44 1.94

CEtOH (g/L) 1.22 0.59 0.49 0.98 0.46 0.47

CAc (g/L) 0.88 0.00 - 0.73 0.00 -

H2 (mL/L) 786.76 261.34 0.33 605.93 161.43 0.27
a Batch fermentation was performed in 125 mL serum bottles containing 50 mL of modified MTC medium, and cultivated with initial pH 6.0 at 55°C for 24 h. The
experiments were done on three independent repeats and the standard deviation were not showed in this table for the purposes of simplicity.
b Carbon recovery accounts for the average percentage of carbon recovered in all products and biomass at all time points.
c Lactic acid concentration (g/L).
d Yield of lactic acid produced (g) to consumed sugar (g).
e Lactic acid productivity, calculated as the ratio of lactic acid concentration (g/L) to the fermentation time during the exponential growth.
f Lactic acid specific productivity, in gram lactic acid per gram of cells per hour, were calculated as the ratio of lactic acid concentration to dry cell weight (DCW)
during the exponential phase.
g The fold values were calculated by dividing the data of LA1002 by those of SCUT27.
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bottle containing 50 mL MTC medium, all the sugars
(15 g/L) can support the cell growth and lactic acid pro-
duction by the mutant strain LA1002 (Figure 4A and B).
The cell density using benchwood xylan as the sole
carbon source was not measured, because the fermenta-
tion broth contained some undegraded xylan particles.
The fermentation patterns using the above-mentioned

sugars were roughly the same, except that the lag period
using xylan as substrate was about double of other situa-
tions (Figure 4B,C and D). The fermentation using xylan
as carbon source took almost 48 h to reach the max-
imum lactic acid concentration. While in other cases, it
only needed 24–28 h. The maximum lactic acid concen-
tration peaked at 3.38 g/L using cellobiose as a single
carbon source followed closely by other sugars, which
were all higher than 3.0 g/L (Figure 4B). The final yields
of lactic acid were all near 0.52 g/g using glucose, cello-
biose and mannose as substrate. The lactic acid
productivities during the exponential growth are all
around the value of 0.2-0.25 g/L/h, except for that using
xylan as single substrate was 0.15 g/L/h (Figure 4E). And
the optical purities of L-lactic acid using different carbon
source were all higher than 99%. All these results
showed that the acetic acid pathway blocked strain
LA1002 is capable of using lignocellulos-derived sugars
to produce lactic acid.
Recently, some strains capable of utilizing xylose

[19-21] and cellobiose [10,22-24] for lactic acid fermen-
tation were reported. Not even that, Okano et al. [25]
reported the directed lactic acid fermentation from
β-glucan and a cellooligosaccharide by introducing an
endoglucanase from a C. thermocellum into L. plantarum
ΔldhL1. The lactic acid concentration reached at 1.47 g/L
using 0.2% (w/v) β-glucan as the sole carbon after
33 h cultivation, which was much lower than that
obtained by LA1002.
Although a lot of efforts have been put into the lactic

acid production using lignocellulos-derived sugars as
substrate, rare researches were focused on the xylan
utilization. Some wild type and engineered strains have
been cultivated with hydrolyzed xylan to produce lactic
acid [26,27]. But few strains can metabolize xylan
directly without hydrolyzation to produce lactic acid.
Ohara et al. [26] reported Le. lactis SHO-47 and SHO-
54 can utilize xyloheptaose and xylooligosaccharides to
produce D-lactic acid, but they still cannot metabolize
xylan to support growth. Until recently, an engineered
strain of Lactobacillus brevis R8 harboring a xylanase
gene can produce 1.7 g/L of lactic acid of 1.70 g/L after
4 d of fermentation by using 20 g/L xylan as the main
carbon source [28]. By contrast, the lactic acid yield
achieved by our constructed strain LA1002 (3.20 g/L)
was much higher than that by L. brevis R8. Meanwhile,
the time required to reach the maximum lactic acid con-
centration was significantly shortened from 4 d by L.
brevis R8 to 2 d by LA1002. Besides, to our best known,
no reports have examined the lactic acid production
using dextran as the sole carbon source. These results
indicate that it is very appealing to produce lactic acid
through lignocellulose fermentation by LA1002, because



