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Abstract

(0.912 mol/mol).

Background: 2,3-Butanediol is a platform and fuel biochemical that can be efficiently produced from biomass.
However, a value-added process for this chemical has not yet been developed. To expand the utilization of
2,3-butanediol produced from biomass, an improved derivative process of 2,3-butanediol is desirable.

Results: In this study, a Gluconobacter oxydans strain DSM 2003 was found to have the ability to transform
2,3-butanediol into acetoin, a high value feedstock that can be widely used in dairy and cosmetic products, and
chemical synthesis. All three stereoisomers, meso-2,3-butanediol, (2R,3R)-2,3-butanediol, and (25,35)-2,3-butanediol,
could be transformed into acetoin by the strain. After optimization of the bioconversion conditions, the optimum
growth temperature for acetoin production by strain DSM 2003 was found to be 30°C and the medium pH

was 6.0. With an initial 2,3-butanediol concentration of 40 g/L, acetoin at a high concentration of 89.2 g/L was
obtained from 2,3-butanediol by fed-batch bioconversion with a high productivity (1.24 g/L - h) and high vyield

Conclusions: G. oxydans DSM 2003 is the first strain that can be used in the direct production of acetoin from
2,3-butanediol. The product concentration and yield of the novel process are both new records for acetoin
production. The results demonstrate that the method developed in this study could provide a promising process
for efficient acetoin production and industrially produced 2,3-butanediol utilization.
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Background

2,3-Butanediol is a platform and fuel biochemical (<US
$1/kg) that can be produced by biotechnological routes.
With a high heating value of 27,200 J/g, it can be used
as a liquid fuel or fuel additive [1-3]. Many microorgan-
isms including Bacillus, Klebsiella, Enterobacter, Saccha-
romyces, and Serratia have been used to efficiently
produce 2,3-butanediol [4-10]. Although some efficient
and economical 2,3-butanediol fermentation processes
have been established in laboratory studies [11-15], it
has not been produced in a large scale. The reason is
because a sizable derivative process for this chemical has
not yet been developed until now. Hence, the develop-
ment of improved derivative processes of 2,3-butanediol
would be a prerequisite for commercial utilization of
industrially produced 2,3-butanediol.
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Several interesting chemical reactions, such as dehydra-
tion, dehydrogenation, ketalization, and esterification,
could be used for the preparation of 2,3-butanediol deriva-
tives (Figure 1). Among those derivative processes of 2,3-
butanediol, only dehydrogenation of 2,3-butanediol to
produce acetoin could be performed by biotechnological
routes. Acetoin is a high value product that can be widely
used not only in dairy products, but also in cosmetics,
pharmaceutical, and chemical synthesis [16-19]. It is one
of the 30 platform chemicals that are given priority to
their development and utilization by the US Department
of Energy. Thus, numerous studies have been executed to
find an effective biocatalytic process to produce acetoin
from 2,3-butanediol. For example, Yamada-Onodera et al.
reported that 8.4 g/L of acetoin was obtained from 2,3-
butanediol after 24 hours of incubation with recombinant
Escherichia coli expressing glycerol dehydrogenase [20]. A
recombinant E. coli strain that coexpressed (2R,3R)-2,3-
butanediol dehydrogenase and NADH oxidase was also
constructed, and the highest yield of acetoin was found to
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Figure 1 Derivatives of biologically produced 2,3-butanediol
through different chemical reactions.

be 36.7 g/L [21]. However, in these biocatalytic processes,
biocatalysts must be cultivated, separated, and washed
before being used in the production of acetoin; such a
complicated operation presents a significant drawback for
the application of the method.

Production of acetoin using 2,3-butanediol as the sole
carbon source does not require the separation of biocata-
lysts from growth medium. It is an interesting concept,
but unfortunately acetoin can be metabolized by numer-
ous microorganisms [22-25]. A microorganism that could
directly produce acetoin from 2,3-butanediol through
bioconversion has never been reported. Thus, it would be
desirable to find an effective microorganism for the direct
production of acetoin from 2,3-butanediol.

