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Abstract

Background: Renewable lignocellulosic biomass is an advantageous resource for the production of second
generation biofuels and other biorefinery products. In Middle Europe, wheat straw is one of the most abundant
low-cost sources of lignocellulosic biomass. For its efficient use, an efficient mix of cellulases and hemicellulases is
required. In this paper, we investigated how cellulase production by T. reesei on wheat straw compares to that on
lactose, the only soluble and also cheap inducing carbon source for enzyme production.

Results: We have examined and compared the transcriptome of T. reesei growing on wheat straw and lactose as
carbon sources under otherwise similar conditions. Gene expression on wheat straw exceeded that on lactose, and
1619 genes were found to be only induced on wheat straw but not on lactose. They comprised 30% of the
CAZome, but were also enriched in genes associated with phospholipid metabolism, DNA synthesis and repair, iron
homeostatis and autophagy. Two thirds of the CAZome was expressed both on wheat straw as well as on lactose,
but 60% of it at least >2-fold higher on the former. Major wheat straw specific genes comprised xylanases,
chitinases and mannosidases. Interestingly, the latter two CAZyme families were significantly higher expressed in a
strain in which xyr7 encoding the major regulator of cellulase and hemicellulase biosynthesis is non-functional.

Conclusions: Our data reveal several major differences in the transcriptome between wheat straw and lactose
which may be related to the higher enzyme formation on the former and their further investigation could lead to
the development of methods for increasing enzyme production on lactose.

Background

The utilization of cellulosic and hemicellulosic polymers
in plant biomass for the production of bioethanol or plat-
form chemicals is considered as a possible strategy to re-
duce carbon dioxide emissions and bypass the current
dependence on fossil resources. Renewable lignocellulosic
biomass, besides being cheap and abundant, has also the
advantage that it does not compete with food production.
Currently favored raw materials for this purpose include —
among others — wood residues, “energy crops” such as
switch grass or Miscanthus, and agricultural byproducts
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such as wheat straw [1]. The latter is one of the most
abundant low-cost sources of lignocellulosic biomass in
middle European countries with an annual production of
over 130 million tons [2].

For the biotechnological use of these materials, they
first need to be pretreated and then hydrolyzed to their
monomers. The fungus Trichoderma reesei is currently
the major industrial producer of enzymes needed to de-
grade the above polymers to soluble monosaccharide
[1,3]. Most of these enzymes are not formed during cul-
tivation on monosaccharides such as glucose; the fungus
must therefore be grown in the presence of an inducer
which is mostly a cellulose and hemicellulose containing
waste material [4]. Optimally, this would be the same
material for which the produced enzymes are aimed to
be applied, because this would ensure the induction of
the whole spectrum of enzymes needed. However, this is
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often not possible because commercial producers prefer
the manufacture of an enzyme preparation for a broad
range of substrates.

One of the carbon sources that is used for the produc-
tion of cellulases and hemicellulases by 7. reesei is lactose,
which is favoured when a soluble and cheap inducing car-
bon source is preferred, e.g. to facilitate and reduce costs
for fermentation control and enzyme recovery [5]. How-
ever, cellulase production on lactose occurs at a slower
rate and a lower final enzyme yield than on cellulosic ma-
terials, and it has also been reported to lead to an enzyme
preparation with lower specific activities [6]. Yet an in
depth comparison of the enzymes produced on cellu-
lose and lactose has to our knowledge not been published
so far.

Here we report a comparison of the transcriptome of
T. reesei growing on lactose and cellulose (wheat straw),
which not only demonstrates the differences in the en-
zymes produced but also in the molecular physiology of
growth on these two carbon sources.

Results

Comparison of the wheat straw and lactose-regulated
transcriptome of T. reesei

As a prerequisite for this study, we examined the growth
of T. reesei QM 9414 on wheat straw, lactose and glu-
cose. As shown in Figure 1, growth on glucose occurred
at a faster rate than on the other two carbon sources.
Growth on lactose and on wheat straw occurred at
slower rates, that on wheat straw being lowest. In order
to compare the expression of genes that are induced in
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Figure 1 Growth profiles of T. reesei QM 9414 on different
substrates. The biomass dry weight per liter was directly measured
gravimetrically for glucose (squares) and lactose (diamonds) or
calculated from the intracellular protein content for wheat straw
(triangles) on the basis of 0.35 g intracellular protein per g dry
biomass. Error bars show the respective standard deviation of three
biological replicates.
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T. reesei on lactose and on wheat straw to that on glu-
cose, we therefore determined the transcriptional pro-
files during the initial growth phase (i.e. when 25-30%
of the carbon source have been consumed). We then
searched for those transcripts that were >2-fold less
abundant at a p <0.05 on glucose than either on lactose
and wheat straw. This retrieved a total of 3120 genes, of
which 2832 and 1501 were significantly upregulated on
wheat straw and lactose, respectively. The significantly
higher number on cellulose suggested to us that the
slower growth and the complex nature of wheat straw
may cause a generally more enhanced transcriptional ac-
tivity. In order to test this, we examined those 1100
genes that were expressed on glucose, lactose and wheat
straw at a comparable level (+ 1.4-fold; Additional file 1:
Table S1): they were highly enriched in the KOG groups
J (Translation, ribosomal structure and biogenesis; 12.3%
of all genes of this category) and K (transcription; 10.3%)
(KOG numbers taken from http://genome.jgi-psf.org/
cgi-bin/kogBrowser?db=Trire2). The 1100 genes also
contained several housekeeping genes such as tefl en-
coding elongation factor 1-a and actl, encoding actin
[7]. Interestingly, sarl, encoding a small protein involved
in the secretory pathway, which was recommended as
the most reliable housekeeping gene [7] exhibited > 2-
fold upregulation on wheat straw, probably because of
the general upregulation of secretory genes under these
conditions.

