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Abstract

valued products.

ethanol conversion of 98.27% was obtained.
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Background: The C4 perennial grass Miscanthus giganteus has proved to be a promising bio-energy crop. However,
the biomass recalcitrance is a major challenge in biofuel production. Effective pretreatment is necessary for
achieving a high efficiency in converting the crop to fermentable sugars, and subsequently biofuels and other

Results: Miscanthus lutarioriparious was pretreated with a liquid hot water (LHW) reactor. Between the pretreatment
severity (PS) of 2.56-4.71, the solid recovery was reduced; cellulose recovery remained nearly unchanged; and the
Klason lignin content was slightly increased which was mainly due to the dissolving of hemicellulose and the
production of a small amount of pseudo-lignin. The result shows that a LHW PS of 4.71 could completely degrade
the hemicellulose in Miscanthus. Hemicellulose removal dislodged the enzymatic barrier of cellulose, and the

Conclusions: Our study demonstrated that LHW served as an effective pretreatment in case that Miscanthus
lutarioriparious was used for ethanol production by simultaneous saccharification and fermentation. The
combination and the pretreatment method of Miscanthus feedstock holds a great potential for biofuel production.

Keywords: Miscanthus lutarioriparious, Liquid hot water pretreatment, Simultaneous saccharification and

Background
As a C4 perennial plant characterized with high biomass
yield and relatively low nitrogen and water requirement,
Miscanthus is considered to be one of the top candidates
of second-generation energy crops [1,2]. The previous
study showed that carbohydrates in Miscanthus
giganteus constituted approximately 75% of its dry mat-
ter content [2]. Recently, some investigations have been
published on the pretreatment and enzymatic hydrolysis
of Miscanthus. The treatments employed included am-
monia fiber expansion (AFEX) [3], NaOH pretreatment
[4], organic acid [5], organosolv [6], wet explosion [7]
and liquid hot water (LHW) pretreatment [8].

To improve the rate of enzyme hydrolysis and increase
yields of fermentable sugars from carbohydrates, all
kinds of pretreatment methods, such as dilute acid
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[9,10], steam explosion [11-14], lime [15], wet oxidation
[7,16], AFEX [17-19], alkali [20-25], SPORL [26,27],
organosol [6], microwave [28,29], ozone and LHW
[30-32] have been developed. LHW pretreatment uses
water as the thermal medium. Compared to other tech-
nologies, LHW pretreatment has the following advan-
tages: no extra chemicals added, no special non-corrosive
materials requirement for reactor building, and fewer
toxic degradation products formed [33]. It was considered
as an environmentally friendly method, and has now be-
come an attractive process for lignocellulosic biomass pre-
treatment [34].

In addition, most of the investigations on Miscanthus
merely evaluated the pretreatment effects on its enzym-
atic hydrolysis, with only a few on ethanol production
[4]. The ultimate objective of the pretreatment is to con-
vert biomass into the final products such as ethanol or
butanol. Because some fermentation inhibitors toxic to
the microorganisms might be formed in the pretreat-
ment [35], a good enzymatic digestibility does not mean
that the fermentable sugars generated by the enzymatic
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hydrolysis can be smoothly converted to ethanol. Simul-
taneous saccharification and fermentation (SSF) is a
more appropriate way to evaluate the pretreatment per-
formance [36].

This study evaluated the feasibility and efficiency of
LHW pretreatment on Miscanthus lutarioriparious, a
promising energy crop in China [37,38], for ethanol pro-
duction. The harvested Miscanthus Iutarioriparious
contained a certain amount of soil, sand and other impur-
ities. In order to remove these impurities, the Miscanthus
lutarioriparious was washed by tap water. After washing,
the suspended and precipitated part was collected separ-
ately. To investigate the influence of the pretreatment on
different fraction and the subsequent bioconversion
process, the two parts were subjected to LHW pretreat-
ment and following SSE. The solid recovery after LHW
pretreatment, the potential inhibitors formed, and ethanol
conversion from LHW -pretreated Miscanthus were inves-
tigated. In this work, the probable LHW pretreatment
severity range required of Miscanthus was obtained and
verified the adaptability of LHW on Miscanthus. The
ethanol yield of Miscanthus was obtained and compared
to other raw materials pretreated with different methods.

