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Abstract

Acetic acid and H,

Background: Biotechnological exploitation of lignocellulosic biomass is promising for sustainable and
environmentally sound energy provision strategy because of the abundant availability of the renewable resources.
Wheat straw (WS) comprising of 75-80% cellulose and hemicellulose is one of widely available, inexpensive and
renewable lignocellulosic biomass types. The cellulosic and hemicellulose substrate can be hydrolyzed into
monomeric sugars by chemical and/or biological methods.

Results: This study examined comparative potential of dilute acid and pre-ammonia pretreated and enzymatically
hydrolyzed wheat straw (WS) for hydrogen production by purple non sulfur bacterium Rhodobacter capsulatus-PK.
Gas production became noticeable after 14 h of inoculation in WS pretreated with 4% H,SO,. The detoxified
liquid hydrolyzate (DLH) after overliming attained a production level of 372 mL-H,/L after 16 h under illumination
of 120-150 W/m? at 30 + 2.0°C. Whereas the non-detoxified acid pretreated hydrolyzate (NDLH) of WS could produce
only upto 254 mL-H,/L after 21 h post inoculation. Evolution of H, became observable just after 10+ 2.0 h of
inoculation by employing 48 h age inoculum on the WS pretreated with 30% ammonia, hydrolyzed with
cellulase 80 FPU/g and 3-glucosidase 220 CbU/ml at 50°C. Upto 712 ml/L of culture was measured with
continuous shaking for 24 h. The 47.5% and 64.2% higher hydrogen volume than the DLH and NDLH
substrates, respectively appeared as a function of significantly higher monomeric sugar contents of the
enzymatically hydrolyzed substrate and lesser/zero amounts of toxic derivatives including pH reducing agents.

Conclusion: Photofermentative hydrogen production from lignocellulosic waste is a feasible approach for
eco-friendly sustainable supply of bioenergy in a cost-effective way. Results of this study provide new insight
for addressing biotechnological exploitation of abundantly available and low-cost cellulosic substrates.
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Background

High energy yield without emission of greenhouse gases
has rendered hydrogen a clean fuel among all other
gaseous fuels [1]. Processes for biological H, production
with low energy input and ambient temperature and
pressure requirement are highly desirable for the bioenergy
sector [2-4]. Purple non sulfur bacteria (PNSB) are group
of microbes which produce H, photoheterotrophically
under a variety of anaerobic environmental conditions
in presence of light and at expense of broad range of
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substrates [5]. Production cost of biohydrogen can be
reduced by employing suitable low cost lignocellulosic
feedstocks [6]. Conversion to monomeric sugars of the
cellulosic substrate is the first step in such processes.
Acid pretreatment at moderate temperature renders
hemicelluloses to hydrolyzate of dissolved sugars with
acetic acid [7,8].

Enzymatic hydrolysis of the cellulose is typically en-
vironmentally friendly and yields no process inhibitory
byproduct, but the process is not economically feasible
as high enzyme loading is required in order to obtain
reasonable yield [9,10]. Pretreatment which alters structure
and compositions of lignocellulosic feedstock and makes
it more feasible for enzymatic hydrolysis becomes
essential in the cellulosic sugar utilization. Removal of
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lignin and uronic acid substitutes on hemicelluloses,
reduction of crystallinity and increase of porosity of the
plant cell wall in the pretreatment process can significantly
improve accessibility of enzyme to hemicelluloses and
cellulose [11]. Lignin acts as a glue to hold cellulose and
hemicelluloses together. Among different pretreatment
processes, ammonia pretreatment has been proven effect-
ive in enhancing efficiency of enzymatic saccharification
of lignocellulosic substrates [12,13].

In this study, H, production by enzymatic hydrolysis
of ammonia pretreated (delignified) WS was optimized
by applying surface response methodology (RSM). The
RSM technique is extensively employed for investigation
of optimized physiochemical parameters as well as differ-
ent factors of fermentation media of variety of microbes
[14]. Different parameters affecting hydrogen production
yield from WS, including inocula age, nitrogen content
and amount of substrate were examined. Nitrogenase
mediated hydrogen production in purple non sulfur
bacteria has also been reported as strongly affected by
carbon to nitrogen ratio. Lower carbon to nitrogen
ratio slowed down the fermentation process and vice
versa. However, presence of excessive fixed nitrogen
above critical level in medium repressed nitrogenase
activity [15].Further, it was observed that fixed nitrogen
is necessary for actively growing cells, especially for H,
production at the expense of nitrogenase. This fixed
nitrogen must be provided in the form of some favorable
nitrogen contents, because many of them have repressive
effect on nitrogenase [16]. This study was mainly aimed
at developing a systematic tool for predicting hydrogen
production from dilute acid treated and enzymatically
hydrolyzed wheat straw (WS) in combination with yeast
extract. The results add value to the application of WS
for the production of clean fuel.

