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Abstract

Background: High-cost production of bioplastics polyhydroxyalkanoates (PHA) is a major concern for their large
scale application. In order to produce PHA economically, new technology must be developed to reduce costs on
energy consumption, fresh water and substrate usages. It is also important to conduct the PHA production process
in a continuous way rather than in a batch process.

Results: A halophile Halomonas campaniensis strain LS21 was isolated to allow the development of a sea water
based open and continuous process for PHA production utilizing mixed substrates consisting of mostly cellulose,
starch, lipids and proteins. To study the feasibilities of open and long-term cultivation as well as genetic manipulation
of this strain, polyhydroxybutyrate (PHB), the first member of the diverse PHA family, was taken as an example for
the application of H. campaniensis LS21 in a robust and long lasting fermentation process. Wild type and
recombinant H. campaniensis LS21 containing a PHB synthesis genes phbCAB were allowed respectively to grow in
artificial seawater containing mixed substrates similar to kitchen wastes, including soluble and insoluble cellulose,
proteins, fats, fatty acids and starch for 65 days without interruption. In the presence of 27 g/L NaCl under a pH
around 10 at 37°C, the recombinant produced approximately 70% PHB and the wild type 26% during the 65 days
fermentation process without infection. H. campaniensis LS21 secreted extracellular amylase, lipase, protease and
cellulase simultaneously during the whole process to allow consumption of the mixed substrates. The recombinant
was also found to stably maintain the phbCAB plasmid over the entire 65 days process.

Conclusions: The seawater based open and continuous process based on halophilic Halomonas campaniensis
LS21 allowed the applications of kitchen wastes like mixed substrates as nutrients for production of bioplastic PHB.
This study demonstrates the advantages of this technology in terms of energy saving (non-sterilization), seawater
based (not fresh water needed), long-lasting and continuous open processing (against batch process), and low cost
substrates (non-food mixed substrates). Combined with its ease of genetic manipulation, Halomonas campaniensis L.S21
could be developed into a platform for low cost production of chemicals, materials and biofuels.
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Introduction

Industrial biotechnology aims to produce chemicals,
materials and biofuels on a large scale using sustainable
resources from agriculture [1-3]. By partially replacing
depleting petrochemicals, industrial biotechnology should
help sustainable development of human society [4-9].
However, most microbial-based industrial biotechnology
processes are not competitive enough as they suffer
many disadvantages, including high energy-demand due
to energy-intensive sterilization processes, heavy con-
sumption of precious fresh water, and batch or fed-batch
processing against continuous processes in petrochemical
industries. In addition, large-scale production of industrial
biotechnology products always consumes a large quantity
of agricultural resources, causing some concerns such as
food versus fuels et cetera [10-12]. Therefore, it becomes
important to develop competitive industrial biotechnology
based on energy saving, continuous processing, non-fresh
water and non-food substrate consuming processes. Such
new technology will allow industrial biotechnology to co-
exist with chemical industries for supplying chemicals,
materials and fuels to a sustainable human society.

Halophile bacteria are able to grow in NaCl. Seawater
is rich on NaCl and it is suitable for halophilic bacteria
to grow. Most importantly, 97% of water on Earth is
seawater [13]. With this in mind, it becomes necessary
to isolate halophile bacteria that are able to grow rapidly
in seawater, utilizing low-cost substrates such as cellulose,
starch or kitchen waste. If such bacteria are obtained, a
continuous fermentation process should be exploited for
reducing process complexity and lowering production
cost.

Polyhydroxyalkanoates (PHA) are the most versatile
bioplastics with properties similar to petroleum-based
plastics [14,15]. As a family of biodegradable and bio-
compatible polyesters, PHA could be developed as envir-
onmentally friendly bulk plastics, provided the production
cost is competitive [16,17].

Common PHA monomers are 3-hydroxybutyrate (3HB
or C4), 3-hydroxyvalerate (3HV or C5), 3-hydroxyhexanoate
(3HHx or C6), 3-hydroxyoctanoate (3HO or C8), 3-
hydroxydecanoate (3HD or C10) and 3-hydroxydode-
canoate (3HDD or C12) [17]. These monomers form
their homo- or copolymers. Poly(3-hydroxybutyrate)
(PHB), Its 4-hydroxybutyrate copolymers P3HB4HB and
poly(3-hydroxybutyrate—co-3-hydroxyvalerate) (PHBV) have
been well-investigated and also commercialized, yet with
limited success due to high production cost [18]. It thus
becomes important to develop cost-saving biotechnology
for PHA production. As many halophile bacteria can
produce PHA [19,20], they could provide a new solution
for low-cost PHA production [21-23]. Therefore, PHA
production by halophile bacteria can be a convenient
example to demonstrate the possibility of a seawater-
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based continuous fermentation process for competitive
industrial biotechnology.

