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Abstract

Background: Saccharomyces cerevisiae strains expressing D-xylose isomerase (XI) produce some of the highest
reported ethanol yields from D-xylose. Unfortunately, most bacterial XIs that have been expressed in S. cerevisiae are
either not functional, require additional strain modification, or have low affinity for D-xylose. This study analyzed
several XIs from rumen and intestinal microorganisms to identify enzymes with improved properties for
engineering S. cerevisiae for D-xylose fermentation.

Results: Four XIs originating from rumen and intestinal bacteria were isolated and expressed in a S. cerevisiae CEN.
PK2-1C parental strain primed for D-xylose metabolism by over expression of its native D-xylulokinase. Three of the
XIs were functional in S. cerevisiae, based on the strain’s ability to grow in D-xylose medium. The most promising
strain, expressing the XI mined from Prevotella ruminicola TC2-24, was further adapted for aerobic and fermentative
growth by serial transfers of D-xylose cultures under aerobic, and followed by microaerobic conditions. The evolved
strain had a specific growth rate of 0.23 h-1 on D-xylose medium, which is comparable to the best reported results
for analogous S. cerevisiae strains including those expressing the Piromyces sp. E2 XI. When used to ferment
D-xylose, the adapted strain produced 13.6 g/L ethanol in 91 h with a metabolic yield of 83% of theoretical. From
analysis of the P. ruminicola XI, it was determined the enzyme possessed a Vmax of 0.81 μmole/min/mg protein and
a Km of 34 mM.

Conclusion: This study identifies a new xylose isomerase from the rumen bacterium Prevotella ruminicola TC2-24
that has one of the highest affinities and specific activities compared to other bacterial and fungal D-xylose
isomerases expressed in yeast. When expressed in S. cerevisiae and used to ferment D-xylose, very high ethanol
yield was obtained. This new XI should be a promising resource for constructing other D-xylose fermenting strains,
including industrial yeast genetic backgrounds.
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Background
Concern regarding the risks in climate change associated
with greenhouse gas emissions is driving policies pro-
moting lower CO2 emissions. In the United States, one
third of CO2 emissions are from transportation despite
the blending of 14 billion gallons of ethanol originating
from grains (e.g. corn) (www.ethanolrfa.org accessed
Feb. 2013). It is expected that further growth in biofuel
production will need to rely on lignocellulosic feedstocks.
Lignocellulose includes agricultural and forest wastes as
well as dedicated energy crops, such as perennial grasses
or tree plantations. Besides being available in larger quan-
tities than grains, these feedstocks do not impinge on the
food and feed market, are more CO2 neutral, and will not
interfere with current ethanol production.
Several technologies are being developed that use

lignocellulose for producing biofuels. The biochemical
route is one of the most advanced in terms of develop-
ment. In this route, carbohydrates are extracted, usually
in the form of monosaccharides, and fermented to
ethanol. While several efforts are underway at the pro-
duction scale, there is a continued need for further strain
development.
Industrial ethanol is produced using Saccharomyces

yeast. Saccharomyces yeasts are favored because of
their excellent yield, tolerance of low pH that discour-
ages the growth of spoilage microbes, ability to grow
aerobically for efficient cell generation, and robustness.
However, plant cell walls contain a mixture of sug-
ars, including D-xylose, which Saccharomyces spp. can-
not consume. Over two decades of effort have been
expended on developing S. cerevisiae stains that ferment
D-xylose and (more recently) L-arabinose and research
continues in enhancing the productivity of D-xylose fer-
mentation [1,2].
Current research efforts are focused on improving D-

xylose transport into the cell, conversion of D-xylose to
D-xylulose, and optimization of the non-oxidative pen-
tose phosphate pathway that feeds into glycolysis [3,4].
Rational strategies have been supplemented by evolu-
tionary adaptation using continuous and serial batch cul-
tures [5-7]. This study focuses on the second area.
Two strategies have been pursued for converting

D-xylose to D-xylulose. The earliest effort consisted of
expressing two genes from the native D-xylose-fermenting
yeast Scheffersomyces stipitis [8,9]. S. stipitis converts
D-xylose to xylitol and xylitol to D-xylulose by the
actions of D-xylose reductase and xylitol dehydrogen-
ase. Simple expression of the genes in S. cerevisiae
favors production of xylitol over ethanol because
the preference of the reductase for NADPH and of
the dehydrogenase for NAD+. Additionally, conversion
of D-xylulose to D-xylulose-5-phosphate is rate limit-
ing [10]. Redox engineering and fine-tuning D-
xylulokinase activity have been successful in reducing
xylitol production.
Most bacteria transform D-xylose to D-xylulose in a

single step that relies on the enzyme D-xylose isomerase
(XI). Efforts to express bacterial D-xylose isomerases in
yeast have been largely unsuccessful. A breakthrough oc-
curred when a D-xylose isomerase was discovered in an
anaerobic fungus and this D-xylose isomerase was suc-
cessfully expressed in S. cerevisiae [11,12]. While initial
growth rates were slow, over expressing genes related to
D-xylose fermentation and evolutionary adaptation con-
siderably improved its performance. Still this approach is
not without its disadvantages stemming from problems
related to expression of D-xylose isomerase and the en-
zyme’s poor kinetic properties. Until recently, the D-
xylose isomerase from the anaerobic fungus Piromyces
sp. E2 was the only XI gene that functioned in S.
cerevisiae. However, due to its low affinity for D-xylose
(Km from 20 to 90 mM) [12-14], the search for new
D-xylose isomerases that function in S. cerevisiae has
continued.
Many of these new XIs do not confer the ability to