In this study, Gluconobacter oxydans DSM 2003, an
obligate aerobic Gram-negative bacterium, was confirmed
to have the ability to produce acetoin from 2,3-butanediol.
After optimization of reaction conditions, production
of acetoin from 2,3-butanediol using G. oxydans DSM
2003 was acquired. The process presented in this study
could provide a promising alternative for the value-added
utilization of biotechnologically produced 2,3-butanediol
from biomass.

Results and discussion

G. oxydans DSM 2003 has the capacity for acetoin
production from 2,3-butanediol

G. oxydans has a respiratory metabolism characterized
by incomplete oxidation of sugars, alcohols, and acids.
The partially oxidized products (aldehyde, ketone, and
organic acid) are rapidly excreted into the medium. This
property makes G. oxydans an important biocatalyst for
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industrial use [26-28]. In a previous study, many substrates
including glycerol, meso-erythritol, 1,3-butanediol, and
2,3-butanediol could be oxidized by the membrane-bound
polyol dehydrogenase (GOX 0854 and GOX 0855) in G.
oxydans 621H [29]. Homologues of GOX 0854 and GOX
0855 were present in other G. oxydans strains, such as G.
oxydans H24, G. oxydans DSM 7145, and G. oxydans [FO
3255 [30-32]. Thus, most strains of G. oxydans, such as G.
oxydans DSM 2003, might have the metabolic potential to
directly produce acetoin from 2,3-butanediol.

To determine whether the G. oxydans DSM 2003 has
the capability to produce acetoin from 2,3-butanediol,
the strain was cultured in a medium containing 20 g
yeast extract, 1.5 g (NH,),SOy4, 1.5 g KH,PO,4, and 0.5 g
MgSO,4 7H,0 in 1 L of distilled water. This medium was
supplemented with 10 g/L 2,3-butanediol. The flask ex-
periment was conducted in 300 mL shake flasks contain-
ing 50 mL fresh medium for 12 hours at 200 rpm and
30°C. As shown in Figure 2, 9.6 g/L acetoin was ob-
tained in 12 hours. However, little growth of G. oxydans
DSM 2003 and no production of acetoin were detected
in the medium that contained 20 g/L vyeast extract
(Additional file 1: Figure S1A). G. oxydans DSM 2003
was also cultured in the medium containing 10 g/L gly-
cerol, a good carbon source for the growth of the strain.
Although a higher growth of the strain was detected,
no production of acetoin was detected in the medium
containing 10 g/L glycerol (Additional file 1: Figure S1B).
On the other hand, homologues of key enzymes in 2,3-
butanediol synthesis pathway (a-acetolactate synthase
and a-acetolactate decarboxylase) were absent in the
genome sequenced G. oxydans strains including G. oxy-
dans 621H, G. oxydans H24, and G. oxydans WSH-003
[32-34]. Thus, there might not be a 2,3-butanediol pro-
ducing pathway in G. oxydans DSM 2003. Acetoin was
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Figure 2 Time course of G. oxydans DSM 2003 growth in media
containing 10 g/L 2,3-butanediol. The experiments were
conducted in 300 mL shake flasks containing 50 mL of medium at
30°C. Biomass (black circle); 2,3-butanediol (blue square); and acetoin
(red triangle).




Wang et al. Biotechnology for Biofuels 2013, 6:155
http://www.biotechnologyforbiofuels.com/content/6/1/155

produced by a direct dehydrogenation reaction of 2,3-
butanediol in the medium.

All three stereoisomers of 2,3-butanediol are utilized by
G. oxydans DSM 2003

2,3-Butanediol has three stereoisomers including meso-
2,3-butanediol, (2R,3R)-2,3-butanediol, and (2S,35)-2,3-
butanediol. Different microorganisms produce different
stereoisomers of 2,3-butanediol. For example, strains of
Bacillus, such as Bacillus licheniformis, and Paenibacillus
polymyxa produce (2R,3R)-2,3-butanediol as the major
product [7,35]. Serratia marcescens produces meso-2,3-
butanediol as the major product [11]. Other strains in-
cluding Klebsiella pneumoniae, Klebsiella oxytoca, and
Enterobacter cloacae produce meso-2,3-butanediol and
(25,35)-2,3-butanediol as the major products [4,5,9]. In
this study, a commercial 2,3-butanediol, which contained
15.9% (2R,3R)-2,3-butanediol, 76.1% meso-2,3-butanediol,
and 8.0% (2S,3S)-2,3-butanediol, was used as the carbon
source for G. oxydans DSM 2003. After the bioconversion
process, the stereoisomeric composition of 2,3-butanediol
was analyzed by gas chromatography (GC) with a flame
ionization detector and a fused silica capillary column.