Results and discussion
In the present study wheat straw was pretreated with dilute
H,SO, and ammonia prior to enzymatic hydrolysis in sep-
arate set of experiments, according to protocols described
by different authors in order to obtain more sugar contents
available for H, production [13,17,18]. Chemical and elem-
ental compositions of untreated WS are shown in Tables 1
and 2, respectively. It can be seen from Table 2 that the
WS contained mainly glucan 37.23% and xylan 21.9%.
Micromolecular sugars are relatively easy to be assimi-
lated into the hydrogen-producing bacterial cells [19].
Therefore in order to better exploit WS for hydrogen
production, effectiveness of pretreatment methods of the
substrate was compared.

Effect of ammonia pretreatment on WS
WS was analyzed after ammonia pretreatment followed by
enzyme hydrolysis for sugars and lignin contents (Tables 2

Page 2 of 12

Table 1 Elemental composition of Wheat Straw (WS) on
dry solid basis

Element Content (ug/g) Element Content (ng/g)
Ca 2300+ 0.54 K 12000+ 0.50
Mg 600+ 0.27 Na 800+ 0.30

P 470£0.25 S 860 +0.25
As <16 Ba 250003
Cd <04 Co <0.12

Cr <2 Cu 1.9+001

Fe 71+030 Mn 26+030
Mo <2 Ni <2

Pb <4 \% <04

Zn 3301

C% (on dry basis) =48 £ 0.39;
N% (on dry basis) =0.34 + 0.01;
Values are means of three replicates + S.E.M.

and 3). The results showed 20% removal of lignin follow-
ing ammonia pretreatment (Table 2). The delignification
is in close agreement with the results of Han et al. [6].
Ammonia effectively removes from WS lignin that other-
wise hinders the enzymatic access to cellulose [20,21].
Han et al. [6] reported WS pretreatment with 15% (v/v)
ammonia before employing cellulase and [-glucosidase
for enzymatic hydrolysis of WS with reduced lignin for
ethanol production.

Effect of dilute H, SO, pretreatment on WS

Highest H, production was observed in 4% dilute H,SO,
acid treated WS hydrolysate. Chemical composition of
the 4% acid treated DLH and NDLH is shown in Table 3.
In the present study DLH and NDLH portions of the
acid treated WS contained xylose and glucose upto 2.01,
2.77 and 9.05 and 11.03 g/L, respectively in addition to
arabinose and galactose. While among the inhibitors
acetic acid was prominent. It has been reported by Yu
et al. [13] that dilute acid pretreatment yielded 81.6% of
the monomeric sugars following most of hemicelluloses’
dissolution in the hydrolysate. Acetic acid is formed via
de-acetylation of hemicelluloses [13]. Coupling of the

Table 2 Chemical composition of wheat straw on dry
solid basis

Composition Dry solid (%, w/w) Ammonia pretreatment

Glucan 3723+024 3723+024
Xylan 219+0.12 219+0.12
Arabinan 343+£0.98 343098
Galactan 1.60+0.07 1.60+0.07
Lignin® 12.0+0.30 9.6+ 0.05
Extractive 11.1+0.20 11.1£0.20

2 Lignin (%) = acid soluble (%) + acid insoluble (%).
Values are means of three replicates + S.E.M.



Table 3 Monosaccharides’ concentrations (g/L) in fermentation broth (unexhausted and exhausted) of wheat straw (WS)

Monosaccharide

Unexhausted Broth

Exhausted Broth

Acid pretreatment (4%)

Enzymatic hydrolysis (Substrates loading in grams)

Acid pretreatment (4%)

Enzymatic hydrolysis (Substrates loading in grams)

