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Abstract

Background: Biosynthesis of fatty alk(a/e)ne in cyanobacteria has been considered as a potential basis for the
sunlight-driven and carbon-neutral bioprocess producing advanced solar biofuels. Aldehyde-deformylating
oxygenase (ADO) is a key enzyme involved in that pathway. The heterologous or chemical reducing systems were
generally used in in vitro ADO activity assay. The cognate electron transfer system from cyanobacteria to support
ADO activity is still unknown.

Results: We identified the potential endogenous reducing system including ferredoxin (Fd) and ferredoxin-NADP*
reductase (FNR) to support ADO activity in Synechococcus elongatus PCC7942. ADO (Synpcc7942_1593), FNR
(SynPcc7942_0978), and Fd (SynPcc7942_1499) from PCC7942 were cloned, overexpressed, purified, and
characterized. ADO activity was successfully supported with the endogenous electron transfer system, which
worked more effectively than the heterologous and chemical ones. The results of the hybrid Fd/FNR reducing
systems demonstrated that ADO was selective against Fd. And it was observed that the cognate reducing system
produced less H,O, than the heterologous one by 33% during ADO-catalyzed reactions. Importantly, k., value of
ADO 1593 using the homologous Fd/FNR electron transfer system is 3.7-fold higher than the chemical one.

Conclusions: The cognate electron transfer system from cyanobacteria to support ADO activity was identified and
characterized. For the first time, ADO was functionally in vitro reconstituted with the endogenous reducing system

from cyanobacteria, which supported greater activity than the surrogate and chemical ones, and produced less
H,O, than the heterologous one. The identified Fd/FNR electron transfer system will be potentially useful for
improving ADO activity and further enhancing the biosynthetic efficiency of hydrocarbon biofuels in cyanobacteria.

Keywords: Biofuels, Fatty alk(a/e)ne, Synechococcus elongatus PCC7942, Aldehyde-deformylating oxygenase,
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Background

It is imperative to develop renewable biofuels due to
concerns about climate change, the diminishing supplies
of fossil fuels, and energy security [1-6]. With regard to
the sustainability of biomass resources, cellulosic etha-
nol and microalgal biodiesel have been becoming more
and more attractive [1,6,7]. Taking into account fuel
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performance, ideal fuels should have very similar energy
content, storage and transportation properties, and com-
bustion properties to current transportation fuels allowing
them to be used in the existing gasoline, diesel, and jet
engines [3]. Fatty-acid-derived biofuels fulfil these criteria,
among which fatty-acid-derived alk(a/e)nes could be the
ideal replacement for fossil-based fuel due to the fact that
fatty alk(a/e)nes are the main components of conventional
fuels such as gasoline, diesel, and jet fuel [4]. Therefore,
it is of great importance to investigate biosynthesis of
fatty alk(a/e)nes.
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Fatty alk(a/e)nes are mainly produced by plants, insects,
birds, green algae, and cyanobacteria [8]. Cyanobacteria
are the advantageous organisms over others for industrial
applications as they incorporate the favourable character-
istics of prokaryotes and plants, which can efficiently
convert solar energy and carbon dioxide into biofuels in
one biological system [2,9-11]. Furthermore, the genetic
engineering platform for cyanobacteria has been well
established [2,9-11].

Fatty alk(a/e)nes produced by organisms are typified by
an odd number of carbons. More and more evidence has
indicated that a two-step pathway for fatty alk(a/e)ne
biosynthesis exists, including: (1) reduction of fatty acyl-
ACP or —CoA into corresponding aldehyde by acyl-ACP
reductase; (2) conversion of fatty aldehyde into alk(a/e)
ne by aldehyde decarbonylase [12]. Since it has been ob-
served that the C1-derived coproduct of the second step
is carbon monoxide, the enzyme involved in that reaction
has been tentatively designated as aldehyde decarbonylase
[12]. Recently, Schirmer et al. identified two genes in-
volved in alk(a/e)ne biosynthesis in cyanobacteria [8].
Since identification of the biosynthetic pathway of alk(a/e)
ne in cyanobacteria, aldehyde decarbonylase has attracted
particular interest in industry and academia for biofuel
production due to the difficult and unusual reaction it
catalyses. It has been proved that: (1) the C1-derived co-
product is formate instead of widely supposed carbon
monoxide (Figure 1) [12]; (2) the aldehyde hydrogen is
retained in formate and the hydrogen of the nascent me-
thyl group originates at least in part from solvent (H,O)
[12]; (3) oxygen is absolutely required for this apparently
hydrolytic reaction, and one O-atom is incorporated into
formate, so it has been proposed that widely accepted al-
dehyde decarbonylase should be redesignated as aldehyde-
deformylating oxygenase (ADO) by Li et al. (Figure 1)
[13,14]; (4) the auxiliary reducing system (biological or
chemical) providing four electrons is absolutely needed
for ADO activity (Figure 1) [8,14-16]; (5) based on the
crystal structure of ADO from Prochlorococcus marinus
MIT9313, ADO belongs to the ferritin-like non-heme
dimetal-carboxylate enzyme family [8,17]; (6) Andre et al.
reported that ADO is reversibly inhibited by H,O, ori-
ginating from poor coupling of reductant consumption
with alkane formation, and the inhibition can be relieved

(0]
(lj ADO R-H + HCOO-

R g \H 0, / reducing system

Figure 1 ADO-catalysed reaction [8,12-16]. Oxygen and the
auxiliary reducing system (biological or chemical) providing four
electrons are needed for ADO activity, one O-atom is incorporated
into formate, and the aldehyde hydrogen is retained in formate.
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by supplementing catalase (The paper was published when
the manuscript was under review.) [18].