Within the 3120 genes, five patterns (further called
“transcript groups”) could be distinguished: 1213 genes
were significantly upregulated both on wheat straw and
on lactose (Table 1); 1619 genes were upregulated only
on wheat straw (transcript group A), in contrast to only
288 genes that were upregulated on lactose (transcript
group B) only. Among the 1213 genes, 344 were signifi-
cantly stronger upregulated on wheat straw (transcript
group C) and 65 on lactose (transcript group D; Table 1),
whereas 804 were equally strong upregulated on wheat
straw and lactose (transcript group E). 1288 and 238
of the 3120 genes encoded unknown or orphan proteins,
respectively. For a complete list of these genes see
Additional file 2: Table S2.

When the percentage of individual gene groups (de-
fined as FunCat categories; [8]) in the total number of
genes in the individual group was compared, transcript
group A displayed some unique features (Table 1): it was
strongly enriched in Funcat categories for phospholipid
metabolism, iron homeostasis, secretion, protein kinases/
phosphatases and DNA repair. The genes related to iron
homeostasis comprised four ferric reductases, three iron
transporters, three siderophore transporters, and two en-
zymes involved in the biosynthesis of siderophores, includ-
ing one of the two siderophore synthases (Trire2:71005;
[9]; Figure 2). Genes for gluconeogenesis were significantly
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Table 1 Overview of the T. reesei transcriptome on wheat straw (W) and lactose (L)*

Wheat straw and lactose
W>L L>W W=L

Wheat straw Lactose

Transcript category A B C D E
Gene category FunCat
All genes 1619 288 344 65 804
unknown genes 743 117 98 21 309
orphans 90 44 18 5 81
Metabolism 01
glycolysis 02.01 10 1 10
PPP 02.07 1 2 1
TCA cycle 02.10 4 2 5
pentose catabolism NN** 1 1 1 2
gluconeogenesis NIN#*** 1 5
amino acids 01.01 17 8 6 3 15
nucleotide 01.03 6 1 4
fatty acids 01.06.01 35 6 6 3 22
phospholipids 01.06.03 15 6
secondary metabolism 01.20 8 3
Transport
MFS 20.01.03 28 7 28 3 46
nitrogenous compounds 20.01.07, 20.01.09 4 5 2 3 8
ions 20.01.01 6 1 1 5
ABC transporters 20.03.25 4 2 1 4
mitochondrial transport 20.09.04 1 1
aquaporins 20.03.01 1 4
iron transport and reduction 20.01.01.01 6 6 1
Transcription
transcription factors 11.02.03.04 98 16 18 3 57
DNA 10.01 76 4 17
Cell cycle 10.03 13 2 2 1 9
Translation 12.04 7 1 1 1
Secretion 20.09.16 35 1 1 1
Signal transduction
G-protein signalling 30.01.05.05 6 1 4 3 9
protein kinases/phosphatases 30.01.05 27 1 1 3
Extracellular products
SSCPs NN 39 6 12 1 18
glycosyl transferases 14.07.02 5 1 2 1
Hydrolytic enzymes 01.25.01
CAZys 40 7 54 4 27
proteases 26 6 8 8
lipases 11 2 3 1 7
nucleases 9 2 1
amidases and nitrilases 8 2 2 4
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Table 1 Overview of the T. reesei transcriptome on wheat straw (W) and lactose (L)* (Continued)

Oxidative enzymes 3207
cytochrome P450 monooxygenases
FAD-dependent monooxygenases
dioxygenases

multicopper oxidases

peroxide/superoxide metabolism

11 1 5 12
4 5 2
4 2 1 4
3 4 3
7 1 1 4

*Only genes that are at least 2-fold upregulated with respect to glucose (p < 0.05) are considered.
**Not noted in FunCat; refers to enzymes involved in the fungal pentose catabolic pathway.
***FunCat combined gluconeogenesis and glycolysis; here we list genes specific only for gluconeogenesis (and which were consequently left out from glycolysis).

****Small secreted, cysteine-rich proteins; not listed in FunCat.

stronger expressed on lactose than on wheat straw. All
other Funcat categories revealed no significant differences
between the five transcript categories.

The significant differences in expression of genes re-
lated to iron homeostasis prompted us to check whether
wheat straw would bind iron and thus decrease its bio-
availability to T. reesei. As shown in Additional file 3:
Table S3, this was found to be indeed the case: although
the same concentration of FeSO,*7H,0O had been added
to both media (5 mg/L), the supernatant of the wheat
straw medium contained only 16% of it prior to inocula-
tion. Until the time of harvesting the mycelia for tran-
scriptome analysis the cultures on wheat straw consumed
0.21 ppm of the available iron, whereas the lactose culture
only consumed 0.06 ppm, which correlates well with
the higher expression of the iron homeostasis genes
on wheat straw.

