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Abstract

Obtaining bioethanol from cellulosic biomass involves numerous steps, among which the enzymatic conversion of
the polymer to individual sugar units has been a main focus of the biotechnology industry. Among the cellulases
that break down the polymeric cellulose are endoglucanases that act synergistically for subsequent hydrolytic
reactions. The endoglucanases that have garnered relatively more attention are those that can withstand high
temperatures, i.e., are thermostable. Although our understanding of thermostability in endoglucanases is
incomplete, some molecular features that are responsible for increased thermostability have been recently
identified. This review focuses on the investigations of endoglucanases and their implications for biofuel
applications.
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Introduction
The use of plants as bioreactors is not a new concept.
Within the last fifteen years, studies have established that
with the knowledge of biotechnology and genetic engin-
eering, plants are indeed a low-cost source to produce
stable molecules: plants are harnessed to produce anti-
bodies, biodegradable plastics, recombinant proteins, car-
bohydrates, and fatty acids. A major goal of plant-based
bioreactor technology is the production of stable enzymes
to produce industrially useful products. Among these
enzymes are manganese-dependent lignin peroxidase (for
bleaching of pulp), phytase (for animal feed), (1–3,1-4)-β-
glucanase (for brewing), and xylanase (for animal feed,
paper and baking), which are used in processing plants
such as alfalfa, tobacco, and barley [1-8]. In addition, as
a result of growing environmental concerns of consum-
ing fossil-based fuels, enzymes used in the production
of plant-based ethanol (i.e., bioethanol) gained more im-
portance in recent years, including α-amylases and
endoglucanases.
α-amylase and endoglucanase are both involved in the

conversion of plant material into sugar; however, there is
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a critical difference when it comes to which part of the
plant they catalyze: while α-amylases break down starch
from maize grain, which is primarily used as food by
humans and animals, endoglucanases break down cell-
wall cellulose primarily from maize stover (i.e., leaves
and stalk), which has been historically considered as
waste. Despite the obvious drawbacks of using a crucial
food item as a fuel source, maize grain remains a pre-
ferred choice as the biofeedstock for the ethanol produc-
tion, because of its ease of harvesting in a large acreage
and of introducing new traits.
The demand for bioethanol is expected to increase sig-

nificantly in the near future: according to the Billion
Ton Study published in August 2011 [9], 76 million tons
of maize is used for the production of ethanol and yields
14.2 billion gallons of ethanol fuel per year. By 2017, the
consumption of biomass for biofuel production is
projected to be 103 million tons. Therefore, with the
ever-increasing demand for energy sources, there is a
strong need to look at other non-grain sources of bio-
mass. While many feedstock sources (e.g., perennials
such as switchgrass and Miscanthus, and biomass from
forests) may take several years to become fully devel-
oped as resources, maize stover is a readily available re-
source for biofuel production [9].
Some efforts have been made to reduce the cost of cel-

lulose breakdown in maize stover to make the process
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more cost-effective, and therefore more attractive for the
bioethanol industry. Traditionally, industrial enzymes
are added into a batch of reagents in reactors during
chemical processing. Controlling pH and temperature
levels become critical, because even small environmental
variations can cause enzyme denaturation and subsequent
loss of enzymatic activity [10]. Cellulose-based bioethanol
processing therefore requires several reactors, including
one for a high-temperature pre-treatment (~75°C) and an-
other for low-temperature endoglucanase-mediated cellu-
lose conversion into sugar. One strategy currently being
explored to improve the efficiency and lower the cost of
these conversion steps is to develop feedstocks (such as
maize stover) with heterologously expressed thermostable
endoglucanases. Such a strategy will allow bypassing the
need to add an externally sourced enzyme and possibly re-
duce number of processing steps [11-14]. To help in these
efforts, we need to understand what factors, including pro-
tein sequence, structure, and dynamics, can be used to en-
gineer thermostable endoglucanases.
Thermostability is a complex property that can be

controlled by several factors, which may be working addi-
tively. Many studies comparing mesostable and thermo-
stable proteins concluded that following properties may
increase thermostability in general: selective pressure of
certain amino acids [15], increase in hydrophobicity [16],
change in a single amino acid [17], increase in compact-
ness [18], increase in positively charged amino acids [19],
and Gibbs free energy change of hydration [20]. These
studies are usually general in the sense that they compare
proteins across protein families, folds, sizes, and cellular
location. When it comes to a specific protein family, how-
ever, our knowledge is usually limited as to what diffe-
rentiates thermostable and mesostable proteins in that
protein family.
In this review, we will first provide a short description

of endoglucanase-mediated cellulose conversion process.
Then we will return our attention to the main question
of the thermostability-sequence-structure relationship in
endoglucanases.