All three stereoisomers of 2,3-butanediol including
meso-2,3-butanediol, (2R,3R)-2,3-butanediol, and (2S5,35)-
2,3-butanediol could be utilized by G. oxydans DSM 2003.
Both (3S)-acetoin and (3R)-acetoin were the final products
of the bioconversion process. Thus, the 2,3-butanediol
produced by the reported microorganisms could be used
by G. oxydans DSM 2003 for acetoin production.

G. oxydans DSM 2003 catalyzes 2,3-butanediol into
acetoin with stereoselectivity

Among all of the 2,3-butanediol producing strains,
2,3-butanediol was produced by NAD-dependent 2,3-
butanediol dehydrogenase, catalyzing the stereoselective
reduction of acetoin [2]. Several 2,3-butanediol dehydro-
genases with different stereospecificities have been previ-
ously studied. 2,3-Butanediol dehydrogenase could also
catalyze the oxidation of 2,3-butanediol to produce acet-
oin. For example, (2R,3R)-2,3-butanediol dehydrogenase
in Bacillus subtilis, Saccharomyces cerevisiae, and Paeni-
bacillus polymyxa can catalyze the stereospecific oxidation
of (2R,3R)-2,3-butanediol and meso-2,3-butanediol to
(3R)-acetoin and (3S)-acetoin, respectively [36-38]. meso-
2,3-Butanediol dehydrogenase in S. marcescens H30 can
catalyze the stereospecific oxidation of (2S,3S5)-2,3-butane-
diol and meso-2,3-butanediol to (3S)-acetoin and (3R)-
acetoin, respectively [39]. To identify the stereoselectivity
of 2,3-butanediol dehydrogenase in G. oxydans DSM 2003
that catalyzes the oxidation of 2,3-butanediol, biotrans-
formation with 2,3-butanediol as the substrate and whole
cells of G. oxydans DSM 2003 as the catalyst was con-
ducted. After accomplishing the reaction with meso-2,3-
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butanediol, (2R,3R)-2,3-butanediol, or (2S,3S)-2,3-butane-
diol as the substrate, the mixture was centrifuged and the
concentrations of (3S)-acetoin and (3R)-acetoin in the
supernatant were analyzed by GC, respectively.

When (2R,3R)-2,3-butanediol was used as the sub-
strate, (3R)-acetoin was the major product detected. Ac-
cordingly, (3S)-acetoin was, as expected, the major
product obtained from (25,3S)-2,3-butanediol. Further-
more, (3S)-acetoin could be obtained from meso-2,3-
butanediol. On the other hand, as shown in Additional
file 2: Figure S2A and Figure S2B (analyzed by HPLC),
(3S)-acetoin and (3R)-acetoin could not be further trans-
formed into diacetyl by G. oxydans DSM 2003, which is
similar to the situation in most of the 2,3-butanediol
producing strains.

Chiral acetoin is widely used to synthesize novel optic-
ally active a-hydroxy ketone derivatives and liquid crys-
tal composites. Numerous biocatalytic processes for the
production of chiral acetoin have been reported [40,41].
(2R,3R)-2,3-Butanediol and meso-2,3-butanediol could
be easily produced by P. polymyxa and S. marcescens, re-
spectively [7,11]. Due to the high stereoselectivity in the
G. oxydans DSM 2003 catalyzed 2,3-butanediol oxida-
tion, this strain might also provide a promising alterna-
tive for the production of (3S)-acetoin and (3R)-acetoin.