DLH NDLH 1.0 1.5 2.0 25 DLH NDLH 1.0 15 20 25
Glucose 20194000 2774004 5410°+£10  5503*°+043 5610°+032 57.10°£041 003001 0044002 454°+010 5234020 64574023 7057 +045
Xylose 90594016 11034032 1781”9403 1801°+101  21.10°£020 2210°+030 071°£030 1314003 263°+010 3.10°+002 338°+030 510°+001
Arabinose 4234018 62574023 1304010  234°+10 420°°+010 510°+£010 - 078°+028 - - 111°+£005 1.12°+004
Galactose 540°+0047 62374023 - - 22074004 234011 - - - - 110°£002  1.11°+002
Lignin - - - - - - - - - - - -

HMF 026+002  059+002 - - - - - - - - - -

Furfural 0.00 003+£001 - - - - - - - - - -

Acetic acid 234+0034 021+0.12 - - - - - - - - - -

Values are means of three replicates + S.E.M.
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temperature upto 50°C with alkaline pH (upto 10) was
intended for occurrence of overliming process. Detoxi-
fication of acid treated WS hydrolysate by process of
overliming completely removed furfural, while mono-
saccharides and acetic acid retained in DLH (Table 3).
HMF on the other hand was present in low concentra-
tion. The process of overliming resulted in degradation
of 27.4% glucose, 18.05% xylose, 35.52% arabinose and
13.32% galactose. These results are in close agreement
with the findings of Mohagheghi et al. [22] who reported
7-34% loss of xylose.

It was observed in the present study that higher con-
centrations of H,SO, caused increases in the yield of
monomeric sugars. Excess acid also increased production
of furfural, a consequence of xylose degradation. Pattra
et al. [23] reported similar results for concentrated acid
treated hydrolysate of sugarcane bagasse. Aguilar et al.
[24] while studying the kinetics of acid hydrolysis of
sugarcane bagasse also reported higher furfural levels.
Adverse effects of furfural on enzymes and inhibition
of protein and RNA synthesis damage microorganisms,
the agents of fermentations. Acetic acid, furfural and
hydroxymethyl furfural are microbial toxicants and thus
decrease yield of fermentation products [25-27].

Effect of enzymatic hydrolysis

Table 3 shows conversion yield of ammonia pretreated
wheat straw cellulose into different fermentable sugars.
Application of 80 FPU/g of cellulase and 220 CbU/ ml
of B-glucosidase could yield upto 57.10 + 0.41 and 22.10
+0.30 g/L hexose and pentose for 2.5 g of wheat straw
loading/100 ml in 50 mM acetate buffer, respectively.
The enzymatic hydrolysis of wheat straw thus resulted
in higher yield than the dilute acid pretreatment of
glucose and xylose (Table 3). Conversion ratio of cellulose
to sugars has been reported responsive to enzyme dose
with slight difference in digestibility. Pretreated WS has
been demonstrated to be hydrolyzed efficiently even
with low enzyme dosage [6,28,29].

Hydrogen production experiments

Maximum hydrogen production was observed in 4%
sulfuric acid pretreated DLH of wheat straw. Although
a portion of the sugars lost during overliming process
but this treatment resulted in low level of inhibitors.

Page 4 of 12

Consequently, more hydrogen production was recorded
when the DLH was employed. Comparatively low H,
from NDLH of dilute acid pretreated wheat straw is
attributable to higher amounts of the inhibitors. Anam
et al. [30] also reported highest reducing sugar contents
obtained by 4% (v/w) acid concentration while treating
sugarcane bagasse. The author reported glucose and yeast
extract as carbon and nitrogen sources, respectively
important for growth and maintenance of cells in addition
to hydrogen production. Complex fermentation media
incorporating starting material of natural origins might
be of value for certain fermentation applications. In this
study upto 372 ml/L of H, volume after 16 hrs was
recorded when the acid pretreated DLH of WS was
employed. However, in case of Biebl and Pfennig
medium (control-MII) where sodium succinate serves
as carbon source and yeast extract as nitrogen source
for the photofermentation at 30°C, H, production was
recorded upto 119 ml/L.

The results are consistent with the reports indicating
that alkaline pretreatment of lignocellulosic biomass
followed by enzymatic hydrolysis would ultimately lead
to improved yield of biohydrogen because of easier
access of enzyme into lignocellulosic biomass due to
delignification [31-33].