The T. reesei secretome on wheat straw and lactose

We also examined how many of the genes found in tran-
script groups A-E would encode secreted proteins.
Druzhinina et al. [10] have recently in silico identified
747 genes for proteins that are secreted by T. reesei into

the medium. 341 of these genes were indeed found to be
significantly transcribed under at least one of the present
conditions, of which 160 were only expressed on wheat
straw. CAZys and unknown proteins comprised the major
portion (93 and 95, respectively), followed by small, se-
creted cysteine rich proteins (58), and all three were most
abundant in transcript group A (Figure 3). Proteases, li-
pases and oxidative enzymes were also detected but only
in much smaller numbers (25, 15 and 15, respectively).
It is also of interest that transcript groups B and D
(i.e. genes expressed either only on lactose, or at high
abundance on it) lacked such coding for oxidative en-
zymes and lipases (Figure 3).

Common and unique features of the wheat-straw and
lactose-induced CAZome

Hakkinen et al. [11] have recently revised and expanded
the repertoire of CAZys in T. reesei, which resulted in 210
genes encoding glycosyl hydrolases, carbohydrate esterases
and carbohydrate binding proteins. A hierarchical cluster
analysis with all of them illustrates that their expression on
wheat straw, lactose and glucose falls into several categor-
ies (indicated by clusters; Figure 4 and Additional file 4:

106936
112590
71005
71008
6107
110666
80639
111893
82017
54962
78465
38812

branches specify the transcript groups, as defined in the text.

ferric reductase
siderophore biosynthesis esterase
siderophore synthase
siderophore transporter
ferric reductase

ferric reductase

iron transporter

ferric reductase
siderophore transporter
iron transporter
siderophore transporter
iron transporter

Figure 2 Hierarchical cluster analysis of expression of genes related to iron homeostasis. Glc, glucose; Lac, lactose; WS, wheat straw.
Data are shown as a heat map, and the color code of respective expression values (dark blue: 0; dark red: 16; numbers indicate the log, of the
mean expression level, n=2). Numbers and names indicate the respective Trire2: number and putative gene function. The letters at the major
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Figure 3 At least >2-fold upregulated genes encoding putative secreted proteins during growth of T. reesei on wheat straw and
lactose. Different transcript groups (for explanation see text) are: transcript group A, blue; transcript group B, red; transcript group C, green;
transcript group D, yellow; and transcript group E, white. Esterases and lipases include both carbohydrate esterases as well as lipases.

Table S4): they comprise genes not expressed at all or — if
so only weakly on wheat straw (I a), genes much stronger
expressed on wheat straw than on lactose (clusters II a and
b), but also genes that are expressed on all carbon sources
(cluster VI). As noted above, 132 of these genes fulfilled
our criterion of at least 2-fold increased expression on
wheat straw versus glucose and at least 2-fold on lactose
versus glucose, respectively. This number is higher than
that of secreted CAZymes, which is due to the fact
that several of the upregulated o- and p-glycosidases
lacked a signal peptide and apparently represent intracel-
lular enzymes.

A detailed analysis showed that the majority of genes
for cellulases, cellulose monooxygenases and cellulose
binding proteins were > 2-fold stronger expressed on
wheat straw than on lactose (Table 2). This included al-
most all of the cellulases with a CBM1 cellulose binding
domain, and also the auxiliary proteins swollenin, CIP1
and one GH61 polysaccharide monooxygenase. Only the
cellobiohydrolase 1-encoding gene cel7a, as well as two
GH1 and one GH3 B-glucosidase genes (cella, cellb and
bgl3j) and two GH61 polysaccharide monooxygenases
were equally expressed on wheat straw and lactose, and
one other polysaccharide monooxygenase was only
expressed on wheat straw. A contrasting picture was
obtained for the GH10, GH11 and GH30 xylanases, half
of which were only expressed on wheat straw. In con-
trast, most of the genes encoding enzymes that cleave
hemicelluloses side chains (a-L-arabinosidases, o-(methyl)-
D-glucuronidases, a-D-fucosidases and polysaccharide
deacetylases) were equally well expressed on lactose
and wheat straw (transcript group E). Finally, it was

noted that the presence of wheat straw (transcript
groups A and C) also specifically induced an array of
GH18 chitinases —particularly such that also contain a cel-
lulose binding domain (CHI18-14, CH18-16, and CHI18-
17 [12]) GH2 and GH47 B-D-mannosidases and GH55
endo-f-1,3-glucanases.

Chitinases, mannanases and galactosidases are negatively
regulated in a strain in which the cellulase regulator XYR1
is nonfunctional

The polysaccharides present in pretreated wheat straw
are mainly cellulose and (a small amount of) xylan [11].
Yet the above data (Table 2) have shown that several genes
not associated with degradation of cellulose or xylan,
such as chitinases, mannosidases or a-D-galactosidases,
are specifically or higher induced by wheat straw. Since
the genes encoding the cellulose and xylan depolymerising
enzymes are regulated by the Zn2Cys6 transcription
factor XYRI1 [13], we also wanted to learn whether tran-
scription of these other differentially expressed genes is
also controlled by XYR1. To this end, we examined their
expression on wheat straw both in 7. reesei strain QM
9414 as well as in a Axyrl knock-out strain. The results
are shown in Figure 5: while qPCR confirmed the induced
expression of these genes in QM 9414, we found that
almost all of them — with the only clear exception of
the p-mannanase encoding gene manl — were 2- to
>100-fold overexpressed in the Axyr! mutant. Most
notably this was true for all the tested chitinases, while
there were one and two ambiguous cases for the
mannanases and galactosidases respectively. The signifi-
cance of these results was also tested by an unequal
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lactose