Breaking down cellulose
Although the composition varies between different
plants, 40-55% of the plant biomass is comprised of cel-
lulose (a homopolymer made of repeating units of glu-
cose), 25-50% of hemicelluloses (a heteropolymer made
of glucose and other sugars) [21], and the remaining 10-
40% is made up of lignin (a complex organic polymer)
[22]. Conversion of cellulose polymers to simple sugars
requires the use of cellulases. Cellulase is comprised of
three distinct classes of enzymes (endoglucanases,
cellobiohydrolases, and β-glucosidases) that act syner-
gistically to break down the polymer. Endoglucanases
act by cleaving internal β-glycosidic bonds in the
cellulose chain, thereby making chain ends accessible to
cellobiohydrolase. The end product cellobiose is further
broken down to glucose units by β-glucosidase.
Endoglucanases have an enzyme classification number
3.2.1.4 and belong to the broader enzyme group called
glycosyl hydrolases, which also includes other cellulases
such as exoglucanase and β-glucosidase. According to
the CAZy database (www.cazy.org), endoglucanases are
part of 13 distinct glycosyl hydrolase families, distrib-
uted in several archeal, bacterial, fungal, and eukaryotic
organisms.

Cellulose to biofuel conversion
From the agricultural field to the gas station, biofuel
production from cellulosic biomass involves numerous
steps that are strategically designed for efficient conver-
sion [23]. In one of the earlier steps, pre-processing of
the biomass occurs at high temperatures (75°C) coupled
with a dilute sulfuric acid treatment [24]. This is done to
liberate lignin, hemicellulose, and other compounds, and
make the cellulosic polymers available for enzymatic
degradation. Inefficient liberation of these compounds
can lead to the enzyme inhibition, and therefore, reduce
the efficiency of cellulose conversion. Currently, the effi-
ciency of ethanol production from lingocellulosic bio-
mass is physically and economically constrained by the
pretreatment processes and the subsequent addition of
cellulases to affect cellulose breakdown [25-27].
Industrial cellulases, particularly endoglucanases, are

currently obtained from the fermentation of fungal and
bacterial sources that are added to the production batch
after the pretreatment step. The expression of endo-
glucanases from these external sources adds to the final
cost of the bioethanol product. There is an intense inter-
est in exploiting the potential of thermostable bio-
processing enzymes [28,29].
Due to the pH and temperature extremes involved in

the biomass-to-biofuel conversion, stable endoglucanases
and its synergistic enzymes, such as cellobiohydrolase and
β-glucosidase, are sought for the enzymatic conversion
of biomass. Thermostable endoglucanases from extremo-
philes are considered promising because they typically
exhibit valuable characteristics in biofuel production in-
cluding optimal functionality at higher temperatures and
the ability to withstand extreme pH changes [30].
The strategy of heterologously expressing a thermo-

stable endoglucanase in maize stover bypasses the need
to add an externally sourced enzyme [11,14]. This way,
the enzyme (in the biomass itself ) can breakdown cellu-
lose immediately following the pre-processing step. Fur-
thermore, if the stable enzyme is expressed in the host
tissue for biomass conversion, there can be substantive
gains in production efficiency. This concept was shown
to work previously with a non-cellulase enzyme during

http://www.cazy.org/
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the breakdown of starch in maize grain: a synthetic
chimera of three wild-type α-amylases from the archea
Thermococcales that have an optimal growth tempe-
rature of above 80°C [31]. Introducing endoglucanase
into plants reduces the recalcitrance of cellulose [12,13],
since endoglucanases are capable of making random in-
ternal cleavage of the polymer, whose hydrolysis products
are used by other enzymes. Transgenic plant expression is
ideal for many reasons, including (a) almost unlimited
scale-up potential, (b) cheap production – i.e. photosyn-
thesis, (c) correct protein folding, (d) lack of human path-
ogens, and (e) the potential for direct use [32]. Cellulases
currently account for approximately $0.68 to $1.47 per
gallon of ethanol produced from cellulosic feedstocks [33],
but this cost component could be reduced 5-fold with in
planta expression [34-36].
A closer look at endoglucanases originating from bacter-

ial sources shows significant diversity in their optimal
temperature for enzymatic function. Some of these are op-
timally functional at elevated temperatures and thus
thermostable. In the next section, we are interested in the
following questions: What could be the differences be-
tween a thermostable and a mesostable endoglucanase? If
there are any, can we translate these differences to modify
an existing endoglucanase into a more thermostable pro-
tein? We will pursue the answers to these questions by
reviewing computational analyses of thermostability in
endoglucanases.