This study aims to isolate a halophile bacterium cap-
able of growing in seawater, utilizing kitchen waste such
as mixed substrates. At the same time, as most halophile
bacteria are also alkali, a combination of halophile and
alkali properties provides a natural anti-infection ability
for halophile bacteria, allowing a possible open (unsterile)
and continuous fermentation process to occur. If such a
halophile bacterium could be found, a convenient example
to show its feasibility for industrial biotechnology pur-
poses would be its PHA (or PHB) production. In addition,
the halophile bacterium should be allowed to conduct
genetic manipulation for production of a wide range of
products.

Results and discussion

The success of this study depends very much on finding
a halophile bacterium that is able to grow in seawater at a
high pH, utilizing low-value substrates such as cellulose,
proteins, starch, fat or fatty acids, or ideally mixtures of
these, which are mostly found in kitchen waste. If this
halophile and alkali bacterium is isolated, we would be
able to develop an unsterile (open) and continuous fer-
mentation process using seawater and mixed substrates
for long-lasting production of chemicals, materials or bio-
fuels. Very importantly, the strain should allow genetic
manipulations to widen its abilities. To test the above
expectations, PHB, a bulk biodegradable plastic, is taken
as a convenient example to demonstrate the feasibility
of this project.

Isolation and characterization of halophile and cellulose
utilizing bacteria

Among thousands of halophile bacteria isolated from
the environmental samples collected from Xinjiang China,
five of them were found capable of utilizing cellulose as a
sole substrate for accumulating PHB. The five strains were
further tested for ability to grow on mixed substrates of
cellulose, proteins, fat and starch. Only one strain, termed
LS21, demonstrated its ability to utilize the above sub-
strates separately or collectively. Strain LS21 was thus
chosen for further study, not only due to its mixed sub-
strate utilization ability, but also its rapid growth and
PHB accumulation. Strain LS21 grows well in cellulose
medium containing 1 to 20% (w/v) NaCl, indicating it
to be a moderate halophile. The optimum NaCl concen-
tration and temperature for strain LS21 was found to be
4 to 6% (w/v) and 42°C, respectively. No growth was ob-
served below 20°C and above 55°C. The strain grew well
in pH ranging from 5.0 to 11.0, the optimum of which
was 10.0. The sequence of 16S rRNA gene of strain
LS21 was compared with all 16S rRNA encoding gene
sequences available in GenBank using the BLAST
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program, results showed that strain LS21 belongs to
Halomonas campaniensis (Figure 1A). It is therefore
termed Halomonas campaniensis LS21 or H. campaniensis
LS21 throughout this study. Based on the BIOLOG ex-
periments result, strain LS21 is urease, oxidase and
catalase positive, it hydrolyzes hippurate, Tween 80 and
tyrosine, reduces nitrate casein and starch, but is unable
to hydrolyze gelatin and phenylalanine. Strain LS21 is
unable to grow in medium containing galactose as the
only carbon source, whereas sucrose, maltose, cellu-
biose, mannose, sodium acetate, fructose, glucose and
glycerol sustain its growth, respectively. Analysis (16S
rRNA) reveals that its sequence shares 100% similarity
to strain Halomonas campaniensis 5AG" [GenBank
accession number: AJ515365]. Compared strain LS21
with Halomonas campaniensis 5AG", two strains ex-
hibit similarities in their phenotypes and physiology.
The Accession number of the reference strains of the
16S rDNA sequence are provided (Figure 1A, within
the parentheses after the strains name).
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When grown in glucose mineral medium, both wild-
type and recombinant H. campaniensis LS21 was found
to accumulate only one large PHB granule (Figures 1B
and 1C), a phenomenon never observed previously in
any wild-type PHB-synthesizing bacteria. Yet this large
single PHB granule is convenient for downstream PHB
extraction as a large PHB granule size permits an easy
centrifugation process due to its relative heavy weight
compared with smaller and multiple PHB (PHA) gran-
ules commonly found in all other PHA accumulation
bacteria [24,25].

Promoter and OriC sequence screening

H. campaniensis L.S21 was identified to be a suitable strain
for developing the seawater-based open and continuous
process for bulk chemical production utilizing mixed sub-
strates. The next step was the establishment of genetic
manipulation methods for increasing the strain’s ability.
Therefore, we started by screening a native and strong
promoter from H. campaniensis LS21. When grown under
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Figure 1 Polyhydroxybutyrate (PHB) synthesis and phylogenetic relationship of Halomonas campaniensis LS21 with other Halomonas
spp. (A) Phylogenetic relationship of Halomonas campaniensis LS21 with other Halomonas spp. constructed by the neighbor-joining algorithms
method based on 16S rRNA gene sequences. GenBank/EMBL/DDBJ accession numbers are indicated in the parentheses after the strain names.