As mentioned above, the biological or chemical reducing
system is required for catalytic activity of ADO [8,14-16].
The commonly used chemical reducing system is phenazine
methosulfate (PMS) or 1-methyoxy-5-methylphenazinium
methylsulfate (MeOPMS) and NADH [14-16]. The widely
used biological reducing system is surrogate ferredoxin
(Fd) and ferredoxin-NADP* reductase (FNR) from spinach,
and NADPH [8,14-16]. It was observed that the chemical re-
ducing system worked better than the biological one [14,15].
Ed from Zea mays and ENR from Anabaena sp. PCC7120
have also been used to support ADO from Prochlorococcus
marinus MIT9313 [18].

In addition to supporting ADO ( Fd and FNR from
spinach, Fd from Zea mays and FNR from Anabaena sp.
PCC7120), the surrogate electron transfer systems also
supported reactions catalysed by stearoyl acyl carrier
protein A® desaturase (Fd and FNR from spinach) [19],
p-aminobenzoate N-oxygenase (AurF) (Fd and FNR from
Anabaena sp. PCC7119) [20], and cytochrome P450 (P450)
[21,22], etc.. P450 showed enormous diversity in the redox
partner systems [23]. The homologous Fd/FNR systems
generally supported greater P450 activity than the heter-
ologous ones, implying that the interaction of Fd with
ENR and P450 is very important for efficient electron
transfer [24-26].

Considering that the surrogate electron transfer system
might not be well matched with cyanobacterial ADO, it is
very necessary to search for the cognate one to support
ADO. In this paper, ADO and the endogenous reducing
system including Fd and ENR from Synechococcus elongatus
PCC7942 were cloned, overexpressed, purified, and charac-
terized. We reported the first cognate reducing system from
cyanobacteria to support ADO activity (Figure 2). ADO
was successfully in vitro reconstituted with the endogenous
Fd/ENR system, which performed more effectively than the
surrogate Fd/FNR one and the chemical reducing system.

Results and discussion
Searching for the endogenous electron transfer system to
support ADO activity in the genome sequence of
Synechococcus elongatus PCC7942
According to the report by Schirmer et al., in vitro enzym-
atic activity of ADO was only observed in the presence of
Fd, FNR, and NADPH, while omitting any one of these
cofactors completely abolished ADO activity [8]. However,
the endogenous electron transfer system from cyanobac-
teria to support ADO-catalysed reaction is still unknown.
In order to in vitro reconstitute ADO activity, it is essen-
tial to search for such a cognate electron transfer system
to be well matched with ADO in cyanobacteria.

Two FNR isoforms were isolated in Symnechocystis sp.
PCC6803, the smaller one (FNRg) similar to the one
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Fatty aldehyde ‘ | Fatty alk(a/e)ne + formate

Figure 2 Representative electron flow in conversion of fatty
aldehyde into alk(a/e)ne with the reconstituted ADO/Fd/FNR
system. Reducing equivalents from NADPH are transferred from
FNR to Fd and then to ADO. The crystal structures of related ADO
(PDB ID: 20C5, 60% sequence identity to ADO from PCC7942) from
Prochlorococcus marinus MIT9313, Fd (PDB ID: 1QT9, 82% sequence
identity to Fd from PCC7942) and FNR (PDB ID: TQUE, 67% sequence
identity to FNR from PCC7942) from Anabaena sp. PCC7119 were
used to demonstrate electron transfer in the reconstituted
ADO/Fd/FNR system.

found in plant plastids and the larger one (FNR}) associ-
ated with the phycobilisome, both of which derive from
the single FNR gene (petH), and the smaller one is pro-
duced from the second translation initiation site within
the petH ORF [27,28]. Two FNR isoforms were also
detected in Anabaena sp. PCC7120 and Synechococcus
sp. PCC7002 [28]. However, the smaller isoform is not
present in cyanobacteria lacking a second methionine
within the petH ORF such as Synechococcus elongatus
and Thermosynechococcus elongatus [28], so only one
FENR isoform is present in PCC7942. According to the
genome sequence of PCC7942 (http://genome.microbedb.
jp/cyanobase/SYNPCC7942), ENR is encoded by the
SynPcc7942_0978 (petH) gene, and would be involved in
electron transfer between FNR and its protein partners in
PCC7942.
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There are at least seven Fd and Fd-like proteins in
the genome sequence of PCC7942 (http://genome.
microbedb.jp/cyanobase/SYNPCC7942), among which
Ferredoxin I (SynPcc7942_1499) encoded by the petF
gene was found to be indispensable for PCC7942 [29].
In addition, in PCC6803 the corresponding petF gene
(ss10020) coding for the most abundant ferredoxin prod-
uct was also proved to be critical to cell growth, and the
expression level of the petF-like genes such as sll1382,
slr0150 and slr1828 is very weak compared with that of
petF [30]. So, we think that Fd encoded by the petF gene
is very important for a lot of redox processes in cyanobac-
teria, such as mediating electron transfer from iron—
sulphur centres of photosystem I to FNR which then re-
duces NADP" for CO, fixation, cyclic photophosphoryla-
tion, nitrogen assimilation, sulphite reduction or fatty acid
metabolism, etc. Based on these considerations, Fd
(SynPcc7942_1499) encoded by the petF gene was chosen
for mediating electron transfer between FNR and ADO.