Figure 4 Hierarchical cluster analysis of glycosyl hydrolase gene expression. Data are shown as a heat map, and the color code of
respective expression values (dark blue: 0; dark red: 16; numbers indicate the log, of the mean expression level, n =2). Roman numbers and
(in certain cases) lower case letters specify clades characterized by consistent expression patterns.

variance t-test and the respective result are reported in
Additional file 5: Table S5.

This finding prompted us to test whether the 5-up-
stream nontranslated sequences of these chitinase,
mannanase and galactosidase genes would bear consen-
sus sites for binding of XYR1 (GGCW,). Furukawa et al.
[14] assessed that the whole genome of T. reesei contains
20692 XYR1 consensus binding sites, which — in view of
the estimated 33 Mbp of the T. reesei genome [15] —

implies that on the average one binding site may occur
about every 1500 bp. When this value is compared to
the number of consensus sites in four major cellulase
genes cel7a, cel7b, cel6a and cel5a, they all contain >10
consensus sites in the first 1500 5 bp upstream of the
ATG [14]. A similar analysis for the 16 chitinase, a-
galactosidase and a-mannanase/mannosidase genes that
were analyzed by qPCR (Figure 5) revealed a broad
range of number of consensus sites within 1000 bp
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Table 2 Glycosyl hydrolases and auxiliary enzymes or proteins that are significantly expressed in T. reesei on wheat
straw and/or lactose

Wheat straw Lactose Wheat straw and lactose
W>L L>W W=L
Transcript category A B C D E
All CAZYs 40 7 54 4 27
cellulases cellobiohydrolases GH6 1
GH7 1
endo-B3-1,4-glucanases GH5 1
GH7 1
GH12 1
GH45 1
B-glucosidases GH1
GH3 7 2
swollenin, CIP1 2
polysaccharide monooxygenase GH61 1 2
hemicellulases endo-B-1,4-xylanases GH10 1 1
GH11 2 1
exo-3-1,4-xylanases GH30 1 2
B-xylosidases GH3 2 1
xyloglucanase GH74 1
a-L-arabinofuranosidases GH43 1 1
GH54 2
GH62 1
a-D-galactosidases GH27 1 2 4
GH36 1
a-D-fucosidases GH95 1 2
B-D-mannanases GH5 1
B-D-mannosidases GH2 1 3 1
GH38 1
GH47 3 1
GH76 2 1
GH92 1 2
B-glucanases endo-1,3/1,4-B-glucanase GH16 2 1 1
endo-1,3-3-glucanase GH55 4 1 1
endo-1,3-3-glucanase GH64 1 1
B-1 3-glucanosyltransferase GH72 1 1
endo-1,3-3-glucanase GH81 1
polygalacturonases exo-polygalacturonase GH28 1
endopolygalacturonase GH28 1
exo-rhamnogalacturonase GH28 1
a-L-rhamnosidase GH78 1
chitinases exo-B-D-glucosaminidase GLS93 GH20 1
endochitinases GH18 4 3
N-acetyl-B-glucosaminidases GH20 1 1
chitosanases GH75 1 1

N-acetyl-B-galactosaminidases GH89 1
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Table 2 Glycosyl hydrolases and auxiliary enzymes or proteins that are significantly expressed in T. reesei on wheat

straw and/or lactose (Continued)

carbohydrate binding proteins

CBM13 1

CBM18 1

a-glucan hydrolases a-D-1,4-glucosidases
glucamylase
a-D-1,4-glucosidases
a,a-trehalase
a,a-trehalase
a-D-1,3-glucosidases

carbohydrate esterases

acetyl xylan esterase
acetyl esterase
chitin deacetylase

a-glucuronidases

GH13 1 1
GH15 1

GH31 3

GH37 1

GH65 2
GH71 2 1
CE1 2

CE4 1 1

CE5 3

CE16 1

GHé67 1
GH79 1
GH105 1 1
GH115 1 1

upstream of their start codon, ranging from 6 (MAN]1) to
0 (for two chitinases and one mannosidase; Additional file
6: Table S6). The significance of the number of consensus
sites versus the mean statistical occurrence (every 1500 bp)
was rejected by the Anderson-Darling test [16].

Wheat straw induces the expression of genes involved in
autophagy

The above described upregulation of chitinases could be
a consequence of enhanced autophagy. This term speci-
fies an intracellular degradation process functioning in
the delivery of cytoplasmic proteins and organelles to
vacuoles for macromolecule turnover and recycling
[17,18]. To investigate this possibility, we screened for
the potential of genes known to be involved in fungal
autophagy in 7. reesei growing on wheat straw and lac-
tose. Indeed, as shown in Figure 6, we found 7 autoph-
agy genes (atgl, atg5, atg7, atg9, atgl5, atgl8 and atg26)
to be significantly upregulated on wheat straw, but not
on glucose or lactose.