Regarding importance of nitrogen source, Hakobyan
et al. [34] reported employment of yeast extract as efficient
nitrogen source for biohydrogen production. L-glutamte
has been mentioned as most preferred nitrogen source
by most of hydrogen producing PNS bacteria [35,36].
For industrial applications, however, other supplements
should be investigated, in order to reduce the operational
cost and to improve the product yield.

Optimization of parameters like temperature, initial
substrate concentration and inoculum age by employing
Central Composite Design (CCD) experiments using re-
sponse surface methodology (RSM) was proved to be an
optimum tool. Inoculum age, nitrogen deficit conditions
and substrate concentration have been considered as
critical parameters for H, production [37,38]. Details of
model obtained from the present study with measured
response values in terms of hydrogen production as a
function of each corresponding statistical treatment com-
binations of test variables are summarized in Tables 4,
5 & 6. The following regression equation of application
of RSM resulted in an empirical relationship:

Table 4 Coded values of the variables for the central composite design

Actual values of coded levels

Variables Coded symbol -1
-Inoculum age (h) X4 24
X5 200

Substrate (g) X3 15

Nitrogen content (mg)

0 1 -1.6818 16818
48 72 8.00 88
300 400 132 468
20 2.5 1.16 2.84
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Table 5 Central composite design (CCD) matrix of three independent variables for H, production in actual values with
experimental results of WS by employing Rhodobacter capsulatus-PK (SS-8) in the presence of tungsten lamp with light

intensity of 120-150 W/m?

Run No Variables Response Yield
X, Xz X3 Y hydrogen production (ml) Mole of H,/mole of substrate
1 —1.000 -1.000 —-1.000 528 098
2 —1.682 0.000 0.000 587 1.09
3 1.000 —-1.000 —-1.000 597 111
4 0.000 0.000 0.000 709 1.32
5 1.682 0.000 0.000 603 1.12
6 0.000 0.000 0.000 709 1.32
7 0.000 0.000 0.000 712 1.32
8 0.000 0.000 0.000 711 1.32
9 1.000 —-1.000 1.000 561 1.04
10 0.000 1.682 0.000 598 1.11
11 0.000 0.000 1.682 551 1.02
12 0.000 0.000 -1.682 559 1.04
13 0.000 0.000 0.000 709 132
14 0.000 —-1.682 0.000 554 1.03
15 0.000 0.000 0.000 709 132
16 1.000 1.000 1.000 542 1.01
17 —1.000 1.000 —-1.000 568 1.06
18 —-1.000 1.000 1.000 572 1.06
19 1.000 1.000 —-1.000 540 1.00
20 —-1.000 -1.000 1.000 527 0.98
Accordingly: Analysis of variance (ANOVA) was applied for diagnostic

Y = By + Bi X1 + ByXo + BsXs + By XT + B X
+ Bsa X3 + BioX1Xa + B1sX1 X3 + BpsXoXs (1)

Here Y represents predicted response, 5y the constant
coefficient, 31, 52, and B3 the linear coefficients, 511, S22
and f33 the quadratic coefficients, 515, 513, and B3 the
cross products coefficients and X;, X, and X3 were input
variables (inoculum age, nitrogen content and substrate
loading). From Eq. (1), it can be concluded that in total
20 runs are required for optimized response (Table 5).

Table 6 Analysis of Variance (ANOVA) for the quadratic
model

Source SS DF MS F value Probability (P) > F
model 973664 9 108184 93.93 < 0.0001

Residual (error) 115180 10 115.18

Lack of fit 114297 5 22859 12939

Pure error 8.83 5 1.77

Total 985182 19

Coefficient of determination (R?) = 0.98; adjusted R* = 0.97; coefficient of
variation (CV) = 1.77%; SS, sum of squares; DF, degree of freedom; MS,
mean square.

checking of appropriateness of proposed model (Table 6).
Coefficient of determination R* and adjusted R* express
accuracy and general quality of fitting of the above
polynomial model. Three dimensional (3D) surface plots
of the fitted polynomial equation illustrate individual
and interactive effect of factors on the response within
the range of central composite design. The optimum
region was also identified based on the main parameters
in the overlay plot [39].