Therefore, FNR (SynPcc7942_0978) and Ferredoxin I
(SynPcc7942_1499) will be investigated to support ADO
from PCC7942 in the paper.

Cloning, overexpression, purification, and characterization
of FNR from Synechococcus elongatus PCC7942

The gene encoding FNR (SynPcc7942_0978) was ampli-
fied from genomic DNA of PCC7942 by PCR, cloned
into the vector pET-28a(+) at the restriction sites of
Ndel and Xhol, and overexpressed in E. coli BL21(DE3)
under IPTG induction. Overexpressed FNR with the
N-terminal His-tag was purified to homogeneity on Nickel
column (Additional file 1: Figure S1). The predicted mo-
lecular weight of ENR is 44.4 kDa, corresponding very well
to SDS-PAGE (Additional file 1: Figure S1). Protein yield
was about 12 mg/L.

FNRs, usually obtained in the oxidized state, contain
the noncovalently bound FAD cofactor. The released
FAD from the ENR; -phycocyanin complex (the larger FNR
isoform, 63% sequence identity to FNR from PCC7942) of
PCC6803 was recovered and quantified [27]. What's more,
based on the crystal structure of FNR (PDB ID:2B50, 61%
sequence identity to FNR from PCC7942) from Synechocystis
sp. PCC7002 with FAD bound, the residues involved in FAD
binding were identified, including Argl79, Leul80, Tyr181,
Ser182, Cys200, Arg202, Leu204, Tyr206, GIn207, Val218,
Cys219, Ser220, Thr260, Tyr402, which are completely con-
served in FNRs from PCC 7942 and PCC6803 (Additional
file 2). Therefore FNR from PCC7942 should have the
characteristic FAD absorption spectrum. The UV/vis
spectrum of FNR clearly showed two peaks at 385 and
455 nm, and a shoulder at 480 nm, demonstrating that
ENR is certainly a flavoprotein (Figure 3A) [31,32].

FNR was assayed through ferricyanide reductase activity.
This assay (also called diaphorase activity) was used to
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Figure 3 Characterization of FNR from Synechococcus elongatus
PCC7942. (A) UV-vis absorption spectrum of FNR. (B) Ferricyanide
reductase activity of FNR.

determine kinetic parameters of FNR in the presence of
the electron acceptor potassium ferricyanide. FNR from
PCC7942 was active against potassium ferricyanide, and
the initial rates were plotted against NADPH concentration
and fitted according to the Michaelis-Menten equation
(Figure 3B). Kinetic parameters of FNRs from different
cyanobacteria were listed in Table 1. Compared with
two FNR isoforms from PCC6803, FNR from PCC7942
showed higher K, nappmn) and k., values, but slightly
lower catalytic efficiency [27]. In comparison with FNR
from Anabaena sp. PCC7119, ENR from PCC7942 exhibited
higher K, wappr) and similar &, values, but much lower
catalytic efficiency [33]. These results indicated that FNRs
from the evolutionarily diverse classes of cyanobacteria
had different binding affinity for NADPH and catalytic
efficiency towards the ferricyanide reduction. In addition,
it was observed that the specific activity of FNR using
NADPH (375 uM) was 23-fold higher than NADH (2 mM),
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demonstrating that, like other FNRs [31,34], FNR from
PCC7942 also prefers NADPH over NADH.

Cloning, overexpression, purification, and characterization
of Fd from Synechococcus elongatus PCC7942

The petF gene encoding Fd (SynPcc7942_1499) was amp-
lified from genomic DNA of PCC7942 by PCR, cloned
into the vector pET-28a(+) at the restriction sites of Ndel
and Xhol, and overexpressed in E. coli BL21(DE3) in M9
medium under IPTG induction at 30°C [35]. Overexpressed
Fd was purified on Nickel column. The predicted molecular
weight of Fd with the N-terminal His-tag is 12.8 kDa, which
is much smaller than the estimated one (above 20 kDa) by
SDS-PAGE (Additional file 1: Figure S2). This is probably
due to the acidic character of Fd (predicted pI 3.8), which
prevents proper binding of SDS [36]. Fd expression was
also confirmed by Western blot (data not shown). Protein
yield was about 5 mg/L.