Thermostability in endoglucanases
Enzymes that can (a) withstand high temperatures, (b)
resist unfolding, and (c) perform their optimal activity at
higher temperatures are called thermostable or ther-
mophilic. Thermostable enzymes are highly stable at
elevated temperatures where mesostable enzymes be-
come denatured and thus lose their optimal activities
[30,37,38].
Generally speaking, thermostability is a desired quality

for proteins that have industrial and therapeutic sign-
ificance [28,29,39-44]. Introducing thermostability has
been one of the major focuses of protein engineering
studies, specifically of computational studies, which can
be divided in three broad categories in terms of number
of enzymatic families and organisms analyzed: the prote-
ome of a thermophilic organism to the proteome of a
mesophilic organism [19] [45], (b) proteins from mul-
tiple organisms belonging to a range of different protein
families [15,16,18,20,46-48], and (c) a single protein
family between thermophilic and mesophilic organisms
[17,49,50].
Such studies have identified various factors imparting

thermostability, including sequence-level factors (specific
amino acids like Arg and Glu being significantly higher
in thermophiles) and structure-level factors (energy of
unfolding, number of Van der Waals contacts per resi-
due, number of hydrogen bonds per residue, or number
of residues involved in secondary structure). Other fac-
tors such as Gibbs free energy change of hydration,
long-range non-bonded energy, and hydrophobicity,
have also been mentioned. Although most of the studies
attempted to identify “universal” factors imparting ther-
mostability across protein families, at the protein family
level, another set of factors (e.g., a different amino acid
composition) may determine thermostability [51]. This
inability to identify common features responsible for
thermostability provided evidence for the view that no
single rule defines thermostability [49].
In the previous studies of thermostable endoglucanases,

Panasik et al. [49] analyzed the thermostability factors for
proteins belonging to GH families that have the identical
(α/β)8 fold. The lack of Gly in thermostable glycosyl
hydrolase (which includes endoglucanase) was identified
as the responsible factor. However, this analysis falls short
in the following areas when it comes to its applicability to
other endoglucanases: (a) the criteria of selecting the
dataset of 29 proteins were based on higher crysta-
llographic resolution rather than on diverse sequence
identities, (b) only three endoglucanase structures were
studied, and (c) the study does not individually analyze
endoglucanases, but as part of a larger group of GH
families.
Recently, a directed evolution approach has been used to

identify an endoglucanase with higher thermostability from
a thermophilic endoglucanase [52]. Although directed evo-
lution has the ability to successfully find a mutant with
higher stability and similar enzymatic activity, it is not guar-
anteed to do so. As such, finding a desirable mutant is a
matter of trial and error, and does not necessarily explain
why a particular mutant is thermostable or not. A promis-
ing method is using SCHEMA, where the structure of the
protein is also used. This was used in developing thermo-
stable chimeric cellobiohydrolases, of which many exhibited
higher stability and optimal activity [53,54].

Current computational thermostability studies
with respect to Endoglucanases
Protein structures tell a fold-dependent pattern of
thermostability
Abundant structural information is present for endoglu-
canases in three different folds; namely (α/β)8, β-jelly
roll, and (α/α)6 fold. Segregating and analyzing the
structural data on the basis of these three different
fold families has indicated that the type of fold is crit-
ical in identifying specific thermostabilizing features
for endoglucanases [51].
When comparing thermostable and mesostable endo-

glucanase enzymes as a whole, the amino acids Met and
Arg and ionic interactions were significantly more
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enriched in thermophiles (See Figure 1). However, the
enrichment of these amino acids is not statistically sig-
nificant when considered at the fold-level analysis. In
contrast, the solvent accessibility and secondary struc-
ture preference (placement in a helix, strand, or loop)
showed a fold-dependent preference. Pairwise analysis of
structurally similar endoglucanases (i.e. a pair of thermo-
stable and mesostable endoglucanases) from the same
fold showed distinct patterns of amino acid substitutions
in the mesophile as compared to thermophile: in β-jelly
roll fold, the amino acid Arg is replaced by Pro, and
hydrophobic amino acids (such as Trp, Tyr, Phe, Iso,
Met, Leu) indicating decreased ionic interactions in the
mesostable endoglucanases.