grow on D-xylose without first modifying the D-xylose
isomerase or adapting the host strain. For example, ex-
pression of the Clostridium phytofermentans XI in S.
cerevisiae was shown in two separate studies to require
codon-optimization and strain adaptation [14,15]. The
Ruminococcus flavefaciens XI was recently expressed in
S. cerevisiae. Yeast strains expressing several versions of
this XI failed to grow aerobically in D-xylose medium,
despite one of the expressed XI enzymes having a high
specific activity [16]. The XI gene from an anaerobic
rumen fungus, Orpinomyces, was also expressed in S.
cerevisiae and produced a high specific activity (1.73 U/mg
lysate). D-xylose consumption was limited to 10 g/L in 140
hours [17]. However, further strain modification by addition
of the sugar transporter SUT1 resulted in 15 g/L D-xylose
consumed over the same time period.
The goal of this study was to identify novel D-xylose

isomerases that function when expressed in S. cerevisiae.
Rumen and intestinal bacteria were used as the source
of these additional XIs. The rumen and intestinal micro-
bial ecosystems are promising niches to mine for
new XIs due to the prevalence of xylan degrading micro-
organisms in these environments. A D-xylose isomerase
from the rumen bacterium Prevotella ruminicola TC2-
24 was discovered that conferred the ability to grow
on D-xylose medium when expressed in S. cerevisiae
without strain adaption. The strain was further improved
by adaptation under aerobic and fermentative condi-
tions. The evolved strain was compared to an adapted
S. cerevisiae strain expressing the D-xylose reductase
(XR) and xylitol dehydrogenase (XD) genes from
Scheffersomyces stipitis.

http://www.ethanolrfa.org
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Results and discussion
Cloning and expression of bacterial D-xylose isomerases
in Saccharomyces cerevisiae
Prevotella spp. and Bacteroides spp. are among the most
common xylan-degrading microorganisms isolated from
the bovine rumen and human colon, representing a
dominant phylum (i.e. Bacteroidetes) in these ecosys-
tems. Bacterial D-xylose isomerases have been reported
with much higher affinity for D-xylose when compared
to the fungal Piromyces sp. E2 or Orpinomyces D-xylose
isomerases. With the goal of identifying D-xylose isom-
erases with increased affinity for D-xylose, D-xylose
isomerase genes from Bacteroides and Prevotella spp.
were isolated and expressed in S. cerevisiae. D-xylose
isomerase genes were isolated from three Bacteroides
spp. (B. uniformis, B. distasonis, and B. ovatus) and P.
ruminicola strain TC2-24. Attempts to isolate D-xylose
isomerase genes from other P. ruminicola strains failed
(see methods). Several Prevotella spp., including the se-
quenced type strain P. ruminicola 23, have been reported
to be missing the gene for D-xylose isomerase. When
grown on D-xylose, these strains have detectable but low
D-xylose isomerase activity and high D-xylulokinase ac-
tivity [18,19]. Yet, they lack an obvious D-xylose reduc-
tase and xylitol dehydrogenase pathway. It is unclear
whether the absence of a D-xylose isomerase gene is due
to an incomplete genome sequence or if they possess an
alternate mechanism to convert D-xylose to D-xylulose.
P. ruminicola strain TC2-24 shows many similarities
with P. ruminicola 23 but does exhibit differences when
compared to this type strain [20,21]. Although we have
not investigated further, the presence of a D-xylose
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Figure 1 Comparison of Saccharomyces cerevisiae strains engineered
A) Strains were cultured under aerobic conditions using YP medium with 5
using a BioLector®. Cell density was measured every 30 minutes. Data show
were cultured under microaerobic conditions using YP medium with 50 g/
density was measured every 30 minutes. Data shown are the average value
values was less than 5%. Panel B uses the same legend as in panel A.
isomerase in TC2-24 may be another characteristic of
this group of “P. ruminicola 23-like” strains. The D-
xylose isomerase identified from P. ruminicola TC2-24
was 439 amino acids long and 79% to 85% identical to
D-xylose isomerases from other Prevotella spp. The
TC2-24 XI was 79% identical to the Piromyces sp. E2
and Orpinomyces XIs and only 53% identical to the C.
phytofermentans XI. The Bacterodies spp. XIs analyzed
in this study were 81% to 83% identical to the fungal
isomerases.