Figure 4 Time profiles of metabolitics using different sugars as the sole carbon source by LA1002. The bacterium was cultivated in serum
bottles for 24 hours at 55°C with the initial pH of 6.0. Because the fermentation broth was too turbid to determine OD600 before xylan degraded,
the value of DCW of LA1002 using beechwood xylan as substrate was not measured. And the residual sugar using dextran T110 and xylan as the
carbon source were also not recorded. The data were calculated from two independent experiments. (A) DCW, (B) Lactic acid concentration, (C)
Residual sugar, (D) Ethanol concentration, (E) Lactic acid productivity.
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the mutant strain is capable of integrating the saccharifi-
cation of lignocellulose biomass and microbrial fermen-
tation in one pot. It may pave a cost-effective new way
to produce lactic acid from lignocellulosic biomass.

Effects of pH on lactic acid production by LA1002
The extra cellular pH has a big impact on catalytic
activities of enzymes and the metabolic flux of micro-
granisms in fermentation [29,30]. According to our pre-
vious work [11], SCUT27 grows bad or could not grow
at pH values lower than 5.0 or higher than 7.5. To assess
the effect of pH on the lactic acid production by
LA1002, we set the initial medium pH from 5.0 to 7.5
with an interval of 0.5 with excess substrate (10 g/L of
glucose). After 24 h fermentation, the final culture pH
values were all dropped to about 4.0. As shown in
Figure 5, the DCW, consumed sugar, ethanol concentration
and yield at pH 7.5 were increased by 2.9, 2.6, 9.3 and 3.1
folds using the values at pH 5.0 as benchmark, respectively.
However, the lactic acid yield declined slightly as the initial
medium pH raised. This indicates that the metabolic flux
transits inside cells responding to the changing of extra-
cellular pH value. Higher initial pHs may cause the carbon
redirection from lactic acid to cell mass and ethanol forma-
tion. On one hand, lactate dehydrogenase is pH sensitive
and its activity would be inhibited at increased pH [31]. On
the other hand, an increased ratio of NADH/NAD+ also
suppresses the activity of lactate dehydrogenase, since the
NADH/NAD+ ratio goes up at higher pHs [29].
Several studies concerned the pH effects on glycolytic

flux of different LABs [14,32]. The optimum pH for the
lactic acid production and yield by microorganisms is
between 5.0 and 7.0, depending on the microorganisms
species [29]. Yuwono et al. [33] also concluded that the
pH inhibition was competitive for lactic acid concentra-
tion and cell growth rate. For the strain LA1002, a pH
range of 6.0 and 7.5 was optimal for the lactic acid pro-
duction and cell growth. Superior results were achieved



Figure 5 pH effects on metabolic parameters of lactic acid production by T. aotearoense LA1002. The values are average of three
independent experiments and the error bars represent standard deviation. (A) DCW; (B) Consumed sugar; (C) Lactic acid; (D) Ethanol; (E) Lactic
acid yield; (F) Ethanol yield.
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at pH 6.5 to maximize the lactic acid concentration and
yield and to minimize the ethanol formation at the same
time.

pH-controlled high-efficiency lactic acid production by
LA1002
Under a non-pH-controlled fermentation in serum
bottle, the maximal lactic acid yields were only 0.59
and 0.58 g/g sugar consumed using glucose or xylose
as sole carbon source, respectively. The unsatisfactory
conversion of sugar to lactic acid may be ascribed to
the low pH during the late fermentation (about 4.0
after 24 h fermentation), which has a severe negative
effect on cell growth and metabolism. In order to ob-
tain higher lactic acid concentrations and yields, we
conducted fermentation assays using 50 g/L of glucose
or xylose as carbon source in a 5 L bioreactor with a
3 L working volume at 55°C. All the fermentation pro-
cesses by LA1002 were carried out at pH 6.5 controlled
by the online addition of sodium hydroxide. For all the
cultivation, no acetic acid was detected at the end of
fermentation with the optical purity of produced L-
lactic acid over 99.5%.
First, we carried out lactic acid fermentation using glu-

cose as the carbon source. The sugar consumption, final
biomass and the lactic acid production by LA1002