The bar indicates 1% sequence divergence. Halomonas campaniensis LS21 is labeled with red color (Please see Figure 1A, bottom right, the 6th
strain name, labeled with red color). Recombinant H. campaniensis LS21 synthesizes one or two large PHB granules when glucose is supplied as
sole carbon source (B and C).
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different culture conditions, including cellulose, starch,
proteins, fatty acids and LB media (10 g/L tryptone, 5 g/L
yeast extract, and 40 g/L NaCl), respectively, SDS-PAGE
analyses on total proteins extracted from the above cul-
tures all showed a very strong band of proteins with a size
of approximately 34 KD (Figure 2). The band was revealed
to contain 879 types of proteins with similar molecular
weights based on the results of protein mass spectra,
including methylisocitrate lyase (32.6 KD), Gram-negative
bacterial pore protein porin (39.4 KD), transketolase
(35.6 KD), and malate dehydrogenase (34.8 KD) as the
most abundant proteins. Among this group of similar-size
proteins, the porin protein had the highest abundance.
This result agrees with others who reported strong consti-
tutively expressed proteins in Halomonas spp [26].

Two genes encoding porin proteins were identified
in the genome of H. campaniensis LS21 with gene ID
HalomonasGL003735 and HalomonasGL001529, respect-
ively. They have a sequence homology of 91%. There
are 859 bp and 577 bp distances between Halomo-
nasGL003735 and HalomonasGL001529 and their re-
spective front coding genes according to the promoter
predicting software, namely, the Promoter2.0. The
software predicted upstream of porin gene Halomo-
nasGL001529 contains multiple promoter sequences.
Therefore, the entire upstream sequence of porin gene
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Figure 2 SDS-PAGE analysis of total proteins from wild-type
Halomonas campaniensis LS21. Lane M is the protein maker. Lanes
1 to 4 are bacterial proteins extracted from H. campaniensis LS21
grown in cellulose, starch, fatty acids and LB media (10 g/L tryptone,
5 g/L yeast extract, and 40 g/L NaCl), respectively. A 34-KD-size
strong protein band was observed under all conditions (Indicated by
the arrow).
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HalomonasGL001529 was selected as a candidate
promoter for this study.

Construction of recombinant H. campaniensis LS21 and its
growth and PHB production study compared with its wild
type

Plasmid pBBR1MCS1-OriC-Pporin-phaCABrs was con-
structed as clearly described in Methods. To improve the
PHA synthesis ability of H. campaniensis LS21, the plas-
mid was constructed containing PHB synthesis genes
cloned from LS21 including genes of PHA synthase phaC,
B-ketothiolase phaA, nicotinamide adenine dinucleotide
phosphate-oxidase (NADPH)-dependent acetoacetyl-CoA
reductase phaB, each under a strong porin promoter.
It also has an origin of replication OriC from the host
chromosome (Figure 1). The pBBRIMCS1-OriC-Pporin-
phaCABy s was first transformed into Escherichia coli
$17-1 via electroporation. Conjugation between the above
recombinant E. coli S17-1 to H. campaniensis 1.S21
allowed the plasmid to enter H. campaniensis 1L.S21
successfully.

Wild-type and recombinant H. campaniensis LS21 were
grown in glucose mineral (MMG) medium and mixed
substrates medium, respectively. When growth in MMG
over a period of 48 h, the wild-type and recombinant cells
produced a cell dry weight (CDW) of 8.2 g/L containing
57% PHB and 7.8 g/L containing 83% PHB, respectively.
The slow growth of the recombinant was attributed to the
presence of chloromycetin (25 mg/L) which was used to
maintain the stability of the plasmid. Obviously, the re-
combinant accumulated much more PHB compared
with the wild type due to the presence of additional
PHB synthesis genes (Figure 3).

In contrast, when grown in mixed substrates medium
over a period of 72 h, the wild-type and the recombinant
strains produced a cell dry weight of 4.8 g/L containing
19% PHB and 4.4 g/L containing 63% PHB, respectively.
The growth in mixed substrates was slower compared
with that in the MMG. This must be due to the energy
the bacteria consumed to produce extracellular hydrolytic
enzymes, which hydrolyzed the large molecule substrates
for uptake as nutrients. In both cases, the recombinant
strain accumulated significantly more PHB than that of
the wild-type strain. This confirmed that H. campaniensis
LS21 can be genetically manipulated to add more possibil-
ities to the strain.

A seawater-based open and continuous process for PHB
production using mixed substrates

Wild-type and recombinant H. campaniensis LS21 were
grown in mixed substrates composed of straw cellulose
extract liquid 200 ml/L (approximately 0.5 g/L cellulose),
microcrystalline cellulose 2 g/L, oleic acid 40 ml/L, animal
fat (lard) 5 g/L, soluble starch 25 g/L, soya protein 2.5 g/L
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Figure 3 Shake flask study of growth and polyhydroxybutyrate (PHB) production by wild-type and recombinant H. campaniensis LS21
grown on glucose mineral medium and mixed substrates medium, respectively. (A) Growth in glucose mineral medium for 48 h. (B) Growth
in mixed substrates medium for 72 h.

and casein 2.5 g/L. This composition is similar to many
kitchen food wastes. Unlike in shake flasks, wild-type and
recombinant cells grew similarly in fermentors with their
CDW reaching the maximum on the day 10 at 73 g/L and
on the day 12 at 69 g/L, respectively (Figure 4).