Based on analytical ultracentrifugation analysis, the
estimated molecular weight of Fd is about 11.8 kDa
after the N-terminal His-tag was removed with thrombin
(Four amino acids GSHM were left at the N-terminal.),
demonstrating that Fd is a monomer. MALDI-TOF-MS
showed the molecular weight is 10932.79 Da after tag
removal, corresponding to the predicted molecular weight
10933.02 Da. In addition, the UV/vis spectrum of Fd clearly
showed three peaks characteristic of the presence of the
[2Fe-2S] cluster at 331, 423, and 463 nm (Figure 4A) [36,37].

The function of Fd was investigated through Fd-mediated
cytochrome ¢ reductase activity of FNR. This assay was
used to determine the affinity for Fd and k., value of FNR
in the presence of its cognate electron acceptor Fd, and to
see if the cognate FNR/Fd system from PCC7942 can be
functionally coupled for efficient electron transfer.To get
more information about the Fd reduction, the initial rates
were obtained by varying Fd concentration under satur-
ating concentrations of NADPH and cytochrome c. The
initial rates of the cytochrome ¢ reduction were plotted
against Fd concentration and fitted according to the
Michaelis-Menten equation (Figure 4B). K,;,irq), kcor and
Kear/K,, values of FNR against the Fd-mediated cytochrome
¢ reduction were 15.9 uM, 85.6 s, and 5.4 uM™* s™ respect-
ively, indicating that the cognate FNR/Fd electron transfer
system from PCC7942 can be efficiently and functionally
coupled for the cytochrome ¢ reduction. In contrast with
two FNR isoforms from PCC6803, FNR from PCC7942
showed higher affinity for Fd, lower k., value, and similar
catalytic efficiency to FNR;, but higher catalytic efficiency
than FNR;-PC (Table 1) [27]. Compared with FNR from
PCC7119, ENR from PCC7942 exhibited similar affinity for
Fd, much lower £, value and catalytic efficiency (Table 1)
[33]. These results also demonstrated that FNRs from dif-
ferent cyanobacteria exhibited different kinetic behaviour
against the Fd-mediated reduction of cytochrome c.
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Table 1 Comparison of kinetic parameters of FNRs from different cyanobacteria
Diaphorase activity Cytochrome c reductase activity

FNR Kinnaopr) keat keatKm Kin(ra) keat Keat/Km Reference

(uM) s™ (um7"'s) (um) s™ (M)
PCC7942 925+ 76 227 7 25+03 159+ 12 856+ 3 54+05 this study
FNR.-PC from PCC6803 40+ 3 124 + 3 31+£03 47 + 6 144 + 12 31 +£07 [27]
FNR, from PCC6803 55 %5 174+ 5 3204 28 £2 154 + 6 55+06 [27]
PCC7119 23.0£12 225+ 3 98 +02 110+ 20 200 £ 10 182+ 10 [33]

Cloning, overexpression, purification, and characterization
of ADO from Synechococcus elongatus PCC7942

The codon-optimized gene encoding ADO (Synpcc7942
1593) from PCC7942 was cloned into the vector pET-
28a(+) at the restriction sites of Ndel and Xhol, and suc-
cessfully overexpressed in E. coli BL21(DE3) under IPTG
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Figure 4 Characterization of Fd from Synechococcus elongatus
PCC7942. (A) UV-vis absorption spectrum of Fd. (B) Fd-mediated
cytochrome ¢ reductase activity of FNR.

induction. Overexpressed ADO 1593 was purified to homo-
geneity by Nickel-chelating affinity chromatography. The
target protein was eluted with buffers containing 60 and
80 mM imidazole (Figure 5). The predicted molecular
weight of ADO 1593 is 26.4 kDa, corresponding well to
SDS-PAGE (Figure 5). The collected fractions containing
the target protein were combined and treated as reported
[15,16]. Protein yield was about 15 mg/L.

Long and short-chain aldehydes such as #-octadecanal
and z-heptanal were generally used as the substrates for
ADO assay [8,12-16]. However, we found that n#-hexadecanal
is a better substrate than n-octadecanal in terms of solu-
bility and activity (unpublished result). According to the
recent paper by Andre et al, actually ADO doesn’t show
any strong chain-length specificity against its substrates
(C8 to C18) [18]. So both n-hexadecanal and n-heptanal
were tested as the substrates for ADO 1593 in the paper.
Just like other ADOs, ADO 1593 was also active against
these two substrates in the presence of the chemical redu-
cing system (PMS and NADH) (data not shown).

Comparing the effects of different reducing systems on
ADO activity

Using n-hexadecanal as the substrate

We were inspired by the Fd-mediated the cytochrome
¢ reduction with FNR (Figure 4B), and ADO 1593 was

kDa 1 2 3 4 5 6 7 8 9 10 11
116

66

45
35

25

18
14

Figure 5 SDS-PAGE analysis of ADO 1593. Lane 1 and 4, low
protein molecular weight marker; Lane 2, crude supernatant for
over-expressed AD 1593; Lane 3, flow-through when loaded; Lane 5
and 6, eluents of buffer A+ 60 mM imidazole; Lanes 7-11, eluents of
buffer A+ 80 mM imidazole.
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in vitro reconstituted with Fd and FNR from PCC7942.
Interestingly, n-hexadecanal was successfully converted
into n-pentadecane by in vitro reconstituted ADO 1593
with the cognate Fd/FNR system. The performance of
the cognate electron transfer system in conversion of
n-hexadecanal was then compared with the surrogate
Fd/ENR system from spinach and the chemical one
(PMS/NADH). The hybrid systems consisting of Fdpccr942/
FNRgpinach and Fdgpinach/ FNRpccr042 Were also investigated
(Table 2). Assays were carried out with FNR/Fd/ADO
1593 ratios of 1:5.7:11.1 as a compromise for minimizing
the yield variations with changes in the ratios [24,25].