Discussion

We have previously described that lactose can induce an
almost complete cellulase and hemicellulase enzyme sys-
tem in 7. reesei, and reasoned that this could be due to
a preference of the fungus to initiate feeding on lignocel-
lulose by hydrolysing the [B-galactoside side chains in
the xyloglucans, which are linked to cellulose in the pri-
mary cell wall of dicotyledons [19]. In order to test how
this induction on lactose would compare to a complex

lignocellulosic material — wheat straw, which not only
contains cellulose but also xylans but with very little ga-
lactose side chains (< 0.1%; [11]) — we compared the tran-
scriptome under both conditions. The results showed that
85 of the 132 genes of the CAZome were expressed both
on lactose as well as on wheat straw. However, two thirds
of them were significantly stronger expressed on wheat
straw than on lactose. One of the major qualitative differ-
ences between wheat straw and lactose was a strict de-
pendence of 4 xylanases and 2 B-xylosidases on wheat
straw for expression, implying that xylanases are only
poorly expressed on lactose. Only xyn2 and xyn3 were also
expressed on the latter. These findings suggest that there
is indeed no major difference between the induction of
cellulolytic enzymes by lactose and cellulose, but that the
observed differences are due to the content of xylan. Ex-
pression of xyn2 has previously been demonstrated to be
triggered by both sophorose (which is considered to be a
“cellulose-specific” inducer) as well as xylobiose (consid-
ered to be “xylan-specific”) and by lactose [20]. However,
xynl, xyn2, xyn4 and xyn5 have recently also been shown
to be differentially induced by D-xylose and L-arabinose
[21]. Similarly, Akel et al. [22] have shown that the
a-L-arabinofuranosidase genes require the presence of
L-arabinose for full induction. We therefore interpret the
significantly higher expression of most of the xylanases
and hemicelluloses side chain hydrolases to be due to the
presence of additional specific inducers for their genes.
These results raise an interesting question: it has been
demonstrated that expression of the cellulase and
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Figure 5 Results of qPCR analyses of those chitinases, galactanases and mannanases that were upregulated on either lactose, wheat
straw or both carbon sources. The expression of the lactose samples and wheat straw samples, taken at the indicated time points (see legend)
is related to that of an 8 h sample from a QM 9414 glucose culture and normalized on tefl. Error bars show the standard deviation of two
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hemicellulase genes in 7. reesei is completely dependent
on the function of the Zn2Cys6-transcription factor XYR1
[13,22], and xyr! itself is induced both on lactose [19], and
cellulose [23]. So how could a single transcription factor
respond to different inducers in quantitative different
ways? The regulation of genes encoding xylanolytic en-
zymes of the model organism Neurospora crassa has been
suggested to involve several regulatory groups: the xylanase
regulator XLR-1 (the N. crassa orthologue of XYR1) was
suggested to work alone or in combination with other

unknown regulators and an XLR-1 independent group of
genes was also suggested to exist [24]. Hakkinen et al. [11]
have also hypothesized that several regulatory mechanisms,
depending on the inducers present, may act on the
CAZyme gene promoters simultaneously, and in some
cases also in an additive manner. An example of such an
additional regulator could be ACE2, which has been dem-
onstrated to assist xylanase gene transcription by enhan-
cing xyrl transcription and by forming a putative
heterodimer with XYR1 [25], whereas it has only a small
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Figure 6 Changes in gene expression of autophagy related

T. reesei genes on glucose, lactose and wheat straw: blue bars
show the expression of lactose (Lac) cultures relative to
glucose (Glc) cultures, red bars show the expression of wheat
straw (Wheat) cultures relative to glucose (Glc) cultures, and
green bars show the expression of wheat straw (Wheat)
cultures relative to lactose (Lac) cultures. Values represent the
mean of three biological replicates, error bars show the

standard deviation.

effect on induction of cellulase gene transcription by solka
floc cellulose, and none at all when sophorose is used as an
inducer [26]. Another candidate could be the orthologue
(Trire2: 26163) of the recently described N. crassa cellulase
regulator CLR-2 [27]. In this study, c/r2 was found to be
induced during growth on lactose or wheat straw. A blastp
search with the T. reesei CLR2 protein sequence against
the NCBI database revealed that it is an orthologue of the
A. nidulans mannanase regulator ManR, for which the
DNA-binding motif has been determined as 5-YAGAAT-
3’ [28]. However, a search of the presence of this motif in
1 kb upstream of several CAZome genes that were found
to be significantly regulated in this study revealed no con-
sistent picture: 1-2 copies were present in some genes,
but completely absent in the majority of them, including
the major B-mannanase gene man5 (unpublished data).
Whether or not CLR2 or another transcription factor co-
operate with XYR1 in the expression of some CAZome
genes therefore remains to be determined. We should like
to stress that both xyrl and clr2 belonged to transcript
group E, i.e. they were expressed to similar levels on lac-
tose and wheat straw. The different level of expres-
sion of various genes on wheat straw and lactose can
therefore not be simply the result of an enhanced ex-
pression of xyrl.