Results and discussion

Miscanthus component analysis

Tap water was used to wash off the impurity in the raw
Miscanthus lutarioriparious to avoid interference in the
subsequent component analysis and bioconversion. After
water-washing, both the suspended and precipitated
parts were collected separately. Figure 1 shows the mass
(dry weight) percentage of different parts of Miscanthus.
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The suspended solid made up about 3/4 of the whole
raw material, and the content of sand and soil was more
than 5%. In the washing process, about 2.22% loss on
the biomass and water-soluble sugars was observed,
which was relatively low compared to the water-
extractable ingredients in the corn stover [39].

Figure 2 shows the composition of the suspended solid
of Miscanthus. Cellulose was the predominant compo-
nent accounting for 41.2% of the residue after the etha-
nol extraction. The content of hemicellulose and Klason
lignin was very close. The paired t-test of Minitab 16
(Minitab Inc.) software was used to compare the com-
position difference of suspended and precipitated solids
(data not shown). The ¢-value was 0, and the P-value
was 1, which indicated that there was no significant dif-
ference in the composition between the two solids at the
significance level of 0.01.

The effect of LHW on solid recovery and Miscanthus
chemical composition

Both the suspended and the precipitated parts were
pretreated with LHW. The solid recovery (SR) at differ-
ent pretreatment severity (PS) is listed in Table 1. There
was a similar variation trend found for SR for both the
suspended and precipitated parts. As PS increased, SR
gradually reduced. For the suspended part, 95.00% of the
solid were recovered at PS of 2.65. It dropped to 65.46%
when PS increased to 4.71. Similarly, SR of 76.05%-
64.85% was obtained for the precipitated part as PS
changed from 3.53 to 4.71. The reduction of SR was
mainly caused by the hydrolysis of hemicellulose in the
pretreatment process which can be seen from Table 1.
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Figure 1 Mass percentage of different parts separated from Miscanthus by water-washing.
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Figure 2 Composition of suspended solid of Miscanthus.

There was no hemicellulose found for the suspended and
precipitated parts when PS was 4.71 or 4.12. This implied
that submerging the Miscanthus into water completely
maybe get a better LHW pretreatment effect. Further-
more, the optimal PS may be between 4.12 and 4.71. A
further PS optimization may be needed. The enzymatic
hydrolysis efficiency of cellulose in lignocellulosic material
is influenced by many factors. The hemicellulose’s
shielding effect to cellulase has been recognized as one of
the key factors affecting the cellulose digestion [40-42].
The acidic environment formed under the LHW pretreat-
ment condition contributed to the hemicellulose hydroly-
sis. The acetic acid produced from hemicellulose acetyl
hydrolysis further promoted the hemicellulose hydrolysis
[43]. In general, a lower hemicellulose content means a
higher cellulose enzymatic hydrolysis efficiency. Therefore,
the removal ratio of the hemicellulose is employed as a
key indicator to evaluate a pretreatment technology. Com-
pared with the hemicellulose, the cellulose and lignin are

not easily hydrolyzed in the conventional LHW pretreat-
ment process, and they tend to remain in the solid. This
caused the increase on the mass percentage of the cellu-
lose and lignin in the pretreated biomass. In addition,
some pseudo-lignin might be produced. The pseudo-
lignin can be broadly defined as an aromatic material that
yields a positive Klason lignin value. However, it is formed
by the combination of carbohydrate and lignin degrad-
ation products, not from the native lignin. It has been
reported that pseudo-lignin was produced in some
pretreatment process, especially in the dilute acid pretreat-
ment [44,45]. In the present study with LHW pretreat-
ment, the suspended solid had Klason lignin recovery
ratios of 104.87%, 104.95 and 107.69% under PS of 2.65,
3.53 and 4.71, respectively (Table 1).