The experimental results were shown in Table 2, and at
least three conclusions were drawn as listed here: (1) The
biological reducing system including the cognate and
surrogate ones is superior to the chemical one, which is
contradictory to the published results, especially for the
heterologous Fd/FNR system from spinach. The differ-
ent conclusion might arise from the fact that more spin-
ach FNR up to 1.9 U/ml was used in our assay, whereas
much less FNR (0.1 U/ml or 0.04 U/ml, equivalent to
less than ours by 19 or 47.5-fold) was used in the litera-
ture [14,15]. Whereas Andre et al. found that no more
products formed when more FNR or Fd was added to
an exhausted in vitro ADO reaction, more products were
produced only when more ADO was added [18]. Consid-
ering that ADO had been completely inactivated by in
situ-produced H,O,, this is understandable. However, the
scenario is different in our case, since more FNR and Fd
were used when ADO-catalyzed reactions were initiated.
(2) The cognate biological reducing system is more effect-
ive than the surrogate one. n-Pentadecane yield using the
cognate Fd/FNR system from PCC7942 is 26.6% higher
than the surrogate one from spinach, implying that the
interaction of Fd with FNR and ADO is very important
in supporting ADO activity and mediating efficient electron
transfer between Fd and its redox partners FNR and ADO.

Table 2 Comparison of the effects of different reducing
systems on ADO activity

Reducing system Yield of n-pentadecane

(uM)
Chemical  PMS + NADH 86+ 0.1
Fdspinach + FNRgpinach + NADPH 15.7 £ 05
Fdspinach + FNRpcc7042 + NADPH 139 + 04
Biological
Fdpccroar + FNRspinach + NADPH 176 £ 03
decc7942 + FNRpcc7942 + NADPH 20.0 + 0.8

The reaction mixtures contained 20 uM ADO 1593, 80 uM ferrous ammonium
sulfate, 150 uM n-hexadecanal, 75 uM PMS and 750 uM NADH, or 10.26 uM Fd
from spinach or PCC7942 and 1.8 uM FNR from spinach or PCC7942 and 2 mM
NADPH, in 500 pL of 100 mM HEPES (pH 7.2) containing 0.1 M KCl and 10%
glycerol. The reactions were incubated at room temperature for 1 hr at

200 rpm, and the products were extracted with 500 pL ethyl acetate for
GC-MS analysis.

Page 6 of 10

Similar results have been reported for some P450s. For ex-
ample, the cognate FA/FNR system from Sphingomonas sp.
strain AO1 is more effective in supporting P450 than the
heterologous one from spinach [26]; Ewen et al. recently
reported that the protein—protein recognition in the
mitochondrial cytochrome P450 system and modulation
of electron transfer between Adx (adrenodoxin) and its
redox partners AdR (adrenodoxin reductase) and cyto-
chrome P450 are essential for mammalian cytochrome
P450 [38]; When the P450 enzymes from N. aromaticivorans
were reconstituted with the cognate ArR (Fd reductase)
and Arx (a [2Fe-2S] Fd) , the steady-state turnover rates
increased by 50% to 400% over those observed previously
with the surrogate PdR (putidaredoxin reductase) [24,25].
(3) The hybrid experiments of the surrogate and the
cognate biological reducing systems demonstrated that
ADO is selective against Fd and the interaction between
Fd and ENR is very important for efficient electron
transfer and ADO activity. It has been observed that the
interactions between FNR and its protein partner Fd or
flavodoxin are essential for efficient assembling and
functionality of the formation of FNR-Fd complex [39].
A lot of examples have demonstrated that the interac-
tions between P450s and Fd proteins are significant for
P450 activity. For instance, Bell et al. tailored an non-
physiological Fd to support native-like P450 activity
through engineering the surface residues involved in
the interaction between Fd and P450 [40]; P450 105D5
from Streptomyces coelicolor A3(2) is very selective among
S. coelicolor Fd proteins, but Fd could interact with the
surrogate FNRs from P. putida and spinach [22]; With
S. griseolus P450 105A1 and 105B1, either of two Fd pro-
teins could reconstitute P450 activity, but each Fd worked
at least somewhat faster with its cognate P450 [41].