G. oxydans DSM 2003 constitutively expresses enzymes in
2,3-butanediol oxidation

In G. oxydans 621H, the polyol dehydrogenase (GOX 0854
and GOX 0855) exhibited 2,3-butanediol dehydrogenase
activity [29]. This enzyme was reported as a membrane-
bound protein and uses ubiquinone as the native electron
acceptor. To identify whether G. oxydans DSM 2003 has a
similar 2,3-butanediol dehydrogenase activity, a whole-cell
2,6-dichlorophenolindophenol (DCPIP) assay was used
[29]. Corresponding to the result of biotransformation
experiments, meso-2,3-butanediol, (2R,3R)-2,3-butanediol,
and (25,35)-2,3-butanediol could be oxidized by whole cells
of G. oxydans DSM 2003, implying the presence of a 2,3-
butanediol dehydrogenase activity in the strain.

To assess the expression of 2,3-butanediol dehydro-
genase activity, G. oxydans DSM 2003 was cultured with
different carbon sources, and the specific activities of
2,3-butanediol dehydrogenases were examined. The spe-
cific activities of the enzymes in cells grown on 2,3-buta-
nediol were similar to those of cells grown on glucose,
glycerol, and sorbitol (Additional file 3: Table S1). This
result is consistent with polyol dehydrogenase in G. oxy-
dans 621H, whose expression was also constitutive [29].
However, to further identify whether the homologues of
GOX 0854 and GOX 0855 catalyze the oxidation of 2,3-
butanediol in G. oxydans DSM 2003, deletion and func-
tion analysis of the corresponding genes should be
conducted in successive studies.
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Optimal pH for acetoin production

To increase the efficiency of acetoin production, the
bioconversion conditions of G. oxydans DSM 2003 were
optimized. The effects of the pH (5.5 to 7.5) of the
culture medium on growth of G. oxydans DSM 2003,
2,3-butanediol utilization, and acetoin production were
investigated in 300 mL shake flasks containing 50 mL
medium with approximately 10 g/L 2,3-butanediol.

As shown in Figure 3C, the highest concentration of
acetoin was 9.4 g/L when the initial pH of the culture
medium was set at 6.0. 2,3-Butanediol (9.8 g/L) was
nearly completely depleted during 12 hours of biocon-
version (Figure 3B). The product yield was at 98.1% of
the theoretical value (1 mol/mol). Consequently, the ini-
tial pH of 6.0 was chosen for subsequent bioconversions.

Optimal temperature for acetoin production

Efficiency of the bioconversion processes is temperature-
dependent owing to the strict dependence of enzymatic
activity and cellular maintenance upon temperature. In
this study, the effects of temperature (16°C, 25°C, 30°C,
and 35°C) on cell growth, acetoin production, and 2,3-
butanediol utilization were also examined.

As shown in Figure 4A and Figure 4C, the best growth
of G. oxydans DSM 2003 and yield of acetoin were ob-
tained when the temperature was maintained at 30°C.
Since the G. oxydans strain could not grow at a temperature
higher than 37°C, a temperature of 30°C was chosen for sub-
sequent bioconversions.

Optimal 2,3-butanediol concentration for acetoin
production

To study the effect of the initial 2,3-butanediol concen-
tration on acetoin production, various concentrations of
2,3-butanediol were utilized by G. oxydans DSM 2003 in
batch process to produce acetoin. The effects of 2,3-
butanediol concentration on cell and acetoin production
were examined after 24 hours of bioconversion in
300 mL shake flasks containing 10 g/L, 20 g/L, 40 g/L,
60 g/L, and 80 g/L 2,3-butanediol, respectively.

As shown in Figure 5A, cell density increased with the
2,3-butanediol concentrations to 40 g/L, and then decreased.
The production of acetoin increased significantly with an
increase of 2,3-butanediol concentrations from 10 g/L to
40 g/L (Figure 5B). When the 2,3-butanediol concentration
was over 40 g/L, both cell density and acetoin concentration
decreased sharply. This result showed that the high initial
substrate concentration would affect the metabolism of
strain G. oxydans DSM 2003. Thus, 2,3-butanediol at a
concentration of 40 g/L was chosen for subsequent studies.