Degradation products in the LHW pretreatment
In the pretreatment with higher temperature, hexose
and xylose can be further degraded to 5-hydroxyl furfural

Table 1 The composition and composition recovery of Miscanthus after LHW pretreatment

Samples PS Solid Composition, % Composition recovery, %
recovery % Cellulose  Hemicellulose Klason lignin Ash Cellulose Hemicellulose Klason Lignin
0 - 3921 +1.80 2347 £1.74 2136+ 142 287007 - - -
265 9500+160 4047+129  2034+1.76 2358+199  1.76+0.13 9805 8233 104.87
353 8819+125 43411000 19.94+0.00 2542+000 1.88+005 9764 86.46 104.95
412 7074188 4589+225 1003+ 057 29.67 £ 046 185+020 8279 35.58 98.26
Suspended solid 471  6546+0.16 5500+ 1.11 0.00£0.00 3514+001  221+0.10 91.82 0 107.69
0 - 42.20+2.08 2299+ 226 2123+017 467072 - - -
353 7605+122 4603+049 10.15+£0.25 2852+ 035 145+011 8295 33.58 102.16
412 6824+023 5354+168 0.00£0.00 3036+032  1.82+001 8658 0 97.59
Precipitated solid 471  6485+046 60.97+0.00 0.00+0.00 31.24+1.01 209+£036 93.69 0 9543
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(HMF) and furfural [46]. Figure 3 shows the HMF and fur-
fural formed in the present investigation from different
PS. Obviously, both HMF and furfural yield increased as
PS increased. However, furfural yield was always much
higher than HMF with the same pretreatment condition.
For the suspended part, the furfural and HMF concentra-
tions in the hydrolysate were 0.075 and 0.021 g/L with PS
at 3.53. When PS was increased to 4.71, they were 2.2 and
0.78 g/L, respectively. Under the harshest severity of 4.71,
furfural and HMF concentrations from the precipitated
part were 2.6 and 1.0 g/L. If the hydrolysates are used to
product ethanol, furfural and HMF in the hydrolysate will
inhibit the growth of yeast and decrease ethanol yield and
productivity. As volatile inhibitory compounds, furfural
and HMF can be removed by heating and vaporization to
alleviate the toxic effect [46].

In addition to HMF and furfural, glycolic, formic and
acetic acid were also found in the pretreatment hydrol-
ysate which is presented in Figure 4. Clearly, the forma-
tion of all these acids followed the similar trend, i.e., the
concentrations increased as PS increased. During the
pretreatment process, the deacetylation of acetyl groups
present in the hemicellulose led to the formation of the
acetic acid [47]. The acetic acid concentration reached
3.6 and 4.0 g/L for the suspended and precipitated hy-
drolysates, respectively, with PS at 4.71. Formic acid can
be formed when HMF is broken down [46]. The forma-
tion of glycolic acid was due to the breakdown of glu-
cose and xylose [48]. Compared to the acetic acid, the
concentrations of formic and glycolic acid were much
less, not more than 1.5 g/L. The toxic effect of aliphatic
acid on Saccharomyces cerevisiae is attributed to the un-
dissociated form. Formic acid (pKa =3.75) has a higher
toxic effect than glycolic acid (pKa=3.90) and acetic
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acid (4.76). However, inhibition of yeast was found to be
apparent at their concentrations exceeding 100 mM and
lower concentrations than 100 mM gave higher ethanol
yields than fermentations with no aliphatic acids in-
cluded [46]. In this work, the aliphatic acids produced
during LHW pretreatment were lower than 100 mM,
and consequently beneficial for the ethanol yield rather
than harmful.

An optimal pretreatment condition is needed to con-
sider the use of cellulose, hemicellulose and lignin at the
same time. However, if these components require differ-
ent pretreatment conditions, there is no choice but to
emphasize the main component. For example, cellulose
was gained more attention in the present study. Under
this pretreatment condition, a better cellulose enzymatic
hydrolysis performance can be obtained, but part of
hemicellulose and cellulose was degraded to furfural
and HMF.