Due to the exhaustion of mixed substrates, especially
starch, in both cultures (Figure 5), CDW began to de-
cline for both strains. On days 25 and 49, fresh mixed

substrates were added to both cultures, respectively,
and cell growth resumed. PHB accumulation seemed to
be associated with cell growth for both wild-type and
recombinant cells. In all cases, cell growth and PHB
production fluctuated with the availability of starch.
Interestingly, amylase activity showed a trend to in-
crease, regardless of the availability of starch (Figure 5A).
Both strains consumed fatty acid (oleic acid), proteins
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Figure 4 Growth and polyhydroxybutyrate (PHB) production by recombinant and wild-type H. campaniensis LS21 fed with mixed
substrates over a period of 65 days under unsterile and continuous conditions. (A) Productions of cell dry weights (CDW) and PHB by

wild-type and recombinant H. campaniensis LS21 grown in mixed substrates over a period of 65 days under unsterile and continuous conditions.
(B) Both wild-type and recombinant H. campaniensis LS21 maintained a relatively stable pH during different phases of growth without automatic
pH adjustments. (C) Results of PCR assays for wild-type and recombinant H. campaniensis LS21 cultures from their respective unsterilized
fermentations on day 65. The primers were designed based on the conserved sequences of H. campaniensis LS21. Eleven colonies were randomly
selected from Petri disks on day-65 cultures, respectively, for the PCR assays. M: marker, lanes 1 to 11: culture of recombinant H. campaniensis
LS21 as the PCR template; lanes 12 to 22: culture of wild-type H. campaniensis .S21 as the PCR template.
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over a period of 65 days under unsterile and continuous feeding conditions. (A) Relationship of starch consumption and amylase activity
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(D) Relationship of cellulose consumption and cellulase activity formation.
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and cellulose but were more sensitive to starch than
other substrates.

Although both strains grew similarly, recombinant
cells produced far more PHB than the wild-type strain,
reaching around 70% for recombinant and only 30% for
the wild type, demonstrating the stable and strong ex-
pression of the PHB synthesis genes by the recombinant
H. campaniensis LS21. Interestingly, consumption of
mixed substrates and formations of amylase, protease
and cellulose were always the same for both strains.
Remarkably, the wild-type exhibited significantly more
lipase activity than the recombinant strain (Figure 5B),
resulting in slightly faster fatty acid consumption than
the recombinant strain.

In contrast to soluble starch, the mixed substrate
medium contained two insoluble components including
oleic acid and animal fat (lard). These are more difficult
to utilize than starch. The utilization rate of oleic acid
and lard by recombinant H. campaniensis LS21 was

slower than by the wild type (Figure 5B). The concentra-
tion of fatty acids decreased to 13 g/L (wild-type strain)
and 17 g/L (recombinant strain) from initially 45 g/L.
The rate of fatty acid consumption was 1.32 g/L d™* and
1.17 g/L d7%, respectively. After the second feeding, the
two fermentation systems consumed 32.6 g/L to 13.2 g/L
(wild-type strain) and 33.4 g/L to 15.2 g/L (recombinant
strain), respectively. The third feeding led to the highest
free fatty acid consumption rate during the growth, which
was 1.56 g/L d™* and 1.48 g/L d™, respectively. Similar to
the amylase activity change, lipase activity kept increasing
during the entire fermentation process (Figure 5B).

We used 4 g/L proteins including 2 g/L plant soy pro-
tein and 2 g/L animal casein to imitate soluble and insol-
uble proteins in food waste. Recombinant and wild-type
strains consumed 4 g/L proteins to around 0.6 g/L on day
17 of the fermentation. Protease activities produced by
both strains were maintained relatively stable despite the
fluctuation of the protein concentrations (Figure 5C).
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Figure 6 Analysis of plasmid stability based on PCR assays of recombinant H. campaniensis LS21 grown under unsterile and
continuous process for 65 days. M: marker; lanes 1 to 24: 24 colonies were randomly selected from Petri disks grown with the day-65
recombinant H. campaniensis LS21 for the PCR assays. The primers were designed based on the conserved sequence of the backbone plasmid
pBBRMCS1 with a target product of 1278 bp.

Cellulose was consumed most slowly among the four sub-
strates. Unlike amylase, protease and lipase, cellulase ap-
peared to be sensitive to the availability and concentration
of celluose, and decreasing cellulose concentration led
to reduced cellulase activity (Figure 5D). The ability of
recombinant H. campaniensis L.S21 to consume mixed
macromolecular substrates via the production of extracel-
lular multiple hydrolytic enzymes is an obvious advantage
of this strain for industrial biotechnology purpose.