Aerobic growth in D-xylose medium
To determine if the D-xylose isomerase genes were func-
tional, each gene was expressed in S. cerevisiae along
with the S. cerevisiae D-xylulokinase gene, XKS1, and
screened for growth on D-xylose in aerobic liquid cul-
ture (Figure 1A). The control strain YRH561, which did
not express D-xylose metabolism genes, did not grow.
Strain YRH562, expressing the Piromyces sp. E2 XI (and
S. cerevisiae XKS1), was included for comparison.
YRH562 had a specific growth rate of 0.07 h-1 on D-
xylose medium under aerobic growth conditions
(Table 1). Several of the bacterial isomerases conveyed
the ability for growth on D-xylose at specific growth
rates similar to YRH562. As expected, specific activity of
a D-xylose isomerase in the S. cerevisiae strain was
correlated with the growth of that strain on D-xylose
(data not shown). For example, the Bacteroides ovatus
XI expressed in strain YRH565 had very low activity
and this strain also grew poorly in D-xylose medium
(Figure 1A). Equilibrium kinetics of the D-xylose isomer-
ase reaction do not favor production of D-xylulose and
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Table 1 Specific growth rates for aerobic growth in D-xylose medium

Strain D-xylose isomerase D-xylulokinase Specific growth rate, μ(h-1 ± SD)

YRH561 none none n.d.a

YRH562 Piromyces sp. E2 S. cerevisiae 0.07 ± 0.002

YRH563 B. uniformis S. cerevisiae 0.07 ± 0.007

YRH564 B. distasonis S. cerevisiae 0.06 ± 0.004

YRH565 B. ovatus S. cerevisiae n.d.

YRH587 P. ruminicola S. cerevisiae 0.08 ± 0.005

YRH592 B. uniformis B. uniformis 0.07 ± 0.012

YRH628 P. ruminicolaopt none 0.06 ± 0.004

YRH629 P. ruminicolaopt S. cerevisiae 0.07 ± 0.005

YRH630 Piromyces sp. E2 P. ruminicolaopt 0.07 ± 0.006

YRH631 P. ruminicolaopt P. ruminicolaopt 0.06 ± 0.005

YRH1114 P. ruminicolaopt P. ruminicolaopt 0.23 ± 0.024
Opt Codon-adapted for expression in S. cerevisiae.
a n.d.: Growth in D-xylose medium was poor or not detected.
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co-expression with a D-xylulokinase has been recommend
by prior studies to help pull D-xylose into the pathway.
As evidence, strains not over expressing D-xylulokinase
(YRH628 in Figure 1A) grew slower compared to strains
expressing elevated levels of D-xylulokinase. Endogenous
XK expression in YRH628 allowed for some growth on
D-xylose.
Strain YRH587, expressing the XI from Prevotella

ruminicola (TC2-24) and ScXKS1 grew as well as strain
YRH562 expressing the Piromyces XI and ScXKS1. Spe-
cific growth rates for the two strains were also compar-
able (Table 1) indicating that the P. ruminicola XI was
functional when expressed in S. cerevisiae. Codon
optimization of the P. ruminicola XI (YRH629) did not
enhance growth relative to YRH587. Additionally, the P.
ruminicola D-xylulokinase was substituted for the
ScXKS1 gene. YRH631 cells expressing the bacterial XK
gene had a similar growth rate as the YRH629 strain ex-
pressing the S. cerevisiae XK, indicating that the P.
ruminicola XK was also functionally expressed. Strain
YRH630, expressing the Piromyces XI gene and the P.
ruminicola XK (Figure 1A), grew as well as strain
YRH562 expressing the Piromyces XI gene with the S.
cerevisiae XK. Cells expressing the B. uniformis XK with
the B. uniformis XK reached a higher cell density with the
B. uniformis XK compared to the strain expressing the S.
cerevisiae XK (YRH592 vs. YRH563). These results dem-
onstrate that the B. uniformis and P. ruminicola XKs are
active in S. cerevisiae.
Next, the strains were evaluated for growth under

oxygen-limited conditions using the Bioscreen C™, a mi-
crotiter based system for measuring microbial growth
rates. Aerobic growth studies were performed using a 6-
edged flower shaped microtiter plate in the BioLector®
under conditions that were optimized for high oxygen
transfer rate [22]. Round microtiter plates such as those
used in the Bioscreen C™ have been shown to provide
lower oxygen transfer rates [22], and decreased oxygen
levels are a likely cause of the poor cell growth seen
when the Bioscreen C™ is used to culture cells on re-
spiratory carbon sources like ethanol [23]. All of the
strains grew poorly when cultured using the Bioscreen
C™. The best strains reached a cell density of less than
0.8 OD660 in 96 hours (Figure 1B). Such poor growth
under these conditions suggested that adaptation to an
oxygen-limited environment would be beneficial.

Adaptation for improved D-xylose fermentation
Adaptation, either by serial batch or continuous cell
culture, has been successful for improving growth and
fermentation of S. cerevisiae strains expressing different
D-xylose isomerase genes [6,14] as well as for cells ex-
pressing the reductase/dehydrogenase genes for D-xylose
metabolism [7]. We used serial passage of cells to select
for spontaneous changes that resulted in increased growth
under fermentative conditions (microaerobic). YRH631
was grown in YPX and transferred weekly for a total of six
transfers. Residual D-xylose and the fermentation prod-
ucts ethanol and xylitol were measured for each culture
(Figure 2). Steady strain improvement was observed as
greater D-xylose utilization and increased production
of ethanol (Figure 2). Acetate (not shown) remained
constant at 2 g/L.
The adapted strain YRH1114 was isolated from the

last serial culture and subsequently evaluated for growth
in D-xylose medium under aerobic and microaerobic
conditions (Figure 3A, B and Table 1). Strains expressing
the Piromyces XI (YRH562) and the unadapted strain
expressing the P. ruminicola XI (YRH631) were included
for comparison. The adapted strain, YRH1114, showed a
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significant increase in growth under both culture condi-
tions compare to the unadapted strain. The specific
growth rate for YRH1114 was 0.23 h-1, an increase of
3.8-fold compared to the unadapted strain, is among the
highest reported growth rates which range from 0.01 h-1