Table 2 Fermentation parameters in batch cultivation by LA1002a

Substrate
Sterilized

Carbon recoveryb μmax DCW Timec CLA YLA PLA CEtOH CLA/
CEtOH(%) (h-1) (g/L) (h) (g/L) (g/g) (g/L/h) (g/L)

50 g/L glucose Yes 107 ± 6 0.37 1.69 36 47.17 0.93 2.60 3.66 12.89

50 g/L xylose Yes 100 ± 1 0.23 1.78 84 39.72 0.79 0.65 4.63 8.58

25 g/L glucose, 25 g/L xylose Yes 101 ± 2 0.37 2.10 48 43.56 0.86 1.85 4.12 10.57

25 g/L glucose, 25 g/L xylose No 98 ± 7 0.32 2.16 60 44.89 0.89 1.26 4.01 11.19
a Batch fermentation was performed in 5 L fermentor containing 3 L medium and cultivated at 55°C controlling pH as 6.5 with 5 M of sodium hydroxide. Data
represent the average results from three independent experiments.
b Carbon recovery accounts for the average of percentage of carbon recovered in all products and biomass at all the time points.
c The specified time that strain reached the maximum lactic acid concentration.
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during the pH-controlled fermentation were all in-
creased markedly compared to those acquired by the
pH-varied process (Table 2 and Additional file 1: Figure
S2). LA1002 completely consumed the total substrate
after 36 h cultivation and produced 47.17 g/L of lactic
acid with a yield of 0.93 g/g of glucose consumed, which
is very close to the theoretical value of 1.0. The max-
imum specific growth rate and highest volumetric prod-
uctivity were 0.37 h-1 and 2.60 g/L/h, respectively. The
dry cell weight was up to 1.69 g/L with only small
amounts of ethanol was produced at the concentration
ratio of lactic acid to ethanol of 12.89.
Conventionally, calcium carbonate or calcium hydro-

xide is added to the bioreactor to neutralize the pH
during lactic acid fermentation. However,the calcium
lactate needs to be acidified with sulfuric acid to convert
the salt to lactic acid, which consumes a large amount of
sulfuric acid and generates lots of insoluble gypsum
(CaSO4). Thus alternative neutralizing agents are highly
desired to overcome the economic and ecological hur-
dles of the calcium carbonate neutralization during
large-scale lactic acid production [3]. The sodium lactate
was the favorite form to the membrane-based lactic acid
separation and purification technologies [34,35]. But so
far few attempts succeeded in using sodium hydroxide
as neutralizing agent, due to the limited tolerance of
microorganisms to high concentration of sodium lactate.
Qin et al. [34] have reported that a mutant Bacillus sp.
Na-2 improved resistance against sodium lactate stress,
while vigorous agitation and aeration were needed for
their process. In this work, the strain LA1002 showed an
excellent tolerance to sodium lactate under mild ope-
rational conditions, leading a more competitive process
of lactic acid fermentation.
A relatively low lactic acid production was observed

when used 50 g/L xylose as the sole carbon source. A
complete depletion of xylose after 84 h cultivation led to
39.72 g/L lactic acid at a yield of 0.79 g/g of consumed
xylose. However, the strain LA1002 showed the ability to
utilize xylose in the presence of glucose, though the sugar
consumption rate of xylose was lower than that of glucose
(Additional file 1: Figure S2B). Most reported micro-
organisms could not metabolize xylose and glucose
simultaneously. Only when the glucose was consumed
completely in the medium, xylose began to be fermentated
[20,25]. In this study, the simultaneous consumption of
xylose and glucose by LA1002 might be ascribed to the
leaky expression of xylose transporting and metabolizing
genes [25]. The metabolic parameters using mixture
sugars as substrate achieved the values of 43.56 g/L,
0.86 g/g, 1.85 g/L/h for lactic acid concentration, yield and
productivity, respectively. The maximum growth rate
from the mixture substrate, 0.37 h-1, was same as the case
of pure glucose. The carbon recovery calculation for the
time acquired the maximum lactic acid concentration in
5 L fermentor was shown in Additional file 1: Table S1.
These results indicate that the LA1002 has the potential
to efficiently metabolize hydrolyzed lignocellulosic bio-
mass to produce lactic acid.