Batch bioconversion under optimum conditions
Combining the results mentioned above, an optimal
system for the production of acetoin from 2,3-butanediol
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Figure 3 Effect of pH on acetoin production by G. oxydans
DSM 2003. (A) Biomass; (B) 2,3-butanediol; and (C) acetoin. The
experiments were conducted in 300 mL shake flasks containing
50 mL of medium at 30°C. The pH was adjusted at 5.5 (black
square), 6.0 (red circle), 6.5 (blue triangle), 7.0 (dark green down-
pointing triangle), and 7.5 (pink star).
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Figure 4 Effect of temperature on acetoin production by
G. oxydans DSM 2003. (A) Biomass; (B) 2,3-butanediol; and
(C) acetoin. The experiments were conducted in 300 mL shake
flasks containing 50 mL of medium at pH 6.0. The temperature
was adjusted at 16°C (black square), 25°C (red circle), 30°C
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was developed. Bioconversion was conducted at 30°C in
300 mL shake flasks containing 50 mL medium. The
medium consisted of 20 g/L yeast extract, 1.5 g/L (NH4),SOy,
1.5 g/L KH,PO,, 0.5 g MgSO, 7H,0, and 40 g/L 2,3-
butanediol. The pH was maintained at 6.0.

As shown in Figure 6, 37.5 g/L acetoin was obtained
from 40 g/L 2,3-butanediol after 24 hours of bioconver-
sion. No other products were detected during the bio-
conversion process. The yield of acetoin was at 95.9% of
the theoretical value. The ratio of (3R)-acetoin and (3S)-
acetoin produced by strain G. oxydans DSM 2003 was
analyzed by GC, which were 20.0% of (3R)-acetoin and
80.0% of (3S)-acetoin, respectively (Figure 7). Since G.
oxydans DSM 2003 catalyzes 2,3-butanediol oxidation
with stereoselectivity, the ratio of (3R)-acetoin and (3S)-
acetoin would be controlled by the stereoisomer of 2,3-
butanediol used.
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Figure 6 Time course of batch bioconversion of acetoin from
2,3-butanediol. The bioconversion was carried out at 30°C in
300 mL shake flasks containing 50 mL of medium at pH 6.0. The
initial 2,3-butanediol concentration used was 40 g/L. Biomass (black
circle); 2,3-butanediol (blue square); and acetoin (red triangle).

Fed-batch bioconversion

Efficient fed-batch bioconversion could enhance the con-
centrations of the target products. To achieve a higher
product concentration, a fed-batch bioconversion was
carried out with the optimized bioconversion conditions.
The initial 2,3-butanediol concentration was 40 g/L, and
20 g/L of 2,3-butanediol was added at 12, 24, and 36 hours,
respectively.
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(3R)-acetoin

(28.35)-2,3-butanediol

12 16 20 24 28 32 36 40
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Figure 7 Gas chromatography (GC) analysis of products of the

bioconversion process. *Isoamy! alcohol was used as the
internal standard.
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As shown in Figure 8, a high concentration of 89.2 g/L
acetoin was produced from 2,3-butanediol within
72 hours. The acetoin productivity was 1.24 g/L-h with
a yield of 0.91 mol/mol 2,3-butanediol. As shown in
Table 1, 89.2 g/L of acetoin obtained in this study is the
highest acetoin concentration obtained to date.

Several biotechnological routes including enzymatic or
whole-cell conversion methods [20,21,40,41] and fer-
mentative technologies [18,19,42-47] have been used to
produce acetoin (Table 1). Among all of the reported
biotechnological processes, Sun et al. obtained the high-
est acetoin concentration of 75.2 g/L with S. marcescens
H32 with the expression of a water-forming NADH
oxidase [16]. However, there were still considerable
amounts of 2,3-butanediol generated during the acetoin
fermentation process. Efforts have been tried in order to
increase acetoin production through further biotrans-
formation of the 2,3-butanediol [43]. Using 2,3-butane-
diol as the substrate, the recombinant E. coli strain that
coexpressed (2R,3R)-2,3-butanediol dehydrogenase and
NADH oxidase produced acetoin at a high concentra-
tion of 36.7 g/L [21]. On the other hand, diacetyl could
also be used as the substrate for acetoin production
[40,41]. Acetoin at a concentration of 13.5 g/L was pro-
duced from diacetyl by using an E. coli strain that
expressed stereoselective diacetyl reductase [41].