to 0.22 h-1 for a S. cerevisiae strain expressing D-xylose
isomerase [6,13,14,16,17,24-26].
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D-xylose fermentation
The adapted XI yeast strain (YRH1114) was also evalu-
ated for its ability to ferment D-xylose to ethanol using
microaerobic conditions. For comparison, the unadapted
yeast strain expressing the P. ruminicola XI and XK was
also included in the experiment. Finally, YRH400, a D-
xylose fermenting yeast that expresses the alternate
D-xylose utilization genes (S. stipitis XR and XD, with
elevated ScXKS1) in a commercial yeast background was
also included; this strain is currently our best performing
strain for D-xylose fermentation [27]. Progress of the
fermentations was monitored by measuring production
of CO2 (Figure 4): one mole of CO2 is produced for each
mole of ethanol. YRH1114 outperformed these strains
producing 13.6 g/L ethanol with a metabolic yield of
82.9% of theoretical (Table 2). The unadapated XI yeast
strain YRH631 had a much lower ethanol titer (4.1 g/L)
even though the metabolic yield was closer to that of the
adapted strain YRH1114. The difference in final ethanol
concentration between the adapted and unadapted strain
arose primarily from differences in D-xylose consump-
tion rate and specific ethanol productivity. The adapted
strain had a significantly higher ethanol productivity
compared to the unadapted strain also expressing the P.
ruminicola XI.
The most notable comparison is between the adapted

YRH1114 strain and YRH400. Even though YRH400 had
likewise been adapted and possessed an industrial yeast
background, YRH1114 produced nearly twice as much
ethanol (Table 2). This difference is also apparent
in lower specific ethanol productivity for YRH400
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Figure 4 Comparison of D-xylose fermentation using
Saccharomyces cerevisiae strains engineered to express the
P. ruminicola D-xylose isomerase and D-xylulokinase genes vs.
expression of the Scheffersomyces stipitis D-xylose reductase
and xylitol dehydrogenase genes. Fermentations were performed
using YP medium with 50 g/L D-xylose. Pressure was measured
every 15 minutes and converted to mmoles of CO2. Data shown are
from a single representative fermentation from experiments
performed in triplicate.
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compared to YRH1114. While YRH400 consumed nearly
as much D-xylose, it funneled approximately 50% of the
D-xylose to the production of xylitol, which is approxi-
mately three times as much as the XI expressing strains.
This difference in xylitol production is reflected in
the much lower metabolic ethanol yield for YRH400
compared to the other strains. Most strains using the
XR/XD pathway suffer from low ethanol yield, although
an adapted strain using this pathway was recently
reported to have a 79% of theoretical ethanol yield from
D-xylose [28].
Selective ethanol production is a hallmark of XI ex-

pressing strains because the isomerase step avoids the
redox imbalance observed for expression of the genes
from S. stipitis. This redox imbalance arises because
each enzyme (see introduction) favors an alternative
electron carrier. This imbalance has been partially re-
lieved by redox engineering of the XR and XD enzymes
[29-32]. Increases in ethanol yield during D-xylose fer-
mentation are seen for some redox engineered strains,
but ethanol yields from D-xylose for these strains are
Table 2 Fermentation products

Strain D-xylose
consumed [g/L]

Xylitol
[g/L]

Glycerol
[g/L]

Ethanol
[g/L]

YRH400 27.9 ± 1.00 14.3 ± 1.79 0.5 ± 0.04 6.9 ± 0.13

YRH631 11.7 ± 0.52 3.0 ± 0.08 0.8 ± 0.06 4.1 ± 0.21

YRH1114 32.1 ± 0.45 4.8 ± 0.13 1.8 ± 0.13 13.6 ± 0.08

Data shown represent the mean from triplicate experiments ± SD.
still 10% to 19% lower than the yield obtained with the
adapted strain described in this study. Thus, the adapted
strain expressing the P. ruminicola XI and XK compares
favorably to results reported for other strains when cul-
tured on D-xylose. It is also likely the performance of
the P. ruminicola XI can be further improved by ex-
pressing the gene in a more robust yeast strain such as
D5A, which was used for constructing YRH400 [27].

Kinetic parameters
As discussed previously, one concern with XI-based sys-
tems is poor affinity of the enzyme for D-xylose.
S. cerevisiae does not possess a native D-xylose trans-
porter and intracellular D-xylose concentrations might
be rate limiting. Therefore, it was of interest to measure
the Michaelis-Menten kinetic constants for the P.
ruminicola XI in comparison to other D-xylose isomer-
ases. Enzyme kinetic parameters for the P. ruminicola XI
were measured for the pre and post adapted strains.
The Km for the P. ruminicola XI was 40 mM and 34

mM before and after adaptation, respectively. While the
Km measurement using lysate from the adapted strain
was slightly lower, this difference was not statistically
significant. The Km for the P. ruminicola XI appears to
be more favorable than the Km for Piromyces sp. E2 XI,
which was observed to be 51 mM in this study and var-
ies considerably in the literature (Table 3). Thus, com-
pared to bacterial XIs expressed in yeast, and to most
reported Km values for the Piromyces XI, the P.
ruminicola XI has a higher affinity for D-xylose.
The measured Vmax for the unadapted strain was