In this study, we also detected a significant upre-
gulation of genes encoding chitinases, a-galactosidases
and mannosidases. These genes were also recently ob-
served to behave different from the major set of cellulase
and hemicellulase genes by being moderately or even
very low expressed during growth on birch xylan, steam
exploded and enzymatically treated bagasse already at
the early time points [11]. Interestingly, this upre-
gulation was strongly enhanced in a strain in which the
xyrl gene had been deleted, indicating that XYR1 is a
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repressor of these genes. While the XYR1 orthologues
from A. oryzae, N. crassa and Fusarium graminearum
all function in the regulation of xylanase gene expres-
sion, XYR1 regulates cellulase gene expression only in
T. reesei and A. oryzae. In both N. crassa and A. oryzae —
the two fungi in which the effect of xyrI manipulation has
been studied on a genome-wide scale [24,29] - it has so
far been shown only to activate gene expression. However,
the variation of occurrence (and in 3 cases even absence)
of XYR1 binding sites in the promoters of these genes
makes an action of XYR1 as a repressor of these genes un-
likely. We consider it rather possible that their strong
upregulation in the A xyrI mutant is due to its inability to
grow on wheat straw and the reduced growth on lactose
[30], i.e. autophagy. In fact, upregulation of some of the
T. reesei chitinases by carbon starvation has been shown
[12], but is so far not known for the a-mannanases
/mannosidases or a-galactosidases. Since oligosaccharides
with these monosaccharide and linkage types are not part
of the cell wall polymers of the fungus [31], their induc-
tion under starvation requires further studies.

A comparison of the wheat straw and lactose tran-
scriptome did not lead to the detection of major changes
in metabolic pathways and the signaling to them with
four exceptions: one was a high number of genes associ-
ated with phospholipid metabolism and protein secre-
tion, with DNA replication and repair, and finally the
massive upregulation of genes for iron homeostasis. As
for the first, Schreiber et al. [32] showed that the
addition of the phospolipid precursor cholin increased
cellulase formation in 7. reesei, and at the same time
led to an increase in the hyphal content of endoplasmic
reticulum. Also, Glenn et al. [33] showed that the
hypercellulolytic mutant 7. reesei RUT C30 exhibits a
proliferated amount of endoplasmic reticulum. It is
thus possible that the increased expression of genes
associated with phospholipid synthesis is responsible
for an enhanced synthesis of endomembrane compo-
nents required for increased cellulase export from the
hyphae.

Another group of upregulated genes was those related
to autophagy. To date, more than 30 autophagy-related
(ATG) genes have been identified for Saccharomyces
cerevisiae and other fungi [34,35]. BLASTP search of the
predicted T. reesei proteins (http://genome.jgi-psf.org/
Trire2/Trire2.home.html) against the NCBI database (at
a cutoff of E-value<-70 over at least 80% of the se-
quence length) detected 22 orthologues of ATG genes
(see Additional file 7: Table S7) of which 7 were found
to be strongly upregulated on wheat straw but not on
lactose or glucose. Notably this group included the serine/
threonine protein kinase Atgl [17,18], which — together
with Atgl7, Atg29, and Atg31 — forms a protein complex
that initiates the formation of autophagosomes [36,37].


http://genome.jgi-psf.org/Trire2/Trire2.home.html
http://genome.jgi-psf.org/Trire2/Trire2.home.html

Bischof et al. Biotechnology for Biofuels 2013, 6:127
http://www.biotechnologyforbiofuels.com/content/6/1/127

Nitsch et al. [38] have recently shown that autophagy
plays important roles in physiological adaptation in sub-
merged cultures under conditions of carbon depletion by
organelle turnover and protection against cell death. Our
data suggest that the slow growth rate on wheat straw
may lead to a carbon uptake rate slow enough to already
signal starvation. However, autophagy has also been
shown to be necessary for fungal morphogenesis, particu-
larly when attacking other organisms [39,40], and we can
therefore also not rule out that it is crucial for the growth
of T. reesei on an insoluble substrate.

The upregulation of genes associated with DNA syn-
thesis and repair appears to indicate the operation of
mechanisms leading to damage of DNA during growth
on cellulose. While the occurrence of such mechanisms
has not been reported so far, we detected a wheat-straw-
specific 2.7-fold upregulation of the T. reesei orthologue
of the NADPH oxidase NoxA (NOX1; Trire2:79498; see
Additional file 2: Table S2). This enzyme generates react-
ive oxygen species in a regulated manner and is involved
in several aspects of fungal biology, including develop-
ment and plant pathogenesis [41]. We consider it pos-
sible that the upregulation of enzymes for DNA repair is
a response to the formation of reactive oxygen species
by NOX1, although the reason for its upregulation is not
clear. Brun et al. [42] reported that Podospora anserina
hyphae form specialized structures for cellulose degradation
and their formation is differentially regulated by NOX1 and
NOX2. Interestingly, Montero-Barrientos et al. [43]
reported that an overexpression of nox! in T. harzianum
leads to the increased formation of protease, cellulase, and
chitinase activities during mycoparasitic interaction with a
fungal host. Nitsche at al. (2013) reported that in A. niger
autophagy influences the sensitivity towards oxidative
stress. We consider it likely that the detected enhanced au-
tophagic activity on wheat straw (vide supra) also causes
the increased expression of genes related to DNA damage
repair and oxidative stress.