SSF

The SSF was carried out on the LWH pretreated
Miscanthus and the untreated was used as reference.
The ethanol concentrations were presented in Figures 5
and 6. The ethanol conversion was calculated based on
Eq. (2). The ethanol conversion ratio for both the
suspended and the precipitated part of Miscanthus grad-
ually increased as PS increased. However, a lower PS
was not distinct in improving the ethanol conversion. In
the pretreatment on the suspended part with PS at 2.65,
there was almost no appearance change found for the
samples before and after pretreatment. The ethanol
concentration from the pretreated suspended part and
the untreated was 7.42 + 1.45 g/L and 7.73 £ 0.21 g/L, re-
spectively. The One-tailed Two Independent Samples
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Figure 3 HMF and furfural formed in LHW pretreatment.
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Figure 4 Organic acids formed in LHW pretreatment.

Student's t-Test was used to compare these two results.
The P value was 0.815. This indicates that there was no
significant difference between the two results within the
95% confidence interval. Therefore, the PS of 2.65 was
not utilized in the subsequent pretreatment on the pre-
cipitated part. For the suspended part with PS at 3.53,
the ethanol conversion only increased by 13.7% com-
pared to that from the raw suspended without pretreat-
ment. When PS was increased to 4.12, the ethanol
conversion improved dramatically and reached 84.87%.
The highest ethanol conversion was found to be 98.27%
as PS was at 4.71. This indicates that PS needs to be
above some critical point for this Miscanthus feedstock
to improve the biomass conversion effectively. In addition,

such a higher conversion also showed that there were no
toxic compounds produced in the SSF process. The simi-
lar trend of the ethanol conversion was observed on the
precipitated part. With PS of 4.12, the ethanol conversion
of the precipitated (89.86%) was more than three times
compared to that from the raw precipitated part (26.34%).

At PS of 4.71, the ethanol conversion with the two
parts separated by washing the raw Miscanthus
showed almost no difference. However, at PS 4.12, the
precipitated part had a better performance. Which im-
plied that submerging the Miscanthus into water com-
pletely during LHW pretreatment maybe reduce the
required energy consumption by using a lower PS in
the Miscanthus biorefinery.
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Figure 5 SSF on suspended solid of Miscanthus with LHW pretreatment.
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Figure 6 SSF on precipitated solid of Miscanthus with LHW pretreatment.

Ethanol conversion

The ethanol conversions from the suspended and
precipitated under PS of 4.71 are listed in Table 2. Based on
Eq. (3), the ethanol conversion from Miscanthus pretreated
with LHW was 14.72 g/100 g feedstock, more than twice
higher than that from the untreated Miscanthus (7.12 g/
100 g feedstock). Based on the PS of 4.71, Figure 7 gave a
mass balance analysis of Miscanthus with LHW pretreat-
ment and SSF. Table 3 lists the ethanol conversions from all
kinds of biomass with different pretreatment methods.
Compared with other investigations on Miscanthus pre-
treated by AFEX, ozone, etc, the present study gave a
higher ethanol conversion. We also noted that the cellulase
dosage loading used in this work was higher than some
new reports [26]. It is maybe related to the fibers
hornification due to sample drying. Hornification will lead
to the collapse of the pores formed during pretreatment
and affect the saccharification of pretreated samples
[55,56]. Appropriate sample preparation is likely to reduce
cellulase loading significantly. This indicates the LHW
pretreatment is promising in pretreating Miscanthus to
improve its conversion ratio efficiently.

Conclusions
The feasibility of LHW pretreated Miscanthus used as etha-
nol production by SSF was studied. The result shows that a

PS of 4.71 in LHW process could completely degrade the
hemicellulose in Miscanthus. Hemicellulose removal im-
proved the enzymatic digestibility of cellulose and obtained
a higher ethanol bioconversion ratio of the theoretical.
These results indicated that the LHW pretreatment was
suitable for Miscanthus feedstock, which offer a promising
solution to the biorefinery of this energy crop.

Methods

Miscanthus

The material of Miscanthus lutarioriparious used in this
work was harvested in December, 2011 in Honghu
County of the Hubei province, China. The air-dried raw
material was cut into 1-2 cm and washed off the impur-
ities including soil and sands. The Miscanthus was then
divided into two parts according to the density differ-
ence: the suspended and the precipitated parts. To study
the impact of the raw material density on Miscanthus
bioconversion, these two portions were collected separ-
ately and used as the parallel raw materials for the subse-
quent experiments.