0.28 μmole/min/mg protein (Table 3) and was not
significantly different from Piromyces sp. E2 XI, which
was measured at 0.25 μmole/min/mg protein when
expressed in our strain. Prior studies have reported Vmax

for the Piromyces XI at 0.05 μmole/min/mg protein
(Table 3). Higher enzyme activity than 0.05 μmole/min/
mg for the Piromyces sp E2 XI has been observed, but
Vmax was not reported in these studies [12,25,26]. Fol-
lowing strain adaptation, Vmax for the P. ruminicola XI
increased 2.9-fold from 0.28 to 0.81 μmole/min/mg pro-
tein. This increase probably reflects a higher XI protein
concentration in the cell lysate, either from increased ex-
pression or stability.
The increase in XI activity for the adapted strain sug-

gested that the copy number of the XI gene may have
Sp. Ethanol productivity
[g/gCDW/h]

Ethanol yield
[% Theoretical]

Carbon recovery [%]

0.028 ± 0.0013 48.3 ± 1.07 95.5 ± 0.06

0.015 ± 0.0002 68.6 ± 0.99 100.0 ± 0.01

0.041 ± 0.0015 82.9 ± 1.66 91.1 ± 0.02



Table 3 Kinetic properties of the Prevotella ruminicola
D-xylose isomerase compared to reported values

D-xylose isomerase Km (mM) Vmax
b Reference

P. ruminicola TC2-24 40 0.28c This work

P. ruminicola TC2-24a 34 0.81c This work

Piromyces sp. E2 51 0.25 This work

Piromyces sp. E2 20 NAd [12]

Piromyces sp. E2 87 0.05 [13]

Piromyces sp. E2 50 0.05 [14]

C. phytofermentans 62 0.03 [14]

R. flavefaciens 117 NA [16]

R. flavefaciense 67 NA [16]
a After strain adaption.
b μmole/min/mg protein.
c Statistically significant difference (p = 0.002).
d Not Available.
e Modified XI.
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increased leading to higher protein expression. Gene
amplification is a common mechanism for adaption in S.
cerevisiae [33,34] and has been shown to occur under a
wide range of circumstances including evolutionary en-
gineering for increased D-xylose metabolism. For in-
stance, one study reported an increase in XI copy
number due to integration of up to 32 copies of the
Piromyces sp. E2 XI gene [6]. To determine if the P.
ruminicola XI gene had integrated into the genome in
our adapted strain, we allowed the strain to lose the
plasmid containing the XI gene. The strain lacking the
XI plasmid was no longer able to grow on D-xylose
medium (data not shown), suggesting that integration of
the XI gene into the genome did not occur, at least not
at levels high enough to support growth on D-xylose in
the absence of the XI expression vector. The plasmid
containing the XI gene was also rescued from the
adapted strain and sequenced. No mutation was found
in the XI open reading frame or the promoter or termin-
ator for the gene, indicating that the causative mutation
for increased ability to ferment D-xylose resides in the
genome. Consistent with this hypothesis, replacing the
XI vector in the adapted strain with the original parent
XI vector restored the increased growth rate on D-
xylose, similar to the original adapted strain (data not
shown) while putting the same vector into the un-
adapted CEN.PK2-1C parent did not. Further analysis of
the genome sequence of the adapted strain compared to
the parent should reveal the genomic changes respon-
sible for increased D-xylose fermentation.

Conclusions
Three D-xylose isomerases originating from rumen
and gastrointestinal tract bacteria were successfully
expressed in a S. cerevisiae strain, as judged by growth
in aerobic D-xylose cultures. The most promising strain,
expressing the XI originating from the rumen bacterium
P. ruminicola TC2-24, was adapted in serial batch cul-
tures. The evolved yeast strain (YRH1114) had a specific
growth rate of 0.23 h-1 on D-xylose in aerobic culture.
In fermentative cultures, it produced 13.6 g/L ethanol in
91 h (0.041 g/gCDW/h) with a metabolic yield of 83%.
The P. ruminicola XI had a Vmax of 0.81 μmole/min/mg
protein and a Km of 34 mM for D-xylose.

Methods
Strains, media, and general methods
Escherichia coli strains DH10B, TOP10 (Invitrogen;
Carlsbad, CA, USA), NEB5a, and NEB10b (New England
Biolabs (NEB); Ipswich, MA, USA) were used for routine
maintenance and preparation of plasmids and were
grown in LB medium [35]. Microorganisms and plas-
mids used in this study are listed in Table 4 and Table 5.
DNA was transformed into yeast cells using a standard
lithium acetate method [36]. Synthetic complete (SC)
medium consisted of 6.7 g/L Difco yeast nitrogen base
(YNB) (United States Biological; Marblehead, MA,
USA), and was supplemented with amino acids as neces-
sary [37]. SC medium was filter sterilized. YP medium
(10 g/L yeast extract, 20 g/L bacto-peptone) was
autoclaved without carbohydrate. Sterile D-glucose or
D-xylose was added separately.