Even after switching off of the automatic pH adjustment,
both wild-type and recombinant H. campaniensis LS21
maintained a relatively stable pH during different phases
of growth (Figure 4B). This was due to the mixed sub-
strates consisting of small and larger molecules of different
properties, including glucose, amino acids, fatty acids and
oligomers of glucose, and amino acids as well as a mixture
of the four large molecules, which can provide a buffering
effect for the microbial growth system.

Amazingly, results of PCR assays for wild-type and re-
combinant H. campaniensis LS21 cultures from their re-
spective unsterilized fermentation showed an infection-
free phenomenon after the long-lasting 65-day-growth,
even though unsterile mixed substrates were fed twice
under such robust conditions (Figure 4C), this is almost
an ideal situation for any fermentation process engineer.

Plasmid stability is also important for large-scale and
long-lasting industrial processes. Analysis of plasmid
stability based on PCR assays showed that recombinant
H. campaniensis LS21 grown under an unsterile and
continuous process for 65 days still maintained most
their plasmids (Figure 6). On day 65 at the end of the
fermentation, 63% of recombinant H. campaniensis 1.S21
cells still maintained their plasmids.

Conclusions

A seawater-based open and continuous process based
on Halomonas campaniensis LS21 and mixed substrates
was developed. It was successfully applied to produce

bulk bioplastic PHB. H. campaniensis LS21 was easily
constructed into a recombinant that was able to overex-
press its native PHB synthesis genes with its own strong
porin promoter, resulting in significant enhancement
of PHB accumulation. The process was maintained
infection-free under open and feeding conditions for at
least 65 days, demonstrating its rare robustness. The
ability of H. campaniensis LS21 to simultaneously con-
sume several kitchen-waste-like substrates allows in-
dustrial biotechnology to avoid the fuel-versus-food
issue. Further genetic manipulation should provide a
wide range of products to be produced by this process
in an economic competitive way.

Methods

Isolation and identification of moderate
halophile-cellulolytic strains

Sludge and plant debris samples were collected from
Dabancheng salt lake in Xinjiang, China. All samples
were suspended with 1% (w/v) NaCl ageuous solution;
1 ml suspension was inoculated into a modified LB
medium containing 40 g/L NaCl at pH 10.0 with 2%
agar (40-LB) for first-round isolation of halophile strains.
Subsequently, the first-round isolates were inoculated on
Petri plates for screening of halophile and cellulolytic
strains. The solid plate medium consists of 3 g/L micro-
crystalline soluble cellulose powder (Sigma-Aldrich,
Saint Louis, MO, USA) as the sole carbon source, to-
gether with per liter 1.5 g agar and 100 ml of a mineral
salt solution containing 0.1% NH4CI, 0.2% MgSOy,
0.12% K,HPO, (Sinopharm Chemical Reagent Co., Ltd,
Shanghai, China). The medium was adjusted to pH 10
with 5 M NaOH aqueous solution. Plates were incu-
bated at 37°C for approximately 48 h. The colony form-
ing units (CFU) that were well-separated were then
isolated and purified. One large bacterial isolate with
the most rapid growth rate was selected for further
characterization.
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Growth characteristics of the isolated strains

Genomic DNA of the selected strain was purified
using EZNA Bacterial DNA Kit (Omega, USA). Then
the 16S rRNA gene sequence of the selected strain
was determined by sequencing of the PCR-amplified
16S rDNA. The 16S rDNA was amplified by PCR using
standard protocols based on the forward primer-16 F
(positions 8 to 27 of the E. coli numbering, 5-GAG
TTTGATCCTGGCTCAG-3’) and reverse primer-16R
(positions 1512-1493, 5-ACGGCTACCTTGTTACG
ACT-3’) [27]. The PCR product was purified by EZNA
Gel Extraction Kit (TTANGEN, China). Sequencing of
16S rDNA was carried out by BGI (Shenzhen, China). A
homology search of the databases was performed using the
BLAST program (http://www.ncbinlm.nih.gov/BLAST).
The phylogenetic tree of 16S rDNA was constructed using
the neighbor-joining method with MEGA 5.2 software
package.

Construction of phaCAB overexpression recombinant

H. campaniensis LS21

Promoter screening by quantitative proteomic analysis

To obtain total bacterial proteins, H. campaniensis LS21
was grown to about 1.8 at optical density (OD)gqo, the cells
were harvested by centrifugation at 4,000 g for 15 minutes
at 4°C from LB liquid medium culture. These cells were
re-suspended in 1 ml Tris-HCl (pH =8.0), followed by
sonication to lyse the cells under ice-cold conditions. The
suspension of the lysed cells was centrifuged at 10,000 g
for 15 minutes at 4°C to obtain a clear supernatant col-
lected in a clean and sterilized 1.5-ml EP tube. The protein
concentrations were studied using bicinchoninic acid
(BCA) protein assay [28].