Structural dynamics also plays a role in thermostability
Proteins are constantly in motion, and an understanding
of their dynamics will inform their functions [55].
Coarse-grained models, such as elastic network models,
help in identifying the biologically meaningful motions
of a protein [56]. Unlike molecular dynamics, which ana-
lyzes the dynamic motions of a protein at the atomistic
level and are fine-grained, elastic network models per-
form at the amino acid level and are coarse-grained. An
advantage of using coarse-grained models is the ability
to observe the longer time-scaled motions in a short
time-scale [56].
Figure 1 Statistically significant amino acids and intramolecular inter
They are shown in thermostable endoglucanases as an enzyme group, bas
their mesostable counterparts (p-value < 5.0 × 10-2). The other interactions s
disulphide bonds, and aromatic interactions were analyzed but found not
interactions for thermostable are shaded in dark gray. Note that the results
reproduced with from a BioMed Central publication under the Creative Co
As a proof of concept, the dynamics of a pair of thermo-
stable and mesostable endoglucanases using coarse-grained
models was compared to identify dynamic differences
[57]. For this purpose a pair of structurally highly simi-
lar endoglucanases with lower sequence similarity was
selected. The ENM analyses showed that both the
thermophile and mesophile displayed open/close and
shear-type motions in the slow modes, and the loops
that face the substrate binding side were observed to be
more mobile than the non-substrate binding side. In
contrast, the thermophile had large dynamic blocks
moving in concert within the catalytic domain, provid-
ing more stability to the thermostable protein. Differ-
ences were also observed in the catalytic residues (i.e.,
nucleophile and acid/base donor): in thermophiles they
showed positively correlated motions while they remain
uncoupled in the mesophile.

Single mutation and thermostability
Even a single mutation can significantly increase the
thermostability of cellulases and their optimal activities
[17,52,58]: (1) a Cys to Ser mutation of a cellobio-
hydrolase resulted in an increased thermostability by 8°C
and a 10-fold increase in expression [58] and (2) two po-
sitions of an endoglucanase were identified to be crucial
for increasing activity [52]. These studies provide evi-
dence that only a few mutations can improve stability
actions between thermostable and mesostable endoglucanases.
ed on the reaction mechanism, and within each fold, as compared to
uch as side chain-side chain interactions, hydrophobic interactions,
to be statistically significant. The statistically significant intramolecular
for inverting mechanism and on (α/α)6 fold are the same. Figure
mmons Attribution License from [51].
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and activity significantly. Unfortunately two of these
studies lack experimentally determined tertiary struc-
tures [52,58] and their claim of intramolecular bonding
as a possible candidate for imparting thermostability is
not easy to validate without a structure.
In general, mutating residues close to active sites are

expected to enhance/disrupt the stability and function of
Figure 2 Differences in contact maps between native and thermostab
in the native but missing from the A35V mutant are in hollow squares. Sim
squares. (a) Shows the hydrophobic interactions while (b) shows the hydro
general has more contacts that are further off the slope = 1 diagonal leadin
[57], published with permission from Taylor & Francis.
a protein. In a puzzling case, as it is mentioned above,
the Ala to Val mutation reported by Sandgren et al., the
mutated residue is spatially distant from the active site
(~20 Å) [17]. In order to study this puzzle further, two
methods were used: FIRST [59] and contact order [60].
Using the software FIRST, a simulated thermal denatur-
ation was performed and the temperature where the
le mutant (A35V) GH12 endoglucanase proteins. Contacts present
ilarly, contacts present in A35V but missing from native are in black
gen bonds at Θ = 346 K. Notice that the thermostable mutant in
g to an increase in contact order (CO). This figure is reproduced from
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protein transitions from rigid to flexible (i.e., the theoret-
ical melting temperature) was identified. Contact order
(CO) provides a measure of the protein topology correl-
ating with the folding rate of a given protein. After the
CO value was calculated, it was observed that the newly
formed hydrogen bonds and hydrophobic interactions
were globally distributed in the protein (See Figure 2).
This suggested that these new, long-range interactions
have a stabilizing effect on the protein. It was also ar-
gued that a single distal mutation as Ala to Val at the
35th position possibly acts as a trigger to create many
other structural rearrangements without disturbing the
flexibility of the active site in binding to the substrate
[61]. Therefore, the effect of the single mutation is felt
globally, rather than locally in the active site, imparting
to the protein an overall increase in the thermostability.
Acidothermus cellulolyticus E1: a promising
enzyme
The E1 endoglucanase [pdb id: 1ece] from Acidothermus
cellulolyticus is one of the promising enzymes for improv-
ing biofuel production efficiency. It has been expressed in
prokaryotic systems for laboratory referencing [62,63] and
has also been successfully expressed and quantified in
many plant-based systems (Table 1) such as: (a) tobacco
[12,64-68], (b) maize [12,36,69-71], (c) Arabidopsis [72],
(d) potato [73], and (e) rice [74]. E1 has also been
expressed in duckweed, an aquatic plant with a high starch
content [75].
Table 1 List of plant species where E1 endoglucanase has bee