Cloning of D-xylose isomerase genes for expression in S.
cerevisiae
Bacteroides and Prevotella strains were obtained from
our in house collection (M. Cotta, USDA-ARS, NCAUR,
Peoria, IL, USA) and were cultivated anaerobically as de-
scribed previously [38]. D-xylose isomerase genes from
Bacteroides spp. were PCR amplified from genomic
DNA using primers pairs #312/313, #312/314, and #315/
316 for strains V923, V975, and V601 respectively
(Table 6). DNA fragments corresponding to the expected
size for a D-xylose isomerase gene were removed from
the agarose gel, purified, and ligated into pCR2.1 TOPO
for sequencing. Each of the DNA fragments isolated
from the Bacteroides spp. PCR reactions encoded a D-
xylose isomerase gene. Each XI gene was cloned into the
expression vector pRH167 using SpeI and SalI restric-
tion endonuclease sites added to the end of the primer
used for amplification.
Since a gene for D-xylose isomerase had not been

found in P. ruminicola, degenerate primers #243 and
#244 were used to amplify an isomerase gene from P.
ruminicola strains. Primer #243 was 32-fold degenerate
and #244 was 64-fold degenerate. These primers were
designed based on Bacteroides spp., and Piromyces sp.
E2. Using these primers and a touch-down PCR cycle,
we were unable to successfully amplify a D-xylose isom-
erase gene from any of the P. ruminicola strains tested.



Table 4 Microorganisms used in this study

Strain Genotype (description) Reference

V601 Bacteroides uniformis This work

V923 Bacteroides distasonis This work

V975 Bacteroides ovatus This work

TC2-24 Prevotella ruminicola (NRRL # B-50773) This work

TC27 Prevotella ruminicola This work

D31d Prevotella ruminicola This work

20-63 Prevotella ruminicola This work

20-78 Prevotella ruminicola This work

E40a Prevotella ruminicola This work

E42g Prevotella ruminicola This work

H15a Prevotella ruminicola This work

H2b Prevotella ruminicola This work

118b Prevotella ruminicola This work

20-92A Prevotella ruminicola This work

CEN.PK2-1C S. cerevisiae MATa ura3-52 trp1-289 leu2-3,112 his3Δ1 MAL2-8C SUC2 Euroscarf

YRH400 D5A + integrated (KanMX4; PPGK1-XYL1-TPGK1; PADH1-XYL2-TADH1; PHXT7-XKS1-THXT7) [27]

YRH561 CEN.PK2-1C [pRS414, pRS416] (control strain with empty vectors) This work

YRH562 CEN.PK2-1C [pRH195, pRH218] (low copy XKS1, high copy Piromyces XI) This work

YRH563 CEN.PK2-1C [pRH195, pRH351] (low copy XKS1, high copy B. uniformis XI) This work

YRH564 CEN.PK2-1C [pRH195, pRH352] (low copy XKS1, high copy B. distasonis XI) This work

YRH565 CEN.PK2-1C [pRH195, pRH353] (low copy XKS1, high copy B. ovatus XI) This work

YRH587 CEN.PK2-1C [pRH195, pRH367] (low copy XKS1, high copy P. ruminicola XI) This work

YRH592 CEN.PK2-1C [pRH351, pRH369] (low copy B. uniformis XK, high copy B. uniformis XI) This work

YRH628 CEN.PK2-1C [pRH384] (no XKS1, high copy P. ruminicola XIa) This work

YRH629 CEN.PK2-1C [pRH195, pRH384] (low copy XKS1, high copy P. ruminicola XIa) This work

YRH630 CEN.PK2-1C [pRH385, pRH218] (low copy P. ruminicola XKa, high copy Piromyces XI) This work

YRH631 CEN.PK2-1C [pRH385, pRH384] (low copy P. ruminicola XKa, high copy P. ruminicola XIa) This work

YRH1114 YRH631 adapted for improved D-xylose fermentation This work

YRH1136 YRH1114 with XI and XK vectors (pRH384 and pRH385) evicted This work

YRH1137 YRH114 with XI vector (pRH384) evicted, maintains the P. ruminicola XKa [pRH385] This work

YRH1138 YRH114 with XK vector (pRH385) evicted, maintains the P. ruminicola XIa [pRH384] This work
a codon adapted for expression in S. cerevisiae.
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A DNA fragment containing a D-xylose isomerase gene
was isolated when primers based on the XI from
sequence from Prevotella bergensis (accession #
ACKS01000045.1) were used (#310 and #311). The only
P. ruminicola strain to yield a D-xylose isomerase gene
by PCR amplification was strain TC2-24. The P.
ruminicola gene from TC2-24 (accession # KC847096)
was cloned into pRH167 to create pRH367 for expres-
sion of the unoptimized gene in S. cerevisiae.
Codon-optimized genes were obtained from DNA2.0

(Menlo Park, CA,USA) and cloned into vectors for
expression in S. cerevisiae. The optimized P. ruminicola
(TC2-24) D-xylose isomerase gene was cloned into
the high-copy vector pRH167 using the restriction
endonucleases SpeI and SalI, creating pRH384. To create
pRH385 the optimized P. ruminicola (T23) D-xylulokinase
was cloned into the low-copy vector pRH164 using the
same restriction endonucleases. Each vector contained the
truncated HXT7 promoter for constitutive expression of
the heterologous gene.