Chemicals

Sulphuric acid (H>SO4, 98%) was purchased from Beijing
Chemical Factory. Glucose, xylose, arabinose, Glycolic
acid, formic acid, acetic acid, 5-hydroxymethyl furfural

Table 2 Ethanol yield from Miscanthus with the pretreatment intensity of 4.71

Solid recovery after
pretreatment (%)

Ethanol yield (g/100 g
pretreated feedstock)

Ethanol yield (g/100 g
raw feedstock)

Feedstock Mass percentage based

on the raw material (%)
Raw Miscanthus 100 N.A
The suspended 7367 6546
The precipitated 17.98 64.85

N.A. 7.2
24.83 16.25
2361 15.31
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Figure 7 Mass balance analysis of Miscanthus LHW pretreatment and SSF process.

(HMF) and furfural were purchased from Sigma-aldrich,
Co., (3050 Spruce Street, St Louis, Missouri 63103, US)
as standards in HPLC analysis.

Liquid hot water pretreatment

The LHW pretreatment was carried out in a laboratory
made reactor. The hydrothermal reactor has a volume of
1000 mL equipped with a mechanical stirrer and cooling
coils inside for a better temperature control. After the
raw material mixed with water was put into the reactor,

it was immersed into a salt bath with the temperature
pre-set at 230°C. The PS was calculated with the follow-
ing formula [51,52]:

T—100> (1)

__ [t
Ro =Jy exp ( 14.75

t; is the time at which the reactor temperature reaches
100°C and ¢, is the time at which the reactor
temperature drops to 100°C, (min), and T is the reactor

Table 3 Comparison on ethanol yield from different biomass

Biomass Pretreatment Ethanol yield (g/g raw biomass) References
Corn straw LHW, Lime, Wet oxidation, Steam explosion 0.02-0.10 [11,15,16,30]
Wheat straw LHW, Steam explosion, Dilute acid 0.06-0.20 [9,12,31]
Rice straw Dilute acid, Microwave with/without Alkali, Ammonia soaking 0.11 [10,20,21,28]
Sweet sorghum Dilute ammonia, AFEX, Steam explosion 0.19 [13,17,22]
Switchgrass Sodium hydroxide, AFEX, Hydrothermolysis 0.12-0.14 [18,19,23,32]
Sugarcane bagasse Phosphoric acid pretreatment 0.25-0.27 [49]
Lodgepole pine SPORL pretreatment 0.22 [26]

Aspen Steam explosion, Dilute acid, Delignification 0.10 [14,24,27]
Birch Alkaline 0.11 [25]

Spruce Alkaline 0.08 [25]
Miscanthus AFEX, Ethanol organosol, Microwave, Dilute acid pre-soaking, Ozone 0.10-0.11 [3,6,7,29,50]
Miscanthus LHW 0.15 This study
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temperature (°C). Figure 8 shows the correlation of the
PS with the reaction temperature and time. When the
pre-set PS was reached, cooling water was passed into
the cooling coils. At the same time, the reactor was
raised from the salt bath and put into a cooling water
bath to rapidly cool the reactor, the water temperature
in the reactor reduced to below 80°C within 2 minutes.
When the temperature below 80°C, the reactor was
opened to remove the pretreated material and end the
pretreatment process. The liquid—solid ratio used in this
study was 100:15 (V:W), the pre-set PS were 2.65, 3.53,
4.12 and 4.71. The slurry obtained from pretreatment
was separated by vacuum filtration to get the hydrolyzed
solution and water insoluble solid fraction. Solid was
washed with 20-time water and dried at 60°C. The air-
dried solid was used in the subsequent SSF. The hydrol-
ysate volume and degradation products content were
measured using HPLC.

Compositional analysis of solid fraction

The composition of the pretreated as well as untreated
Miscanthus was analyzed following NREL analytical pro-
cedures. According to the NREL LAP [53], a two-step
sulfuric acid hydrolysis process was adopted to break
down the structural polysaccharides into sugar monomers
for quantification by HPLC. The acid-insoluble lignin
(Klason lignin) residue was determined gravimetrically by
subtracting the ash content from the residual obtained
from the acid hydrolysis. All experiments were performed
in duplicate, and the average value was calculated and
presented.