Using n-heptanal as the substrate

keqr values of ADO 1593 against n-heptanal were deter-
mined using the cognate reducing system and the chem-
ical one respectively under saturating concentration of
n-heptanal (2 mM, Estimated K, value of ADO1593 for
n-heptanal was 224 + 40 M employing the chemical re-
ductants.). ADO 1593 had k,,; value of 0.44 + 0.02 min!
in the presence of the homologus Fd/FNR system, whereas
k.,; value was 0.12 + 0.02 min" for the NADH/PMS Sys-
tem, close to that of ADO from Prochlorococcus marinus
(017 + 0.01 min?) [16]. Thus, the turnover number of
ADO 1593 using the cognate Fd/FNR electron transfer
system is 3.7-fold higher than the chemical one. How-
ever, according to the report by Choi et al., AurF (p-
aminobenzoate N-oxygenase) showed similar k., values
when reconstituted with either the chemical reductants
(NADH/PMS) or the biological one (Fd/ENR from
Anabaena sp. PCC7119) [20]. Their results could arise
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from the fact that the surrogate Fd/FNR reducing system
was used, again highlighting the importance of the hom-
ologous electron transfer system in supporting greater
enzymatic activity.

H,0, production during in vitro ADO-catalyzed reactions
Andre et al. suggest that the inhibitory H,O, formation
is due to uncoupled electron transfer from NADPH to
O, [18]. We directly compared H,O, concentration for
the cognate electron transfer system and the heterologous
one using n-hexadecanal as the substrate in order to see
whether there is any difference in H,O, production be-
tween these two biological reducing systems. Interestingly,
we observed that the cognate reducing system produced
less HyO, than the heterologous one by 33%, demon-
strating that better coupling between FNR:Fd:ADO in
the cognate reducing system might lead to more efficient
electron transfer and therefore less formation of H,O,
due to decoupled electron transfer to O,. This may be
one reason why the cognate electron transfer system used
yields more product than the heterologous one.

Conclusions

The cognate electron transfer system including Fd and FNR
from cyanobacteria to support ADO activity was identified,
cloned, overexpressed, purified, and characterized. For the
first time, ADO was functionally iz vitro reconstituted with
the endogenous reducing system from cyanobacteria, which
supported higher ADO activity than the surrogate Fd/FNR
system and the chemical one, and produced less H,O,
than the heterologous one. The identified Fd/FNR redu-
cing system offers the platform to study the Fd-ADO rec-
ognition and electron transfer in detail, will be potentially
useful for further improving ADO activity, and might be
applicable to other enzymes requiring the electron transfer
system. Our findings here might be significant for further
building a more active in vivo fatty alk(a/e)ne-biosynthesis
system in cyanobacteria and constructing a highly efficient
photosynthetic microbial cell factory for production of
advanced hydrocarbon biofuels.

Methods

Materials

Spinach ferredoxin and ferredoxin-NADP" reductase,
horse-heart cytochrome ¢, BSA (Bovine Serum Albumin),
NADPH, NADH, n-heptanal, potassium ferricyanide,
phenazine methosulfate (PMS), ferrous ammonium sul-
fate, Dess-Martin reagent, n-hexadecanol were obtained
from Sigma-Aldrich. Oligonucleotides were synthesized
by Shanghai Sangon Biotech Co. Ltd (China). The gene
encoding ADO (Synpcc7942_1593) from Synechococcus
elongatus PCC7942 with codon optimization was syn-
thesized and cloned into the vector pBluescript IT SK(+)
using the restriction sites of Xhol (3'-terminal) and
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Smal (5'-terminal) by Shanghai Sangon Biotech Co. Ltd
(China) (Additional file 3), and the Ndel restriction site
was introduced at 5'-terminal. 7ag DNA polymerases
and all restriction endonucleases were from Fermentas
or Takara Biotechnology. The kits used for molecular
cloning were from Omega Bio-tek or Takara Biotech-
nology. Nickel column and the expression vectors were
from Novagen. Antibodies and chemical reagents used
for Western blot were from Tiangen (China). Amicon
YM10 membrane was from Millipore. The Amplex Red
Hydrogen Peroxide/Peroxidase Assay Kit was purchased
from Invitrogen.

Bacterial strains, plasmids, and media

E. coli DH5a was used for routine DNA transformation
and plasmid isolation. E. coli BL21(DE3) was utilized for
protein overexpression. E. coli strains were routinely grown
in Luria-Bertani broth at 37°C with aeration or on LB
supplemented with 1.5% (w/v) agar. 50 ug/ml Kanamycin
was added when required. The vector pET-28a(+) was used
for subcloning.

DNA manipulations

General molecular biology techniques were carried out
following the standard procedures [42]. Restriction and
modification enzymes were used following the recommen-
dations of the manufacturers. DNA fragments were puri-
fied from agarose gels using the DNA gel extraction kit.
Plasmid DNA was isolated using the plasmid miniprep kit.

The plasmid, where the codon-optimized gene encoding
ADO (Synpcc7942_1593) from PCC7942 was inserted into
the vector pBluescript II SK(+), was digested with Ndel and
Xhol, and re-cloned into the vectorspET-28a(+) digested
with same restriction enzymes.