In this study, we found that G. oxydans DSM 2003 is
able to produce considerable quantities of acetoin using
2,3-butanediol as the carbon source. Both concentration
and yield of acetoin produced by the novel process are
new records for acetoin production. Although 2,3-buta-
nediol could be easily produced by fermentation, its
large-scale microbial production requires development
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Figure 8 Time course of fed-batch bioconversion of acetoin
from 2,3-butanediol. The bioconversion was carried out at 30°C in
300 mL shake flasks containing 50 mL of medium at pH 6.0. The
initial 2,3-butanediol concentration used was 40 g/L, and 20 g/L of
2,3-butanediol was added at 12, 24, and 36 hours, respectively.
Biomass (black circle); 2,3-butanediol (blue square); and acetoin

(red triangle).
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Table 1 Comparison of the acetoin production using different biocatalysts and fermentative strains

Substrate Concentration Productivity  Yield Reference

(g/L) (g/L-h)  (mol/mol)

Biocatalyst
Escherichia coli expressing glycerol Mixture of meso-2,3-butanediol 84 0.35 0.86 [20]
dehydrogenase and (25,39)-2,3-butanediol
Escherichia coli strain coexpressed (2R3R)-2,3- Meso-2,3-butanediol 36.7 3.06 085 [21]
butanediol dehydrogenase and NADH oxidase
Escherichia coli expressed diacetyl reductase Diacetyl and glucose 13.5 2.25 091 [40]
Purified NADPH-dependent carbonyl reductase Diacetyl and glucose 12.2 9.76 0.85 [41]
and glucose dehydrogenase
Fermentative strain
Serratia marcescens H32 expressed NADH oxidase Sucrose 752 1.88 0.78 [16]
Klebsiella pneumoniae expressed NADH oxidase Glucose 259 032 0.16 [18]
Geobacillus strain XT15 Glucose 7.7 0.16 0.24 [17]
Bacillus licheniformis MELO9 Glucose 413 1.15 0.84 [42]
Bacillus subtilis INA310 Glucose 422 032 057 [43]
Bacillus subtilis moderately expressed the Glucose 415 043 0.71 [44]
transcriptional regulator AlsR
Bacillus subtilis INA-UD-6 Glucose 539 037 0.74 [45]
Klebsiella oxytoca M1 Glucose 274 057 0.78 [46]
Bacillus subtilis CICC10025 Glucose 354 063 0.83 [47]
Gluconobacter oxydans DSM 2003 Mixture of meso-2,3-butanediol, (2R,3R)- 89.2 1.24 091 This study

2,3-butanediol, and (25,35)-2,3-butanediol

of efficient derivative processes. Thus, the method pre-
sented in this study would not only provide a promising
process for acetoin production, but would also expand
the utilization of 2,3-butanediol produced from biomass.

Conclusions

An efficient process for acetoin production from 2,3-
butanediol was developed by using G. oxydans DSM
2003. All three stereoisomers of 2,3-butanediol could be
oxidized into acetoin by the strain. Under optimal condi-
tions, the bioconversion process exhibited rather high
concentration (89.2 g/L), productivity (1.24 g/L-h), and
yield (91.2%) of acetoin. The results of this study suggest
that production of acetoin using 2,3-butanediol can
serve as a choice for the derivative of industrially pro-
duced 2,3-butanediol.

Materials and methods

Materials

(2R,3R)-2,3-Butanediol (98.0%), (25,3S)-2,3-butanediol (99.0%),
and meso-2,3-butanediol (98.0%) were purchased from
Acros (Geel, Belgium). The mixture of 2,3-butanediol
(76.1% meso-2,3-butanediol, 15.9% (2R,3R)-2,3-butane-
diol, and 8.0% (2S,3S)-2,3-butanediol) was obtained
from Sinopharm (Beijing, China). Racemic acetoin, dia-
cetyl, phenazine methosulfate (PMS), and DCPIP were

purchased from Sigma. All other chemicals were of
analytical grade and commercially available.