Y =710.25 + 5.27X;
+ 6.08X,-3.26X3-20.12X7-4.62X;
+ 5.38X3-43.30X1 X2 -50.02X 1 X3-57.44X, X3

(2)

F test verified significance of this model with F value
93.93 and probability (P)>F (0.0001). As coefficient of
variation is indicative of degree of precision of all the
compared treatments, therefore low CV (1.77%) approved
the reliability of the model of the present study. However,
R*=0.98 also added to the accuracy and consistency of
the model as the model predicted and observed values
agreed well. Tables 6 & 7 explains F test values with
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Table 7 Significance of the coefficients of regression

Model Parameter Standard F value p value
term estimate error

by 71025 438

b, 527 290 329 0.0999
b, 6.08 2.90 438 0.0628
bs -3.26 290 126 0.2885
by -20.12 3.79 2813 0.0003°
b, -4.62 3.79 149 0.2509
bss 538 3.79 201 0.1870
bib, -43.30 283 234.59 <0.0001¢
bybs -50.02 2.83 313.03 <0.0001¢
bobs —5744 283 412.85 <0.0001¢

9 p value less than 0.05 indicate significant model terms.

reference to respective P values for the estimated para-
meters. Small P values further approved the significance
of the model. Straight line of normal probability showed
satisfactory normality assumptions. These parameters
appear good indicative of prediction for maximum
response within described range of variations of the
quadratic model.

Effect of variables on the hydrogen production

Figure 1A shows the effect of inoculum age and nitrogen
content on hydrogen production when substrate loading
was at their central point. The yield of H, production was
low with short inoculum age. Significant improvement in
H, production was observed with increases in inoculum
age upto 48 h, thereafter the yield decreased with further
increments of inoculum age. Basak and Das [40] also
reported maximum H, production with 48 h inoculum
age. Significant improvement in H, production was also
observed initially with increase in nitrogen contents
but provision of the substrate beyond 300 mg resulted
steady cessation in H, production.

When the substrate loading was increased in this study,
increase of inoculum age initially resulted in a significant
increase in hydrogen production. At inoculum age of 48 h
and substrate loading of 2 g, hydrogen yield reached
upto 598 ml/L of culture at fixed nitrogen content. Further
increase in substrate loading resulted in decrease of H,
production (Figure 1B). Regarding the effect of substrate
and nitrogen content on the volume of H, production, it
reached upto 607 ml/L when inoculum age was at its
central point (Figure 1C). Further increase in substrate
concentration and nitrogen content led to gradual
decrease in the Hy volume. It could be concluded that crit-
ical substrate concentration was one of the major factors
affecting the conversion rate of enzymatic hydrolysis of
cellulose. Qi et al. [12] also reported slow reduction in
hydrolysis yield with an increase in substrate concentration.
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Such reduction of hydrolysis yield has been explained
by enzymatic inactivation and decrease in reactivity of
cellulosic substrate with proceeding of hydrolysis process
[41]. In the present study, hydrogen yield appeared at
the expense of monosaccharides. Glucose and xylose
were mainly recruited by the bacterium Rhodobacter
capsulatus- PK for hydrogen production. Table 3 explains
the monosaccharides’ concentration in exhausted/fer-
mented broth while H, production was still detectable
probably at the expense of acetic acid produced during
H,SO, pretreatment process. Acetic acid is well recognized
substrate for photofermentation by purple non sulfur
bacteria [42]. While in case of enzymatic hydrolysis of
WS H, production process remained noticeable at slower
rate probably at the expense of remaining sugars in
fermentation broth (Table 3), because accumulation of
acetate was not noticed here.

Xylose and glucose are reported substrates for H, by
different microorganisms such as C. acetobutylicum,
C. butyricum and Rhodobacter capsulatus, [43-45]. Ligno-
cellulosic biofuel production is not yet economically com-
petitive with fossil fuels; therefore, successful utilization of
all sugars is important for improving the overall economy
[46]. It is expected that search of more microbial diversity
capable of utilizing maximally the hydrolyzates, ingre-
dients capable/construction of required characteristics
possessing GMOs will add to the economics of biohy-
drogen production from lignocellulogic biomass.

Confirmation experiments

Prediction of H, production at any tested parameter
within the range of experimental design is achieved by
employing second—order polynomial regression equation
obtained from experimental data.