Plant Species Subcellular compar

Tobacco (Nicotiana tabacum) chloroplast

cytosol

chloroplast

apoplast

apoplast

apoplast

chloroplast

Maize (Zea mays) apoplast

apoplast

endoplasmic reticulu

mitochondria

endoplasmic reticulu

apoplast

Arabidopsis (Arabadopsis thaliana) apoplast

Potato (Solanum tuberosum) chloroplast

apoplast

Duckweed (Lemna minor) cytosol

Rice (Oryza sativa) apoplast
Many studies have analyzed different aspects of E1 ex-
pression: the level of heterologous expression [65], max-
imum recovery of recombinant enzyme after expression
[68], retention of enzymatic activity after the ammonia
fiber explosion treatment (AFEX) process [67], ability of
E1 to access cell wall components [12], stability of E1 in
various sub cellular compartments [66], and maximum
accumulation through specific subcellular targeting [64].
In maize tissues where E1 was expressed, studies focused
on E1 stability after expression [69], activity on AFEX-
treated stover [71], tissue specific production [36], syner-
gistic action with other cellulases [35], and its effect on
whole plant digestibility [12].
As of now, E1 expressed in plants has to be harvested

and added exogenously to the ethanol process after pre-
treatment. In this respect, two studies focus on the feed-
back effect of pre-treatment processes on endoglucanase
activity. Brunecky et al. reported that maize stover ex-
pressing E1 exhibited greater degradability due to E1 ac-
tively hydrolyzing the plant cell wall during growth [12].
This increased processability was particularly interesting
as E1 was substantively active during plant growth at
ambient temperatures, however, after pretreatment pro-
cesses (up to 170°C heat) E1 was not considered active
in subsequent saccharification. Similarly, Teymouri et al.
found that E1 present in biofeedstocks lost at least 65%
of the original activity after the ammonia fiber expansion
(AFEX) pre-treatment process. AFEX is a pretreatment
process that combines use of ammonia under moderate
pressure (up to 400 psi) and high temperature (up to
n expressed and its activity studied

tment % E1 of TSP Source

0.18 - 1.35% [65]

0.0007 - 0.015%

[64]0.003 - 0.67%

0.09 - 1.6%

2.5% [67]

0.25% [66]

0.06 - 12.0% [68]

2.10% [69]

0.01 - 1.16% [71]

m 0.2 - 2.0%
[36]

0.1 - 0.2%

m 2.00% [70]

nd [12]

1.0 - 26.0% [72]

0.73 - 2.6%
[65]

0.38 - 0.92%

0.24% [75]

2.4 - 4.9% [74]
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200°C). This causes the cellulose fibers to separate from
depolymerized lignin. It has been noted that AFEX is a
mild pretreatment strategy compared to alternative pre-
treatment processes such as steam explosion or acid
treatment [67]. Additionally, E1 has been expressed in
planta (apoplast) and was found to have internal activity
during plant growth that initiated the breakdown of
plant cell walls before harvest [12]. This in turn would
increase the processability of feedstocks during stover-
to-ethanol conversion.
Therefore, more studies are required on E1 that relate

to thermostability and E1’s synergistic action in an en-
zyme cocktail, expression of hyper-thermostable mutants
of E1 and its localization, pretreatment technologies,
and overall processability.

Conclusion
Production of bioethanol from cellulosic biomass has
come to a stage where newer catalysts are required for effi-
cient production. In this review, we have discussed a spe-
cific endoglucanase (E1) that is currently seen as an
important catalyst, and the factors contributing to thermo-
stability that can be exploited for cellulosic bioethanol pro-
duction. We explored the question of “What parameters
need to be considered to engineer an endoglucanase with
suitable thermodynamics, stability, and higher activity?”
Any mutant or engineered endoglucanase that preserves
the thermostability in terms of the dynamics is a potential
industrial candidate. In reviewing literature and current
structural studies, we observed that although “universal”
rules that impart thermostability are useful for engineers,
each protein family is different, and may have different fac-
tors imparting thermostability. In endoglucanases, protein
sequence, structure, and dynamics all play a critical role in
stabilizing the endoglucanase at high temperatures.
In the same vein, engineers should keep in mind the

kinetic and thermodynamics constraints of other cellulo-
lytic enzymes (cellobiohydrolase, ligninase, β-glucosidase
and E1 endoglucanase) that act synergistically to break
down the polymer, which we have not covered in this
review [76]. Screening for specific residual activity of
endoglucanases in the presence of multiple enzymes can
also improve enzyme selection.
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