Finally, a very intriguing finding from this study was
the massive upregulation of genes involved in iron
homeostasis. This elevated expression of iron-uptake
systems on wheat straw can be explained by a lower bio-
available concentration of iron during growth on wheat
straw (as shown in this study), which is probably due to
the ability of cellulose for sequestering Fe** [44]. In na-
ture, this shortage can be reinforced by the formation of
Fe®*-oxalate chelates with the oxalic acid secreted by ba-
sidiomycetes [45]. It is also possible that this induction
of iron assimilating enzymes has the additional benefit
of triggering the synthesis of the large number of flavin
containing oxidases and monooxygenases that are up-
regulated during growth on wheat straw and result in an
increased demand for iron. As already hypothesized [19],
this increased expression of oxidative enzymes could
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indicate the operation of Fenton chemistry during cellu-
lose degradation by T. reesei. The increased expression
of a glucose oxidase (Trire2:22915) and a gluconate kin-
ase (Trire2:71072), as observed in this study, suggests
partial degradation of the glucose from cellulose, which
could be involved in the provision of hydrogen peroxide
for this process.

Conclusions

Our study shows that growth on wheat straw leads in part
to an enhanced expression of cellulase and hemicellulase
genes by T. reesei, but also to the selective induction of a
set of enzymes, notable the majority of the xylanolytic
enzymes. This implies that the expression of genes associ-
ated with lignocelluloses degradation by 7. reesei is subject
to as yet unknown regulator proteins which are sup-
posed to cooperate with XYRI. A detailed analysis of
transcriptomic changes of genes involved in cellular
metabolism and its regulation further identified au-
tophagy, phospholipid biosynthesis, iron homeostasis
and DNA repair as processes related to degradation
of wheat straw, whose roles warrant further investiga-
tions. In addition, manipulation of these genes may
be a new tool for strain improvement in 7. reesei.

Materials and methods

Strains and cultivations

T. reesei QM9414 (ATCC 26921), a moderately cellulase
producing mutant, and a Axyrl mutant prepared from it
[13] was used throughout this work and kept on potato
dextrose agar (Sigma, St. Louis, MO).

Cultures were grown in 250 ml of Mandels Andreotti
(MA) medium (per liter: 1.4 g (NH,),SOy4, 2.0 g KH,PO,,
0.3 g MgSO,*7H,0, 0.3 g CaCl,*2H,0, 0.3 g urea, 1 g
peptone (casein), 5 mg FeSO,*7H,0, 1.6 mg MnSO,*H,0,
1.4 mg ZnSO4*7H,0 and 2 mg CoCl,*2H,0) with 10 g/l
glucose monohydrate, lactose monohydrate or pre-
treated wheat straw (dry basis) as the sole carbon source
and inoculated with 10° ml™ conidiospores. Pretreated
wheat straw was kindly provided by Clariant Produkte
Deutschland GmbH. In brief, the substrate was mechanic-
ally ground, and subjected to slightly acidic, thermochem-
ical pretreatment.

Furthermore, 0.5 g 1" of tween 80 were added in the
case of lactose cultures and the pH of wheat straw media
was adjusted to 4.8 with 1 M KOH. All cultivations were
performed in a rotary shaker at 28°C and 250 rpm. Bio-
mass samples for total RNA extraction or measurement
of biomass were withdrawn at appropriate time points.
Cultures for the qPCR analyses were pregrown for 24 h
in glycerol containing (10 g I'") MA medium and equal
portions of the harvested and washed mycelium were
aseptically replaced into MA medium, again containing
either 10 g I'* glucose monohydrate, lactose monohydrate
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or pretreated wheat straw (dry basis) as the sole carbon
source, but this time devoid of urea and peptone.

Transcriptome analysis

Mycelia were harvested from cultures growing on wheat
straw, lactose, and glucose, for 50 (wheat straw) and 28 hrs
(lactose and glucose), respectively. Total RNAs from glu-
cose and lactose cultures were extracted using TRIzol® re-
agent (Invitrogen Life Technologies, Carlsbad, CA, USA),
according to the manufacturer's instructions, and then
purified using the RNeasy MinElute Kit (Qiagen, Hilden,
Germany). For isolation and purification of total RNA from
wheat straw cultures, the RNeasy Plant Mini Kit and the
RNeasy MinElute Kit (both Qiagen, Hilden, Germany) re-
spectively were used according to the manufacturer’s in-
structions. cDNA synthesis, labelling and hybridization was
performed by Roche NimbleGen (Roche-NimbleGen, Inc.,
Madison, WI, USA) with a high density oligonucleotide
microarray using 60-mer probes representing the 9.129
genes of T. reesei. Microarray scanning, data acquisition
and identification of probe sets showing a significant
difference (p = 0.05) in expression level between the differ-
ent conditions were performed essentially as described
previously [13,46]. Gene accession numbers were anno-
tated according to version 2 of the T. reesei genome data-
base (http://genome.jgi-psf.org/Trire2/Trire2.home.html),
and ambiguous cases annotated manually. The Euclidean
distance metric method, as implemented in DNASTAR
v5.1.2. build 3 (DNAstar Inc., Madison, W1), was used for
Hierarchical Clustering.

Genes were then classified according to their major
annotation in the GO (Gene Ontology), KOG (EuKaryotic
Orthologous Groups) classification available at the 7. reesei
genome database v2.0 (http://genome.jgipsf.org/Trire2/
Trire2.home.html), and the MIPS Functional Catalogue
(http://mips.helmholtz-muenchen.de/proj/funcatDB; [8]). To
determine whether there were differences in the functional
categories in each cluster, the distribution within each cluster
was compared to the total distribution of all the annotated
genes using independent chi-square tests.