For better understanding and confirmation of H, pro-
duction from WS and validity of statistical experimental
strategies different confirmation runs were performed
(Table 8). Point prediction capability of the software with
predicted H, production rate lead to the idea of confirm-
ation of the conditions located within the levels defined
previously. The residual and percentage errors were
calculated by comparing the actual and predicted H,
production rate. It can be seen from values listed in
Table 8 that percentage errors between predicted and
actual H, production vary from 0.21% to 1.01%. Therefore
it can be assumed that developed statistical model is
reasonably accurate. Thus central composite design of
response surface can be accurately used for prediction
and optimization of photofermentative H, production
from WS under the experimental conditions employed
in this study. The model adequacy can be judged from
residual’s least square which is important to ensure for
providing maximum approximation on relationship be-
tween factors and response when normal probability is
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Hydrogen production

Hydrogen production

Hydrogen produoction

=% B Nirogen conlest

Figure 1 Response surface and contour plot of H, production by Rhodobacter capsulatus-PK (SS-8) in WS-MIl showing combined effects of
variables. i-e nitrogen content and inoculum age (A), substrate amount and inoculum age (B) and substrate amount and nitrogen content (C).

8 g et

checked by normal probability plot of residuals. Straight
line in Figure 2A approved the satisfaction of normality
assumption. These results are indicative of maximum
predictive response with constant variance and quadratic
model accuracy Figure 2B.

Likewise, many attempts have been made by different
investigators for identifying suitability of different lig-
nocellulosic substrates as well as process conditions for
enhanced hydrogen production. Optimization of some
independent process variables (inoculum size, palm oil
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Table 8 Confirmation experiments of CCD (RSM) model
for Rhodobacter capsulatus-PK (SS-8) and enzymatically
hydrolyzed WS
XX X3
(h)  (mg) (9)

H, production (ml)

actual predicted residual error (%)
48 300 200 70834 710.25 -191 0.27
24 300 250 61123 605.61 562 092
48 400 2.00 673.12 666.31 6.81 1.01
48 300 250 651.05 649.55 1.50 023
50 320 220 69747 698.94 -147 021
40 280 1.70 683.09 681.15 1.94 0.28

X; =inoculum age;
X, = nitrogen content;
X3 = substrate loading.

mill effluent concentration, light intensity, agitation and
pH) by response surface methodology (RSM) has been
reported by Jamil et al. [47]. Some other parameter’s
optimizations like glucose and glutamate concentrations
and light intensity have been described by Box-Behnken
design of RSM [15]. In several studies lignocellulosic
material has been treated chemically and/or biologically
for yielding reducing sugars and then employed for
photofermentation. Anam et al. [30] reported the photo-
fermentative hydrogen production potential of Rhodobium
marinum upto 41+16 ml from some reducing sugars
obtained from H,SO, hydrolysis of sugarcane bagasse.
Recently Keskin and Hallenbeck [3] reported potential
of 10.5, 8.0 and 14.0 moles of H,/mol of substrate from
beet molasses, black streep molasses and sucrose, re-
spectively by Rhodobacter capsulatus JP91.

Conclusion

Biohydrogen production was the highest from wheat
straw that was enzyme hydrolysed followed by ammonia
pretreatment. Yeast extract as nitrogen source, inoculum
age and substrate loading for enzyme hydrolysis appeared
to affect hydrogen production potential of Rhodobacter
capsulatus-PK. Acid hydrolysate of the hemicellulose
fraction of WS was comparatively less suitable than en-
zymatically treated hydrolysate due to its comparatively
low sugar contents and presence of inhibitors (acetic acid
and furfural) for biohydrogen production. According to
regression equation of RSM model, the interactions of
three tested variables (inoculum age, nitrogen contents
and substrate concentration) on H, production from
pretreated wheat straw yielded nearly theoretical H,
production level. With inoculum age 48 h, nitrogen
content of 300 mg/L and 2.0 g/100 mL of substrate
loading, the H, volume obtained was 712 ml/L. The
model, predicted accurately for maximum photofer-
mentative hydrogen from hydrolysed lignocellulosic
biomass.
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Future prospects