Monosaccharides and degradation products
quantification

The monosaccharides from sulfuric acid hydrolysis and
degradation products in LHW hydrolysate were deter-
mined by HPLC (Agilent 1260 Infinity, USA) with Hi-
Plex H column (300 x 7.7 mm, Varian, Inc., Shropshire,
UK) at 65°C with 5 mM H,SO, as eluent at a flow rate
of 0.6 mL min’. A refractive index detector (RID) and a
diode array detector (DAD) were used in series. The
RID was used to determine the contents of glucose, xy-
lose, arabinose, glycolic acid, formic acid and acetic acid.
The DAD was used for HMF and furfural with a detec-
tion wavelength of 280 nm and a reference wavelength
of 360 nm.

SSF

The pretreatment effect of LHW was evaluated with SSF.
The process was modified from the NRELs procedure
[54]. Three grams (dry weight) of treated and untreated
material together with 32.30 mL citric acid buffer (pH =
4.8) and 2.2 mL cellulase (SUKAHAN(Weifang) Bio-
Technology CO.LTD) mixture solution (15FPU/g bio-
mass and 1 CBU/g biomass) were placed into a 150-mL
blue cap bottle. The pre-enzymatic hydrolysis was then
carried out at 120 rpm, 50°C. After 24 hrs, the bottles
were taken out and placed into an ice-water bath. The
supplementation of 75 pL urea (24%, w/v), 2.93 mL cellu-
lase solution (20 FPU/g biomass and 1.33 CBU/g biomass)
and inoculated with 0.12 g Angel® thermal tolerance alco-
hol active dry yeast (TH-AADY, Product code: 80000012,
Angel Yeast Co., Ltd., Yichang, China) was made to each
bottle. The yeast is specifically selected high-quality



Li et al. Biotechnology for Biofuels 2013, 6:76
http://www.biotechnologyforbiofuels.com/content/6/1/76

alcohol yeast resistant to high temperature, alcohol and
acid  (http://angelyeast.en.alibaba.com/product/83216842
4-218419497/Angel_Thermal_Tolerance_Alcohol_Active_
Dry Yeasthtml). The final solid biomass concentration
was 8% (w/v). Nitrogen was used to replace the air in the
bottles, and then the bottles were equipped with fermenta-
tion locks pre-filled with glycerol. The SSF was done at
42°C. At a certain time, the bottles were taken out and
weighted for weight reduction calculating. The conversion
of cellulose to ethanol was calculated as follows:

1.045 x C;,

0.51xCy xCc
0.9

Cellulose conversion = x 100 (2)

1.045: Conversion factor of CO, to ethanol;
0.51: Conversion factor of glucose to ethanol;
0.9: Conversion factor of cellulose to glucose.

The conversion of raw Miscanthus to ethanol was cal-
culated as follows:

Miscanthus conversion = Ps X Rg X Ygs + Pp
X Rp X YEp (3)

Abbreviations

LHW: Liquid hot water; PS: Pretreatment severity; SSF: Simultaneous
saccharification and fermentation; SR: Solid recovery; HMF: 5-hydroxyl
furfural; TH-AADY: Thermal tolerance alcohol active dry yeast; C;: Weight
reduction caused by CO, emission, g; Cy: Mass of sample used in SSF, g;
Cce: Mass percentage of cellulose in the sample, %; Ps: Mass percentage of
the suspended part after water-washing, %; Rs: Cellulose recovery ratio of the
suspended part after LHW pretreatment, %, it was 100 for the unpretreated
sample; Ygs: Conversion of cellulose to ethanol on the suspended part, %;
Pp: Mass percentage of the suspended part after water-washing, %;

Rp: Cellulose recovery ratio of the precipitated part after LHW pretreatment,
%, it was 100 for the unpretreated sample; Y Conversion of cellulose to
ethanol on the precipitated part, %.
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