Aerobic growth kinetics
Yeast pre-cultures were grown to mid-log phase in syn-
thetic complete medium with 20 g/L D-glucose and
washed with sterile water prior to inoculation. YP
medium supplemented with 50 g/L D-xylose (YP5X)
was used to determine each yeast strain’s ability to as-
similate D-xylose aerobically. Cultures were started



Table 5 Plasmids used in this study

Plasmid Description Reference

pRS414 pBluescript II SK+, TRP1, CEN6, ARSH4 [39]

pRS416 pBluescript II SK+, URA3, CEN6, ARSH4 [39]

pRS426 pBluescript II SK+, URA3, 2μ origin [39]

pJ201 Gene synthesis vector (DNA2.0)

pRH164 pRS414 + PHXT7-MCS-THXT7 [27]

pRH167 pRS426 + PHXT7-MCS-THXT7 [27]

pRH195 pRS414 + PHXT7-S. cerevisiae XKS1-THXT7 [27]

pRH218 pRS426 + PHXT7-Piromyces sp. E2 XI-THXT7 [40]

pRH325 pCR2.1 TOPO + Bacteroides uniformis XI This work

pRH326 pCR2.1 TOPO + Bacteroides distasonis XI This work

pRH327 pCR2.1 TOPO + Bacteroides ovatus XI This work

pRH351 pRS426 + PHXT7-Bacteroides uniformis XI-THXT7 This work

pRH352 pRS426 + PHXT7-Bacteroides distasonis XI-THXT7 This work

pRH353 pRS426 + PHXT7-Bacteroides ovatus XI-THXT7 This work

pRH357 pCR2.1 TOPO + Prevotella ruminicola strain TC2-24 XI This work

pRH360 pCR2.1 TOPO + Bacteroides uniformis xylB (D-xylulokinase) This work

pRH367 pRS426 + PHXT7-Prevotella ruminicola XI-THXT7 This work

pRH369 pRS426 + PHXT7-Bacteroides uniformis xylB-THXT7 This work

pRH379 pJ201 + Prevotella ruminicola TC2-24 codon-adapted XI This work

pRH380 pJ201 + Prevotella ruminicola 23 codon-adapted XK This work

pRH384 pRS426 + PHXT7-P. ruminicola TC2-24 codon-adapted XI -THXT7 This work

pRH385 pRS414 + PHXT7-P. ruminicola 23 codon-adapted XK -THXT7 This work

pRH544 pRS414 + PHXT7-P. ruminicola 23 codon-adapted XK -THXT7 rescued from YRH1114 This work

pRH545 pRS426 + PHXT7-P ruminicola TC2-24 codon-adapted XI -THXT7 rescued from YRH1114 This work

For all plasmids listed using the HXT7 promoter, PHXT7 is the truncated version of the HXT7 promoter for constitutive expression.
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using 6-edged flower shaped microtiter plates in 800 μl
of YP5X at an OD660 of 0.05 and incubated at 30°C,
mixing at 1000 rpm using a BioLector® (m2p-labs;
Baesweiler, Germany). The BioLector® measures cell
density by scattered light, which was measured every 30
minutes. A gain of 20 was used for the experiments to
avoid saturation at high optical densities. At this gain,
Table 6 DNA oligonucleotides used in this study

# Sequence

243 5’-TTATGGCWACAAAAGARTWTTTYCCSGG-3’

244 5’-CCTYAGCARTACATATTYASRATKGC-3’

310 5’-GCACTAGTATGGCAAAAGAGTATTTCCC-3’

311 5’-CCGTCGACTTACTTGCAGTAAAGTGCTACG-3’

312 5’-GGACTAGTATGGCTACAAAAGAGTTTTTTC-3’

313 5’-GCGTCGACTTAGCAGTACATATTTAGGATGG-3’

314 5’-GCGTCGACTTAGCAGTACATATTTACGATGG-3’

315 5’-GGACTAGTATGGCTTCAAAAGAGTATTTTC-3’

316 5’-GCGTCGACTTAGCAATACATATTTAGGATGGC-3’

Restriction endonuclease sites are shown italicized and underlined. Start
codons are shown in bold.
scattered light units were linearly proportional to
OD660. Scattered light units were converted to optical
density using the conversion factor (OD660 = background
subtracted scattered light unit/22.93). Data shown rep-
resent the mean values from experiments that were re-
peated in triplicate. Standard deviation values were less
than 10% of the mean. Specific growth rates for each
replicate were determined by linear regression of the nat-
ural log transformed data (i.e. background subtracted
scattered light units) vs. time. The slope of the fitted line
during exponential growth was used as the specific growth
rate μ (h-1).
Cell culture using the Bioscreen C™ automated micro-

biology growth curve analysis system (Growth Curves
USA; Piscataway, NJ, USA) was performed using 100
well honeycomb plates. Microtiter plates for the
Bioscreen C™ have a round geometry unlike the flower-
shaped plates used in the BioLector®. Plates were shaken
with a high amplitude setting and normal speed setting
for 30 seconds with an interval of 60 seconds. OD660