The gene encoding Fd SynPcc7942 1499 was amplified
with the forward primer (5'-GCTCAGCATATGATGGCA
ACCTACAAGG-3’, the Ndel I restriction site underlined)
and the reverse primer (5'-GGCTCGCTCGAGTTAGTAG
AGGTCTTCTTC-3’, the Xhol restriction site underlined)
using genomic DNA as a template. The gene encoding
ENR SynPcc7942 0978 was amplified with the forward
primer (5'-CGCGGCCATATGATGTTGAATGCGAGT
GTG-3’, the Ndel I restriction site underlined) and the
reverse primer (5'-CATTCGCTCGAGGGCTGAACTA
GTAGGTTT-3’, the Xhol restriction site underlined)
using genomic DNA as a template. The PCR products
were isolated by agarose electrophoresis and extracted
from agarose gel using the DNA gel extraction kit, digested
with restriction enzymes Ndel and Xhol respectively, and
re-cloned into the vector pET-28a(+) digested with Ndel
and Xhol, respectively. All constructs were confirmed by
DNA sequencing.
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Protein overexpression and purification

The expression constructs pET28a-1593 and pET28a-
FNR were transformed into competent E. coli BL21(DE3).
Protein expression was carried out at 37°C in LB media
supplemented with 50 pg/mL kanamycin. The cultures
were induced with 1 mM IPTG when ODg, reached 0.7,
and were shaken at 37°C for additional 3 hours. The his-
tagged proteins were purified using Nickel chelating resin
according to the manufacturer’s protocol. Apo-ADO was
prepared according to the published procedure, and the
diferrous form of ADO was reconstituted by the addition
of the stoichiometric amounts of ferrous ammonium sul-
fate to apo-ADO prior to assay [15,16]. Proteins were con-
centrated with Amicon YM10 membrane (10 kDa cut-off).
Protein concentration was determined by the Bradford
method using bovine serum albumin as a standard.

The expression construct pET28a-Fd was expressed in
E. coli BL21(DE3). Protein expression was carried out at
30°C in M9ZB media supplemented with 50 pg/mL kana-
mycin and 50 pM FeCl; [35]. The cultures were in-
duced with 0.2 mM IPTG when ODg, reached 0.7, and
were shaken at 16°C for 48 hr. His-tagged Fd was puri-
fied as above.

SDS-PAGE was performed in 12% polyacrylamide gels,
using the low protein molecular weight marker and
Coomassie Blue R-250 staining. For Western blot, pro-
teins were transferred from the gel onto the polyvinylidene
fluoride (PVDF) membrane using the Mini Trans-Blot
Electrophoretic Transfer Cell. The membrane was blocked
with 5% (w/v) skimmed milk in TBST (20 mM Tris—HCI,
pH 7.5, 150 mM NaCl, 0.05% Tween-20), incubated with
the murine monoclonal anti-polyhistidine immunoglobu-
lin G (IgQ), rinsed three times with TBST, incubated with
the goat anti-mouse IgG conjugated with alkaline phos-
phatase, rinsed three times with TBST, and detected with
the BCIP (5-bromo-4-chloro-3-indolyl phosphate)/NBT
(nitro blue tetrazolium) solution.

Synthesis of n-hexadecanal

n-Hexadecanal was synthesized following the published
procedure [43]. Dess-Martin reagent (0.96 g, 2.3 mmol) in
one portion was added to the solution of n-hexadecanol
(0.5 g, 2.1 mmol) in CH,Cl, (40 ml) in an ice bath. After
n-hexadecanol was completely gone, the reaction was
quenched at 0°C by stirring with the saturated NaHCOj3
solution (40 mL) containing Na,S,03 (3 g) for 10 min to
destroy any unreacted Dess-Martin reagent. The reaction
mixture was poured into a separatory funnel and extracted
with EtOAc (3 x 40 mL). The organic layers were pooled
and washed with brine (50 mL), dried over MgSO, and
concentrated. Crude n-hexadecanal was purified by silica
column chromatography using hexane:ethyl acetate (9:1)
as eluent to obtain an oily liquid. The product was con-
firmed by GC-MS.
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Enzyme assay
All experiments were done at least in duplicate.

(a) For FNR and Fd

Enzymatic assays for FNR and Fd were done on the
Beckman Coulter DU 800 UV/Vis Spectrophotometer at
1 ml scale at 25°C.

Ferricyanide reductase activity was measured with
NADPH and potassium ferricyanide as the electron donor
and acceptor molecules, respectively [27,44]. Assays
were performed in 50 mM Tris—HCI (pH 8.0) containing
0.7 mM potassium ferricyanide and different NADPH
concentrations (15 — 450 pM) or NADH (2 mM). The
reactions were initiated by the addition of 0.02 pM FNR.
The absorption decrease at 420 nm (reduction of ferri-
cyanide, €450 =1000 M cm™) was recorded to deter-
mine steady-state kinetic parameters.

The Fd-mediated cytochrome ¢ reductase activity of
ENR was measured with Fd and cytochrome c acting as
the intermediate and terminal electron acceptors [30,41].
Assays were carried out in 50 mM Tris—HCI (pH 7.8)
containing 0.01 uM ENR and 50 pM cytochrome c. The re-
actions were started by the addition of NADPH (375 puM).
Steady-state kinetic parameters for the Fd-dependent cyto-
chrome ¢ reductase activity were determined by varying
the concentrations of Fd (3 — 80 uM) and monitoring the
resulting absorption increases at 550 nm (reduction of
cytochrome ¢, €550 = 19,100 Mtem™).