To quantify the target protein under different substrate
conditions, samples were separated on 1 D SDS-PAGE.
The gel bands corresponding to the targeted proteins were
excised from the gel, subsequently reduced with 25 mM
DTT and alkylated with 55 mM iodoacetamide [29]. In-
gel digestion was carried out using the sequence-grade-
modified trypsin (Promega, Fitchburg, WI, USA) in
50 mM disodium hydrogen phosphate at 37°C over-
night. The peptides were extracted twice with 1% tri-
fluroacetic acid in 50% acetonitrile aqueous solution
for 30 minutes. The extracts were then centrifuged to
reduce the volume. Peptides from different samples
were labeled with tandem mass tags (TMT) reagents
(Thermo, Pierce Biotechnology, USA) according to the
manufacturer’s instruction. Briefly, the TMT reagents
were dissolved in acetonitrile and added to the pep-
tides carefully. The reaction was maintained at room
temperature for 1 h, and quenched with 5% hydroxyl-
amine for 15 minutes. The TMT-labeled peptides were
mixed and desalted by stage tips.
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To conduct liquid chromatography-tandem mass spec-
trometry (LC-MS/MS) analysis, the TMT-labeled peptides
were separated by a 60-minute gradient elution at a flow
rate of 0.25 pl/minute with an EASY-nLCII™ integrated
nano-high performance liquid chromatography (HPLC)
system (Proxeon, Denmark), which is directly interfaced
with a Q exactive mass spectrometer (Thermo Scientific,
USA). The analytical column was a fused silica capillary
column packed with C18 resin with a dimension of 75 um
ID and 150 mm in length. Mobile phases and A and B
consisted of 0.1% formic acid and 100% acetonitrile in
0.1% formic acid, respectively. The Q exactive mass
spectrometerwas operated in a data-dependent acquisi-
tion mode using the Xcalibur 2.1.3 software. There was
a single full-scan mass spectrum in the Orbitrap (400 to
1,800 m/z, 30,000 resolution) followed by 10 MS/MS
scans in the quadrupole collision cell using the higher-
energy collision dissociation.

The MS/MS spectra from each LC-MS/MS run were
searched against the selected database using the Proteome
Discovery searching engine. The searching parameters
are listed below: peptides ms tolerance of 20 ppm; ms/ms
tolerance of 20 mmu; carbamidomethylation of Cys, TMT
of lysine and peptide N terminal as the fixed modification,
oxidation on Met as the variable modification. Peptides
with high confidences were used for protein identification.
MS/MS spectra for all matched peptides were manually
interpreted and confirmed.

OriC sequence screening

To improve the stability of the plasmid and the effi-
ciency of target gene expression in the bacteria [30], the
native chromosomal DNA replication origin (OriC) in
H. campaniensis LS21 genome was screened for plasmid
construction. Ori-Finder (http://tubic.tju.edu.cn/Ori-Finder),
an online system, has been used for finding oriC H.
campaniensis LS21 genome (with the kind assistance
from Professor Zhang Chunting and Dr Gao Feng of
Tianjin University, China), which is based on an inte-
grated method comprising the analysis of base compos-
ition asymmetry using the Z-curve method, distribution
of DnaA boxes, and the occurrence of genes frequently
close to OriC.

Construction of phaC, phaA and phaB expression plasmid

To improve the PHA synthesis ability of H. campaniensis
LS21, an overexpression plasmid of PHA synthesis
genes containing genes of PHA synthase phaC, -
ketothioelase phaA, NADPH-dependent acetoacetyl-CoA
reductase phaB was constructed. The plasmid consists of
a porin promoter and an OriC from the host chromosome
(Figure 7). In detail, the expression vector pPBBRIMCS1-
OriC-Pporin-phaCAB; s applicable in H. campaniensis
LS21, was constructed by ligating OriC replica and the
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promoter of an outer membrane pole protein termed
porin of H. campaniensis LS21, which was obtained from
the process of promoter screening by quantitative prote-
omic analysis. Strains and plasmids used in this study
listed in Table 1.