Demonstration of biohydrogen yield from local biore-
sources indicates the feasibility of development of a scal-
able system for regenerative energy provision employing
crop residues. A number of avenues can be pursued to
increase yields, including exploration of variety of abun-
dantly available lignocellulosic biomass. Complete uti-
lization of monosaccharides of hydrolysates as well as
appropriate adjustment of C/N ratio could affect the
efficiency of photofermentative process. Reduction of
inhibitors concentrations is also important for the yield
improvement. Lignocellulosic biofuel production is not
yet economically competitive with fossil fuels; therefore,
successful utilization of all sugars is important for improv-
ing the overall economy [45]. Other, additional metabolic
alterations may be desirable and can be sought from newly
developed metabolic flux analysis model of photosyn-
thetic/photoheterotrophic bacterial growth and photo-
fermentation [48]. Finally, light conversion efficiencies
might be improved by use of proper light intensities
through reduction in the size of the photosynthetic
antennae, [49]. It is hoped that like many previously
established biotechnological processes, benefiting the
humans, inputs from different scientific sectors to this
newly growing science would enable existence of a bright
future for biofuels with concomitant waste management
and provision of renewable and hence cleaner energy
sources.

Materials and methods

Microorganism

Rhodobacter capsulatus-PK was obtained from stock
culture collection of Microbial Biotechnology lab., of
University of the Punjab, Lahore, Pakistan. The bacterium
was isolated from rice paddy field on Biebl and Pfennig
medium [50] and has been reported for higher yield of H,
following photofermentation in a medium comprised
mainly of 2% sugarcane bagasse [51]. The substrate
replaced sodium succinate in the original medium de-
scribed by Biebl and Pfennig [50]. Culture of the bac-
terium was revived in said medium. The growth was
obtained by incubating the inoculated culture bottles at
30 +2.0°C for 48 h under illumination of light intensity
of 120-150 W/m? and then used as inocula in the sub-
sequent experiments.

Figure 3 explores the whole process from preparing
hydrolysate of WS employing dilute sulfuric acid
pretreatment and enzymatic hydrolysis to photofer-
mentative production of hydrogen. Wheat straw was
washed, air dried and milled before passing through
1 mm sieve which was obtained from Moscow, Idaho,
USA. The processed wheat straw was stored in plastic
bags for further use at room temperature. Liquid
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Figure 2 Response surface for H, production by Rhodobacter capsulatus-PK (SS-8) in WS-MIl. Normal probability of internally studentized
residuals (A) and observed vs the predicted values (B) of CCD.

fraction obtained after dilute acid pretreatment of WS
was separated via vacuum filtration and divided into
two portions. One part was retained as non-detoxified
liquid hydrolysate (NDLH) and other was rendered de-
toxified liquid hydrolysate (DLH) as described in the
forthcoming paragraph. Both of the fractions were
used as substrates for photofermentative production
of hydrogen. While the setup containing Biebl and
Pfennig [50] growth medium was used as control run
(control-MII).

Pretreatment of wheat straw with dilute sulfuric acid

Protocol of dilute sulfuric acid pretreatment of wheat
straw described by Chen et al. [52] was followed in these
experiments. Numeral (v/v) concentrations of sulfuric
acid from 1 to 7% were prepared and the wheat straw
was suspended and stirred at room temperature in a
given dilution at solid loading rate of 10% (w/v). The
mixtures were autoclaved at 121°C for 60 min. The
autoclaved and cooled liquid hydrolysates were then
separated by centrifugation and after vacuum filtration
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Figure 3 Flow chart indicating two routes for production of hydrogen from lignocellulosic biomass.

stored at 4°C. The hydrolysate was detoxified by heating
upto 50°C with continuous stirring with the help of a
stir bar by addition of calcium hydroxide and pH was
increased upto 10.0 in the process of overliming. This
overlimed mixture was further stirred for 30 min with the
help of stirring hot plate. The mixture was then filtered
through 0.22 pm membrane (Millipore, MA). The filtrate
was allowed to cool upto 30°C and then sulfuric acid was
added to attain pH 7. The re-acidified hydrolysate was
again filtered through 0.22 pm Millipore filter for removal
of precipitate formed. This detoxified liquid hydrolysate
was then employed as a fermentation substrate for hydro-
gen production.

For NDLH calcium hydroxide was added to the acid
treated liquid hydrolysate at room temperature to attain
7 pH. Followed filtration through 0.22 um Millipore filter
the liquid served as respective fermentation substrate.