Non-sterilized anaerobic lactic acid production by LA1002
Since T. aotearoense LA1002 has a very high cultivation
temperature of about 55°C [11], it may enable a non-
sterilized anaerobic fermentation and facilitate the sepa-
ration of lactic acid with the by-product of ethanol. We
carried out the non-sterilized fermentation for lactic acid
production from a glucose and xylose mixture (Table 2
and Additional file 1: Figure S2). No contamination was
observed during the cultivation. The lag time of non-
sterilized fermentation was a little longer than that of
normal fermentation, due to the growth inhibition to
undesired microbes. Even though, the final lactic acid
productivity and yield climbed to 44.89 g/L and 0.89 g/g
of consumed sugar, respectively, being very close to
those of normal sterilized cultivation. Recently, two
groups of bacteria have been reported to produce L-
lactic acid without sterilization [36-38]. Bacillus sp. 2–6
by Qin et al. [37] produced 118.0 g/L of L-lactic acid at
the yield of 0.97 g/g glucose under open fermentative
conditions. While the thermotolerant strain B. coagulans
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NL01 achieved the maximum lactic acid concentration
of about 75 g/L from 100 g/L of xylose after 72 h non-
sterilized flask fermentation [38]. To the best of our
knowledge, this research is the first to show the simul-
taneous utilization of glucose and xylose to produce
optically pure L-lactic acid at high yields under non-
sterilized conditions. All these results further suggested
that the engineered LA1002 strain is a promising alter-
native in the bioconversion of lignocellulosic derived
sugars to lactic acid.

Conclusions
In this study, a thermophilic and anaerobic micro-
organism of T. aotearoense SCUT27 was engineered to
produce high concentration L-lactic acid at high yield by
blocking the acetic acid formation pathway. No acetic
acid by-product was detected during all the fermenta-
tion, which significantly facilitate the downstream puri-
fication. The mutant LA1002 is able to convert the
lignocellulosic sugars, e.g. xylose, cellobiose, mannose,
dextran and xylan, to optically pure L-lactic acid effec-
tively. More importantly, its thermophilic and anaerobic
characteristics allowed for producing lactic acid through
a non-sterilized fermentation. Combined with the fer-
mentation merits, T. aotearoense LA1002 is encouraging
and potentially well-suited for optically pure L-lactic
acid production from lignocellulosic biomass in an eco-
nomic feasible way.
Table 3 Strains, plasmids, and primer sequences used in this

Strains

T. aotearoense
SCUT27

Wild type strain

DH5α E. coli cloning strain, F- endA1 glnV44 thi-1 recA1 relA1 gyrA
argF)U169, hsdR17(rK

- mK
+), λ–

LA1002 As SCUT27, but Δpta, Δack

Plasmids Description

pBluescript II SK
(+)

Standard cloning vector, f1 ori; AmpR;

pBlue-aph Derived from pBluescript II SK(+), with kanamycin expressi

pBlue-pta-aph Derived from pBlue-aph, with partial phosphotransacetylas

pPuKAd Homologous recombination plasmid derived from pBlue-p
gene downward of kanamycin gene