Plasmid pBBRIMCS1-OriC-Pporin-phaCABrs was
constructed as stated below; five parallel PCR reactions
were performed to amplify each target DNA fragment,
including phaC, phaB, phaA, OriC and porin promoter
sequences, respectively (Table 2). In order to insert
multiple copies of porin promoter into the expression
vector, the following reactions were divided into three
groups including OriC + porin promoter, phaB + porin

Table 1 Strains and plasmids used in this study

Names Descriptions References

Strains

Escherichia coli A conjugation donor, harboring tra (Simon

S17-1 genes of plasmid RP4 in the et al, 1983)
chromosome; proA, thi-1

Halomonas Halomonas campaniensis LS21 wild This study

campaniensis LS21 type, isolated from a salt lake in China

Plasmids

pBBR1-MCS1 A broad-host-vector that can replicate in - (Kovach
Halomonas TD strain, mobilizable, Cm® et al, 1995)

PBBRTMCS1-OriC-  pBBR1-MCS1 derivate expressing This study

Pporin-phaCAB s plasmid, an inducible vector for
phaCAB over expression in Halomonas

LS21 strain, Cm".

promoter and phaA + porin promoter. In each group,
equi-molar aliquots of every two adjacent DNA fragments
(10 ng for each) mentioned above were mixed as tem-
plates to amplify fusion fragments, by overlap extension
PCR [31] (primers shown in Table 2, overlap extension
PCR part).

Finally, another round of PCR reactions were per-
formed to obtain Gibson assembly fragments, in which
three fusion fragments would be needed as templates,
namely, OriC + porin promoter , phaB + porin promoter
and phaA + porin promoter, phaC sequence and
pBBR1MCS]1 vector backbone (primers shown in Table 2
used for Gibson assembly). For Gibson assembly [32],
0.1 pmol of each target DNA fragment of OriC-porin
promoter fusion fragment, phaB-porin promoter fusion
fragment, phaA-porin promoter fusion fragment and
phaC fragment, and 0.05 pmoles of vector backbone
were added to the reaction system, and 10 ul Gibson
Assembly Master Mix (New England Biolabs, USA) was
required up to 20 pl by adding deionized H,O.

To calculate the number of pmols of each fragment for
optimal assembly based on fragment length and weight,
we recommend the following formula:

pmols = (Weightin ng) x 1,000/ (bp x 650daltons).

The concentration of each fragment was measured
using NanoDrop instrument (Thermo Scientific, USA)
under absorbance at 260 nm. Incubated samples were
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Table 2 Primers for DNA cloning in this study

Primers Sequence (5'-3')*

Fragments amplified

Porin- CAGTTACTCATGGGTTCC

Promoter F

Porin- ATGTAGGTTCCTTAACTAGC

Promoter R

phaA-F TAAGCCGCGCTCGCTGTTGGGCAAAG
phaA-R ATTTACAGCTAACAGCGGCGAGCTAGTC
phaB-F CGCTGTTAGCTGTAAATGCTGAGGCG
phaB-R CACAAGTACTTCTCCCCC

phaC-F TTCCGACAGCTAAACGCAACTATGTTC
phaC-R CAGCGAGCGCGGCTTAGTCCAAGTTTAG
OriC-F TATTGGTTCACTGATTGAGTAAG

OriC-R CGTTTAGCTGTCGGAATTAATCTGACTTTTTTG

Overlap extension PCR

PorinP + GATAGCGTTGTTATTGTAAGC
phaA F

PorinP + TGATTGATCCCATTAAAGTAG
phaA R

PorinP + ACTGGTGGAACTGGTGGA
phaB F

PorinP + ATCCCATTAAAGTAGTTAGC
phaB R

OriC+ TTTATTTCTGGTGACCAT
PorinP F

OriC+ TCGGAATTAATCTGACTT
PorinP R

Gibson assembly

OriC+PF  CGAGGGGGGGCCCGGTACTGTCGGAATTAATCTGACTTTTTTG
OriC+PR  CATCGTAAACTGTTACCCCCAACCGAG

phaC F GGTAACAGTTTACGATGCGGGAAGCTC

phaC R GATCAATCAATGATGTGCCTGGGCAGA

phaB+PF  GCACATCATTGATTGATCCCATTAAAGTAGTTAG

phaB+P R  GATCAATCAATGCAACTGGATAGCGTTG

phaA+P F  CAGITGCATTGATTGATCCCATTAAAGTAGTTAGCG

phaA+P R GAACAAAAGCTGGGTACATGGCCAATCAAGCCCCC

placed in a thermocycler at 50°C for 60 minutes to allow
assembling of the fragments. Transformable S17-1 com-
petent E. coli cells were electroporated with 2 ul of the
assembly reaction.

Plasmid transformation by conjugation

Plasmid pBBR1MCS1-OriC-Pporin-phaCABy s was first
transformed into E. coli S17-1 via the electroporation
method using a Gene Pulser Xcell (Bio-rad, USA).
Plasmid DNA was added to the chilled E. coli S17-1
cells just before treatment. The cells were exposed to
single electrical pulses of 1.8 kV (corresponding to
field strengths of 18 kV/cm) with pulse lengths of
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5 ms. After electroporation, cells were diluted into
1 ml chilled LB medium and incubated at 37°C for 4 h
to allow expression of the antibiotic resistance pheno-
type. The cells were re-suspended and incubated for 8
to 12 h at 37°C in 40-LB agar plates containing 25 mg/L
chloromycetin.