Enzyme hydrolysis

For this experiment WS was treated with 30% (v/v) am-
monia for 24 hour at 50°C with solid loading of 10%
(w/v) followed by washing with deionized water until

pH became 7. The substrate was then dried in oven at
100°C for one hour for ammonia removal. Thus pretreated
WS was subjected to enzyme hydrolysis at solid loading
rate of 1.0, 1.5, 2.0 and 2.5 g/100 ml in 50 mM acetate
buffer (pH 4.8). In each of the mixture 1 ml of 2% sodium
azide solution was added to avoid microbial contamin-
ation and then incubated for 10mins at 50°C and 150 rpm.
Enzymatic hydrolysis was carried out with novozymes
cellulase and P glucosidase of 80 FPU/g and 220 CbU/ml
activities, respectively by incubating the reactants at 50°C,
150 rpm for 24 hrs. At termination of the enzymatic
hydrolysis a given mixture was chilled immediately on ice
and centrifuged at 5000 rpm for 10 min. Then mixture
of 20% and 40% of the enzymes and each of acid treated
(detoxified and non-detoxified) hydrolysate, respectively
was used in original growth medium (Biebl and Pfennig
medium) as fermentation substrate. However, in the
present study yeast extract upto 300 mg/L was employed
as nitrogen source in order to make the medium nitrogen
limited. In this study dilutions were made in order to
lighten the color of both categories of the hydrolysats for
effective absorbance of light in fermentation culture
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vessels as also reported by Zhu et al. [53], Eroglu et al.
[54], Ozgur et al. [55], Boran et al. [56]. Seed inoculum
(10%, v/v) was then added to the culture medium. Over-
view of the process is shown in flow sheet (Figure 3). All
experiments were performed under light intensity of 120-
150 W/m? at 30 + 2.0°C with initial pH 7. While mixture
composition and initial concentration of fermentation
sugars were given in Table 3.

Hydrogen vyield was obtained by dividing the maximum
hydrogen production (ml/L) by the quantity of substrate
(sugars g/L) in the medium [57]. However, for cumulative
hydrogen volume, it is described here that at each obser-
vational period all the amount of gases produced including
H, within the headspace of the batch culture fermenter
was removed for analysis.

Response surface methodology (RSM) was used to
explore an approximate functional relationship among
three-level factorial design variables (Tables 4 & 5) and
response by using Design Expert software (Central Com-
posite Design Expert Version 8.0.3, Statease, Minneapolis,
USA) [58]; Eq. 1.

Analytical methods

H, production was measured by using Gas chromato-
graph (GC, CP-3800, Varian, and Walnut Creek, CA)
equipped with thermal conductivity detector. Nitrogen
was employed as carrier gas and column used was
HayeSep Q 80/100 Mesh Silcosteel.

Elemental contents of WS were analyzed with the help
of elemental analyzer from Analytical Science Laboratory,
Holm Research Center, College of Agriculture and Life
Sciences, University of Idaho, Idaho, USA by means of
combustion method (Combustion, ASA 29-2.2). One
gram of WS was extracted by using the ASTM method
[59]. Extractable contents were determined gravimetrically,
while glucan, xylan, acid soluble and insoluble lignin were
measured according to NREL procedure LAP-002 [60].

Different sugar contents like arabinose, galactose, glucose
and xylose in treated and untreated WS were analyzed
with the help of ion exchange chromatography system
(Dionex ICS-3000) equipped with a CarboPac TM PA
20 (4 x 50 mm) analytical column and CarboPac TM PA
20 (3 x 30 mm) guard column (Dionex Corporation, CA).
Membrane filtered (0.22 pm) samples were subsequently
eluted isocratically with 0.01 M NaOH after injection
at a flow rate of 0.5 ml/min. In a pulsed amperiometric
detector analytes were detected and quantified against
standard curves by electrochemical detection.

Different inhibitors produced in the hydrolysate were
analyzed with high performance liquid chromatography,
equipped with Biorad Aminex HPX-87H column (Bio-Rad
Laboratories, CA) and refractive index detector according
to Sluiter et al. [61]. While mobile phase was 0.005 M
sulfuric acid at a flow rate of 0.6 mL/min. Acid treated
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hydrolysate with more sugar contents and less concentra-
tion of inhibitors was selected for hydrogen production
experiment.
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