was determined by converting the wideband OD values
from the Bioscreen C™ using the equation (OD660 =
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1.74OD + 0.535(OD)2 - 0.749(OD)3 + 0.675(OD)4, R2 =
0.999). Data shown represent the mean values from trip-
licate experiments.
Strain adaptation
Strain adaptation to aerobic conditions was achieved by
serial passage of cells in YP medium supplemented with
50 g/L of D-xylose as the only energy source. Serial pas-
sage under aerobic conditions was continued for eight
weeks. Strain adaptation for D-xylose fermentation was
then performed in duplicate by weekly transfer of cells
grown under fermentative conditions (microaerobic) for
six weeks. During adaptation to fermentative conditions
cultures were sampled at each passage and analyzed for
optical density, residual D-xylose, and fermentation
products (ethanol, glycerol, xylitol, and acetate).
Enzyme assays
Total protein from clarified cell lysates was prepared
from mid-log phase cells grown in synthetic complete
medium using D-glucose as the carbon source. Cells
were collected by centrifugation, washed once with ster-
ile ice-cold water, and centrifuged again. Cell pellets
were stored at −80°C for later use. Cells were
resuspended in an appropriate amount of Y-PER reagent
(Pierce; Rockford, IL, USA) plus protease inhibitors
(Complete, mini, EDTA-free protease inhibitor cocktail,
Roche; Indianapolis, IN, USA) and processed according
to the manufacturer’s instructions. Protein concentra-
tions were determined with the Quick Start Bradford
Protein Assay (Bio-Rad; Hercules, CA, USA) against a
bovine serum albumin standard.
D-xylose isomerase activity was assayed essentially as

described in [12]. XI assays were performed using buffer
containing 100 mM Tris-HCl, pH 7.5, 10 mM MgCl2,
0.15 mM NADH, 2 U sorbitol dehydrogenase (Roche,
Mannheim, Germany), and an appropriate amount of
cell lysate. Reactions were started by the addition of D-
xylose (Sigma; St. Louis, MO, USA) to a final concentra-
tion of 500 mM and reactions monitored at 340 nm
using a Cary 50 Bio UV-Visible spectrophotometer
(Varian; Palo Alto, CA, USA). Specific activity (μmole/
min/mg lysate) was determined using the molar absorp-
tion coefficient, ε340, of 6.22 mM-1 cm-1 for NADH. To
ensure that the sorbitol dehydrogenase coupling enzyme
was not saturated, the ratio of sorbitol dehydrogenase
activity to D-xylose isomerase activity was maintained
at > 20 for the assay. Additionally, specific activities
reported were proportional to the amount of lysate
added in a dilution series. Kinetic parameters were de-
termined by varying the D-xylose concentration from 5
to 500 mM. Each assay was done using lysates prepared
from three independent cultures.
Batch fermentation
D-xylose fermentation was investigated by inoculating
100-ml YP cultures with 50 g/L D-xylose at a starting
OD660 of 2.0. CO2 production was monitored continu-
ously over the course of the fermentation using a wire-
less gas production measurement system (Ankom
Technologies; Macedon, NY, USA). The wireless system
monitors gas production indirectly by measuring cumu-
lative gas pressure; CO2 production is calculated using
the ideal gas law. The system was set to vent when the
overhead pressure achieved 1 psi and to monitor the ac-
cumulated pressure every 15 min. Exponentially growing
cells were used for the inoculum. Post fermentation
samples were used to determine cell biomass (by
OD660), residual sugars, and fermentation products (by
high-performance liquid chromatography, HPLC). All
fermentation experiments were performed three to four
times. Accumulative pressure values were used to calcu-
late the amount of CO2 produced during the fermenta-
tion. Carbon recoveries were determined using HPLC
data. Carbon recovery calculations were based on total
input carbon from D-xylose and measured (HPLC)
remaining D-xylose, along with fermentation products.
CO2 amounts used for carbon recovery calculations as-
sumed 1 mole of CO2 is produced for every 1 mole of
ethanol. Specific ethanol productivity (g ethanol/g cell
dry weight/h) was determined using the final OD660

measurement (91 hours) for each batch fermentation.
Cell dry weight (CDW) was calculated using an OD-to-
CDW conversion factor for the yeast strain CEN.PK2-
1C (CDW= 0.58 g/L/OD). The conversion factor was
determined by drying cells at differing OD to constant
weight at 100°C. Cells were washed three times with dis-
tilled water prior to drying to remove trace amounts
of medium. OD was measured using a GeneSys 10
vis spectrophotomerer (Thermo Fisher Scientific Inc.;
Waltham, MA, USA).

Analytical methods
Extracellular metabolites were measured using HPLC as
previously described [27]. Samples were analyzed using a
SpectraSYSTEM liquid chromatography system (Thermo
Electron Corporation, CA, USA) equipped with an auto-
matic sampler, column heater, isocratic pump, refractive
index detector, and computer based integrator running
Chromquest ver. 2.5 software (Thermo Electron Corpor-
ation). Samples were injected (20 μl) onto a sugar column
(Aminex HPX-87H Column, 300 x 7.8 mm, Bio Rad
Laboratories, Inc.) and eluted with 5 mM sulfuric acid
at 0.6 ml/min and 65°C.

Statistical analyses
For experiments with three or greater biological repli-
cates, probability analyses were performed using the
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Student’s t-test with a two-tailed distribution and com-
pared to the appropriate control strain. Values with
p < 0.05 were considered significant for this study. Statis-
tical analysis was performed using Microsoft Excel.
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