Primers Sequence 5′→ 3′) a

pta-F AACTAGGTACCAGCGCTGTACGAAATTGCCACTC

pta-R GTACTGAATTCCACCCATTCCTTGTGTTATAGG

ack-F GAGCGGATCCGCATAGAATTAGCTCCACTGC

ack-R TGACTGCGGCCGCCGACGCCTCCCATAGCTG

Prob-F TATTAAGACCTGCATTTCAGAT

Prob-R CATTTGCCTTAGCTAACCTC

a Underlined nucleotides indicate restriction enzyme sites.
Methods
Strains and culture media
T. aotearoense SCUT27 used in this study was isolated
and maintained in our laboratory [11]. Cells were
cultured in modified MTC medium. For the electro-
transformation, the electropulsed cells were plated in the
modified DSMZ 640 medium by using xylose instead of
cellobiose with 2% agar. Escherichia coli (E. coli) DH5α
used for gene cloning was grown in Luria-Bertani (LB)
medium supplemented with appropriate antibiotics. When
necessary, 50 μg/mL of kanamycin or/and 100 μg/mL of
ampicillin were added to the media.

Gene cloning and suicide vector construction
The bacterial strains, vectors and primers used in this
work are listed in Table 3. The S. faecalis kanamycin
resistance gene 3′5′′-aminoglycoside phosphotransferase
of type III (aph, Genbank Accession No. V01547) was
synthesized by Sangon (Shanghai, China) and inserted
between the EcoR I and BamH I sites of pBluescript II
SK(+) vector (Stratagene, CA, USA), yielding the plas-
mid pBlue-aph. The 1489 bp aph sequence employed in
this study comprises the 705 bp kanamycin open reading
frame (ORF) plus 490 bp upstream of promoter and
294 bp downstream of the transcriptional termination
loop. To disrupt the acetic acid formation, the genes
encoding phosphotransacetylase (pta) and acetate kinase
(ack) in chromosome from wild type SCUT27 were
study

Source

[11]

96 deoR nupG Φ80dlacZΔM15 Δ(lacZYA- Invitrogen

This study

Source

Stratagene

on cassette This study

e (pta) gene upward of kanamycin gene This study

ta-aph, with partial acetate kinase (ack) This study

Application

Forward primer for pta

Reverse primer for pta

Forward primer for ack

Reverse primer for ack

Forward primer for
hybridization probe

Reverse primer for
hybridization probe
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inserted by aph through homologous recombination
(Figure 1). Gene fragments of pta-up (1179 bp) and ack-
down (627 bp) are amplified from the genomic DNA of
T. aotearoense SCUT27 using primer pairs pta-F/pta-R
and ack-F/ack-R, respectively. Normal PCR amplifica-
tions were performed with pfu (Stratagene) and exTaq
(TaKaRa, Dalian, China) polymerase at the annealing
temperatures of 59°C and 55°C for pta-up and ack-
down, respectively. The pta-up was first ligated with the
plasmid of pBlue-aph both doubly digested with EcoR I
and Kpn I, to obtain pBlue-pta-aph. Then the homolo-
gous recombination vector pPuKAd was obtained by
subsequently inserting the ack-down between the BamH
I and Not I sites of pBlue-pta-aph. All restriction
enzymes were purchased from TaKaRa.
The electro-transformation of T. aotearoense SCUT27

was performed as previously reported [11] with modifi-
cations during selection on kanamycin. The transformed
cells were recovered in liquid modified MTC medium at
50°C for 4 hours, then plated on solid DSMZ 640
medium with 2% of agar containing 50 μg/mL of kana-
mycin at 50°C for about 3 days. Double homologous
recombinants were screened by PCR using genomic
DNA as template with the forward primer of pta-F and
reverse primer of ack-R. Southern blotting analysis was
carried out to confirm the disruption of pta and ack
genes. By using the primers of Prob-F and Prob-R, the
hybridization probe was amplified from the SCUT27
genomic DNA. The obtained knockout mutant was
designated as T. aotearoense LA1002.

Serum bottle fermentations
Cultures in 125 mL serum bottle containing 50 mL
modified MTC medium with a nitrogen gas headspace
and a 10% vol/vol inoculation were carried out at 55°C
for the small volume batch fermentation. Samples were
removed at specified intervals for determining fermen-
tation parameters of wild type SCUT27 or mutant
LA1002. The effects of pH on the cell growth and lactic
acid production were studied using 10 g/L glucose as
substrate with an initial pH adjusted from 5.0 to 7.5. To
study the effect of carbon sources, glucose, xylose, man-
nose, cellobiose, dextran T110 and beechwood xylan
were used as the sole substrate at an initial concentra-
tion of 15 g/L for the lactic acid production.