(b) For ADO 1593

n-Hexadecanal used as the substrate
The typical reaction contained 20 pM ADO 1593,
80 puM ferrous ammonium sulfate, 150 uM #-hexadecanal
in 500 pL of 100 mM HEPES (pH 7.2) containing 0.1 M
KCl and 10% glycerol. n-Hexadecanal was made up as the
stock solution in 2% Triton X-100 containing 150 uM
BSA [16]. The biological reducing system is comprised
of either 10.26 pM Fd from spinach or PCC7942,
1.8 uM ENR from spinach or PCC7942 and 2 mM
NADPH. The chemical reducing system consists of
75 puM phenazine methosulfate (PMS) and 750 pM
NADH. For the biological reducing system, four groups
of experiments were set up: (a) Fdspinach and FNRgpinach;
(b) Fdpccroaz and FNRpecroan; (€) Fdgpinach and FNRpeczoan;
(d) Fdpccroaz and FNRgyinach. The reactions were incubated
at room temperature for 1 hr at 200 rpm, quenched by the
addition of 500 pL ethyl acetate and vortexed to extract the
hydrocarbon product and the unreacted substrate. One pL
of the ethyl acetate layer was injected into GC-MS for
analysis. Enzymatic conversion of #n-hexadecanal into
n-pentadecane was quantified using the calibration plot
of n-pentadecane.

An Agilent 5975C GC-MS system equipped with a
quadrupole mass detector was used to detect and quan-
tify the hydrocarbons formed in the enzymatic reactions.
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The column employed for hydrocarbon analysis was a HP-
INNOWeax capillary column (30 m x 0.25 mm x 0.25 pm).
The ethyl acetate extracts of the reaction mixtures were
used for GC-MS analysis. The flow rate of the helium
carrier gas was 1.0 mL/min and the inlet temperature
was maintained at 250°C. Injections were made in the
splitless mode and a total flow of 50 mL/min. The inter-
face temperature was maintained at 250°C. The oven
temperature was held at 40°C for 5 min and then in-
creased to 200°C at 25°C/min and finally maintained at
240°C for 15 min. Chromatographic data were analyzed
using the associated software.

n-heptanal used the substrate
For determining k., value of ADO 1593 against n-heptanal,
assays were performed in 1.5 mL gastight vials with a total
volume of 500 L. The reactions contained 2 mM n-
heptanal in 100 mM HEPES buffer (pH 7.2) containing
100 mM KCl, 10% glycerol and 4% DMSO, 5uM ADO,
20 uM ferrous ammonium sulphate, 10.26 uM Fd and
1.8 uM ENR from PCC7942, 2 mM NADPH (for the
cognate reducing system), or 15uM ADO, 60 uM ferrous
ammonium sulphate, 75uM PMS, 750 uM NADH (for
the chemical reducing system). The n-heptanal stock solu-
tion was freshly made in DMSO. After the addition of all
the components, the reactions were shaken at 220 rpm at
37°C. To determine the amount of n-hexane produced,
a sample of the headspace was collected using a gastight
sample lock Hamilton syringe and analysed by GC. The
amount of n-hexane produced was quantified by the
standard curve of known concentrations of n-hexane.
GC analysis was performed using an Agilent 7890A
instrument equipped with a flame ionization detector
and a HP-INNOW ax capillary column (30 m x 0.32 mm x
0.25 pm). The flow rate of the nitrogen carrier gas was
1.1 mL/min and the inlet temperature was maintained
at 250°C. Injections were made in the split mode with a
split ratio of 2:1 and a total flow of 2 mL/min. The oven
temperature was held at 80°C for 2 min and then in-
creased to 180°C at 20°C/min, followed by increasing to
210°C at 30°C/min, and finally maintained at 210°C for
2 min. The FID detector was at 300°C with a continuous
flow of H, at 30 mL/min and air at 350 mL/min. Chro-
matographic data were analyzed using the HP Chem
station software.

Determination of H,0, production during ADO-catalyzed
reactions using n-hexadecanal used as the substrate
ADO-catalyzed reactions were set up as above for the
cognate reducing system and the surrogate one. After
15 min, H,O, production was determined on Synergy
HT Multi-Mode Microplate Reader with the Amplex Red
Hydrogen Peroxide/Peroxidase Assay Kit according to the
manufacturer’s protocol.
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Additional file 1: Codon-optimized gene sequence of ADO from
Synechococcus elongatus PCC7942.

Additional file 2: Figure S1. SDS-PAGE analysis of FNR. Figure S2.
SDS-PAGE analysis of Fd.
Additional file 3: Figure S3A. Residues involved in FAD binding in FNR

from Synechocystis sp. PCC7002 (PDB ID:2B50). Figure S3B. Sequence
alignment of FNRs from PCC6803, PCC7002, and PCC7942.
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