Microorganism and culture conditions

G. oxydans DSM 2003 (Deutsche Sammlung von
Mikroorganismen und Zellkulturen (DSMZ), Braunschweig,
Germany) was used in this study. The strain was cul-
tured in a medium containing 20 g yeast extract, 1.5 g
(NH4),SOy4, 1.5 g KH,PO,, and 0.5 g MgSO, 7H,0 in
1 L of distilled water. This medium was supplemented
with 2,3-butanediol, glucose, glycerol, or sorbitol as the
carbon source. The flask experiment was conducted in
300 mL shake flasks containing 50 mL fresh medium.

Whole-cell DCPIP assay of the membrane-bound
2,3-butanediol dehydrogenase

For the assay of the membrane-bound 2,3-butanediol
dehydrogenase, whole cells of G. oxydans DSM 2003
were concentrated to ODgygnm 4.0 via centrifugation at
4,000 x g for 5 minutes. The concentrated cells were
washed in 10 mL 67 mM phosphate buffer (pH 7.4),
resuspended in the same buffer and then immediately
used. Activity of 2,3-butanediol dehydrogenase was de-
termined at 30°C in 1 mL of 67 mM phosphate buffer,
pH 7.4, 0.2 mM PMS, 0.2 mM DCPIP, and whole cells of
G. oxydans DSM 2003 (final ODgyonm of 0.2). The
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reaction was started by addition of 25 mM meso-2,3-buta-
nediol, (2R,3R)-2,3-butanediol, or (2S,35)-2,3-butanediol
[45]. The rate of DCPIP reduction was determined by
measuring the absorbance changes at 600 nm [48]. An ex-
tinction coefficient of 21,300 for DCPIP was used for the
rate calculation. One unit of oxidation activity was defined
as 1 umol substrate oxidized per minute as determined by
reduction of 1 pmol DCPIP.

Optimization of bioconversion conditions

For the optimization of bioconversion conditions, the
culture medium of 50 mL in 300 mL shake flasks were
used with variation as follows: the pH values were 5.5 to
7.5, temperatures were 16°C to 35°C, and 2,3-butanediol
concentrations were 10 g/L to 80 g/L. Bioconversion
was carried out for 12 hours and then the reaction
mixture was centrifuged. The resultant supernatant was
analyzed for 2,3-butanediol and acetoin by GC.

Analytical methods

Samples were withdrawn periodically and centrifuged at
12,000 x g for 10 minutes. The growth of G. oxydans
DSM 2003 was determined by monitoring the absorb-
ance at 620 nm using a spectrophotometer (Lengguang
721, Shanghai Precision & Scientific Instrument Co Ltd,
Shanghai, China) after an appropriate dilution. The con-
centrations of 2,3-butanediol and acetoin were analyzed
by GC (Varian 3800, Varian, Walnut Creek, CA, USA)
with the method described by Xiao et al. [21]. The GC
system was equipped with a 30 m SPB-5 capillary col-
umn (0.32 mm inside diameter, 0.25 pm film thickness;
Supelco, Bellefonte, PA, USA) and a flame ionization
detector. The injector and detector temperatures were
both 280°C. The column oven temperature was main-
tained at 40°C for 3 minutes, and then raised to 240°C at
a rate of 20°C/minute. The injection volume was 1 pL.
The calibration curve was used to calculate the concen-
tration of the products. The concentration of diacetyl
was measured by HPLC (Agilent 1100 series, Hewlett-
Packard, Waldbronn, Germany) equipped with an Aminex
HPX-87H column (300 x 7.8 mm) (Bio-Rad, Hercules,
CA, USA) and a refractive index detector [49]. The ana-
lysis was performed with a mobile phase of 10 mM H,SO,
at a flow rate of 0.4 mL/minute and at 55°C.

Additional files

Additional file 1: Figure S1. Time course of G. oxydans DSM 2003
growth in the medium containing (A) 20 g/L yeast extract or (B) 10 g/L
glycerol.

Additional file 2: Figure S2. Analysis of the utilization of acetoin by
G. oxydans DSM 2003.

Additional file 3: Table S1. Effects of carbon sources on the activities
of 2,3-butanediol dehydrogenases.
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