Bioreactor fermentations
Batch fermentations were performed in a 5.0 L bioreac-
tor (New Brunswick, CT, USA) with a 3 L working
volume containing modified MTC medium. The cultu-
ring temperature was maintained at 55°C. The agitation
speed was kept at 100 rpm. The pH was kept at approxi-
mately 6.5 by the automatic addition of 5 M NaOH.
Anaerobic conditions were maintained by sparging the
medium reservoirs and fermentor with oxygen-free
nitrogen for 0.5 to 1 h until the oxygen-indicating dye
resazurin became clear. Batch fermentations of the
LA1002 strain were performed using 50 g/L of glucose,
xylose and glucose/xylose mixture (1:1, w:w). The seed
culture was prepared from an overnight culture grown
in modified MTC medium containing 5 g/L glucose in
serum bottles. Then the inoculum was added into bio-
reactors at 10% of inoculum volume for lactic acid pro-
duction. At each sampling time, 5 mL of the cultures
were removed and assayed for dry cell weight (DCW),
residual sugars and fermentation products.
Analytical methods
The dry cell weight (DCW) was calculated from the
optical density (OD600) with a linear correlation factor
(DCW (g/L) = 0.0371 + 0.3343 × OD600).
Fermentation metabolites and residual sugars contents

were determined by high performance liquid chromato-
graphy (HPLC) equipped with an Aminex 87H column
(Bio-Rad Laboratories, Inc., Hercules, CA) and a refrac-
tive index detector. The mobile phase was 5 mM H2SO4

at a flow rate of 0.6 mL/min. The column temperature
was set at 60°C. All samples were passed through
0.22 μm filters before loading. The optical purity of lac-

tic acid was defined as L‐lactic acidð Þ‐ D‐lactic acidð Þ
Total lactic acid � 100% .

L-lactic acid was measured by SBA-40C lactate biosen-
sor analyzer (The Academy of Science in Shandong
Province, China), and the total lactic acid was deter-
mined by HPLC. Carbon balance calculations were
based on the previously reported equation [11].
5 mL of hydrogen was drawn out from serum bottle

sealed with rubber and thin aluminium sheet tightly, then
1 mL was injected into gas chromatography (Fuli 9790,
China) immediately for hydrogen quantity measurement.
The gas chromatography equipped with a TDX-01 column
and an AE electric insulating oil analysis column, a ther-
mal conductivity detector (TCD). The oven temperature
was isothermally set at 60°C. The calculation details can
be acquired from our previous work [11].
Additional file

Additional file 1: Figure S1. Genetic stability detection of LA1002 by
PCR using pta-F and ack-R as primers with genomic DNA as template. M:
1 kb DNA ladder (TaKaRa), 1-20, different single colonies of LA1002
(generation 100), P: LA1002 (generation 1) as the positive control, N:
SCUT27 as the negative control. Figure S2. Fermentation of single
substrate or mixtures of glucose/xylose (1:1, w:w) by LA1002 in 5 L
bioreactor using sterilized or non-sterilized culture medium. (A) DCW, (B)
Residual sugars, (C) Lactic acid concentration, (D) Lactic acid production
rate. Panel (A), (C) and (D), ▲glucose, ▼xylose, □ mixture of glucose/
xylose, ○ non-sterilized mixture glucose/xylose. Panel (B), ▲glucose,▼
xylose, □ residual glucose in the mixture, ○ residual xylose in the mixture,
■residual glucose in the non-sterilized mixture, ●residual xylose in the

http://www.biomedcentral.com/content/supplementary/1754-6834-6-124-S1.docx
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non-sterilized mixture. Table S1. Carbon recovery calculation in batch
cultivation by LA1002a.
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