The microarray data and the related protocols are avail-
able at the GEO web site (www.ncbinlm.nih.gov/geo/)
under accession number GSE46155.

Promoter sequence analysis

All analyses were performed with the RSAT software
suite [47]. Promoter sequences from -1000 to —1 were
obtained from the T. reesei genome database (http://gen-
ome.jgi-psf.org/Trire2/Trire2.home html). Motifs were
searched using the "DNA Pattern Matching" algorithm,
with the "prevent overlapping matches" parameter checked.
For a given set of genes (any cluster, or whole genome), the
total number of motifs found was collected and an average
number of sites per gene was calculated.
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qPCR

DNase treated (DNase I, RNase free; Fermentas) total
RNA (5 pg) was reversely transcribed with the RevertAid™
First Strand cDNA Kit (Fermentas) according to the man-
ufacturer’s protocol with a combination (1:1) of the pro-
vided oligo-dT and random hexamer primers. All assays
were carried out in 96-well plates which were covered
with optical tape, as described [13,46]. Primers, amplifica-
tion efficiency and R-square values are given in Additional
file 8: Table S8. Determination of the PCR efficiency was
performed using triplicate reactions from a dilution
series of cDNA, and the amplification efficiency then cal-
culated from the given slopes in the realplex v2.2 software.
Expression ratios were calculated using REST® Software
[48]. All samples were analyzed in two independent
experiments with three replicates in each run. The
unequal varaiance t-test was performed as previously
described [49].

Measurement of biomass dry weight

Biomass formation of lactose and glucose cultures was
determined gravimetrically, as previously reported [16].
Biomass concentrations of wheat straw cultures were in-
directly measured by the amount of intracellular protein
essentially as in [50]. In brief, a 1 ml sample of the cul-
ture broth was withdrawn and the solids collected by
centrifugation. One mL 1 M NaOH was added and the
mixture was incubated for two hours and frequently
vortexed. This suspension was then clarified by centrifu-
gation and the protein concentration of the supernatant
was determined with the BioRad protein assay reagent
(BioRad, Hercules, USA) against a BSA standard. The
protein content was furthermore corrected by a set of
substrate controls where no inoculum was added to the
wheat straw medium. The biomass dry weight was then
calculated assuming an average content of 0.35 g intra-
cellular protein per g of dry cell mass. Three independ-
ent cultivations were performed for each carbon source
and the mean of the three experiments is reported.

Measurement of iron

The concentration of iron in the soluble supernatant of
the cultures was measured by inductively coupled
plasma mass spectrometry (ICP-MS). To overcome pos-
sible matrix effects during sample introduction and ICP-
MS analysis, the samples were diluted 1:100 with HNOj3
(1% v/v) prior to measurement. Indium (1.0 pg L) was
been added as an internal standard to all samples. The
measurements were performed using an iCAP Q ICP-
MS System from Thermo Fisher Scientific (Bremen,
Germany) equipped with a standard quartz tube torch
and nickel sample and skimmer cones. For sample intro-
duction a set consisting of a concentric nebulizer and a
Peltier cooled cyclonic spray chamber has been used.
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Transportation of sample solutions was performed by
the peristaltic pump of the iCAP Q coupled to an ESI
SC2 DX auto sampler (ESI, USA). For separation of
spectral interferences caused from polyatomic ions pro-
duced in the argon plasma by matrix constituents all
ICP-MS measurements were performed in the collision
mode using He with 7% H, as collision gas at a flow rate
of 5 mL min™ and a KED value of 3 eV. Plasma power
was maintained at 1550 W, cooling gas and auxiliary gas
flow set at 14 L.min" and 0.8 L.min ", respectively. Make
up gas flow, nebulizer flow rate and sample uptake rate
were adjusted at 0.7, 0.99 and 0.4 L.min™, respectively.
For analysis the elemental isotopes (m/z ratios) *°Fe,
>"Fe, °®Ni, ®?Co and *®Ni and ''°In (as internal standard)
were monitored. Quantification of derived signals was
based on an external calibration function determined
with aqueous standard solutions using Indium as in-
ternal standard. The ICP-MS operation and data acquisi-
tion (by peak hopping) was accomplished by using
Qtegra software, using a dwell time of 10 ms and 20
sweeps per reading, and 4 replicates per sample.

Additional files

Additional file 1: Table S1. Genes constitutively expressed in T. reesei
on glucose (Glo), lactose (Lac) and wheat straw (WS).

Additional file 2: Table S2. All genes that are at least 2-fold
differentially regulated on lactose or wheat straw vs glucose.
Additional file 3: Table S3. Concentration of iron in the culture
supernatant on lactose and wheat straw.

Additional file 4: Table S4. Genes present in the clusters shown in
Figure 4.

Additional file 5: Table S5 Unequal variance t-test of gPCR results
shown in Figure 5.

Additional file 6: Table S6. Presence of the XYR1 binding consensus
motif in the first 1000 bp upstream of the start codon in the genes
upregulated in the AxyrT mutant strain.

Additional file 7: Table S7. Autophagy genes in T. reesei.

Additional file 8: Table S8. Nucleotide sequences and Reaction
efficiencies of RT-gPCR oligos used in this study.
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