Plasmid transformation to H. campaniensis LS21 was
conducted by conjugation between the above recombinant
E. coli S17-1 and H. campaniensis LS21. The donor cells
were incubated overnight while recipient ones were incu-
bated in the presence of relevant antibiotics to reach an
ODggp of 0.8. Cells were harvested at 5,000 ¢ under 4°C for
10 minutes, then washed once with LB for E. coli S17-1 or
40-LB (40 g/L NaCl in LB) for H. campaniensis 1S21,
followed by mixing at a 2:1 ratio, subsequently the mixed
cells were placed on 40-LB plates at 37°C for 8 h. Cells
were re-suspended and incubated for 8 to 12 h at 37°C in
40-LB agar plates containing 25 mg/L chloromycetin.

Assays of cell dry weights (CDW) and PHA contents

CDW was determined by centrifuging 40 ml of the culture
samples at 10,000g¢ for 15 minutes. The pellets were
washed twice with 100% alcohol to remove residual fatty
acids, and dried at -75°C until a constant weight was ob-
tained. Intracellular PHA contents were analyzed using a
gas chromatograph (GC-2014, SHIMADZU, Japan) after
methanolysis of lyophilized cells in chloroform [33].

Residual substrate content measurements

We collected 40 ml of culture from the fermentor, which
was then centrifuged at 10,000 g for 15 minutes. The
supernatant was taken, and 5 ml of supernatant each was
used for residual substrate assays including oleic acid and
protein, respectively; 10 ml supernatant was needed for
starch concentration assays. Due to the insolubility of cel-
lulose, the residual cellulose assays were performed using
the precipitated biomass after the centrifugation.

Total cellulose assay kits (Megazyme, Ireland) were
used for analyzing total residual soluble and insoluble
cellulose in the samples. Similarly, total starch assay kits
(Megazyme, Ireland) were employed for residual starch-
content studies. Residual free fatty acid concentrations of
samples were quantitatively studied using QuantiChrom
free acid kits from BioAssay Systems (USA) according
to the manufacturer’s recommendations. Residual pro-
tein concentrations were measured using BCA protein
assay kit (GenStar, China).

Extracellular hydrolytic enzyme activity measurements

The AZO-Xyloglucan cellulase kit and protazyme AK tab-
lets (Megazyme, Ireland) were used for analyzing activities
of cellulase and protease in the cultures, respectively. On
the other hand, activities of lipase and amylase were quan-
tified using the commercially available QuantiChrom assay
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lipase kit and QuantiChrom alpha-amylase assay kit from
BioAssay Systems (USA) according to the manufacturer’s
recommendations, respectively.

Unsterile fermentative PHA production using seawater
and mixed substrates

To investigate the PHB accumulation ability of wild-type
and recombinant H. campaniensis LS21 grown on mixed
substrates (especially kitchen waste) consisting mostly
of cellulose, starch, animal fats and proteins, a fed-
continuous fermentation process was carried out. The
whole process did not involve any sterilization of the
fermentors, initial medium and feeding nutrients, or
the whole piping system. Instead of the fresh water,
artificial seawater was prepared and used during the
fermentation process (Table 3).

The mixed substrate medium was composed of straw
cellulose extract liquid 200 ml/L (approximately 0.5 g/L
cellulose), microcrystalline cellulose 2 g/L, oleic acid
40 ml/L, animal fat 5 g/L (lard), soluble starch 25 g/L,
soya protein 2.5 g/L and casein 2.5 g/L. The composition
is similar to much kitchen food waste.

Wild-type and recombinant H. campaniensis LS21
were each cultured in two 500-ml shake flasks each con-
taining 100 ml 40-LB medium at 37°C for 12 h, respect-
ively: 200 ml of the flask cultures were inoculated into a
6-L fermenter (Bioflo 3000, NBS, USA). The initial
working volume and the culture temperature were set at
3.5 L (containing 25 mg/L chloromycetin) and 37°C, re-
spectively. A constant pH at 10 was maintained by auto-
matic addition of 5 M NaOH. Agitation was started at
200 rpm and increased gradually to maintain dissolved
oxygen (DO) of 30% air saturation: 40 ml of the culture
broth was withdrawn every 12 h. On days 7 and 34,

Table 3 Mocledon artificial seawater recipe in this study

Minerals Concentration (g/L)
Nacl 26.726
MqgCl, 226
MgSO, 3248
CaCl2 1.153
NaHCOs 0.198
KCl 0.721
NaBr 0.058
H5BO; 0.058
Na2SiOs 0.0024
Na,Si;Oq 0.0015
H5PO. 0.002
AlLClg 0013
NH; 0.002
LiNO; 0.0013
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Table 4 Primers for testing possible contamination
during the open fermentation

Primers Sequence (5’-3') Sizes of target
products

Halo-test-1708 F CAATCCTCCCAACACGAC 1708 bp

Halo-test-1708R CCTGGTAGGCAACAGTGAC

Halo-test-1942 F GGATGATTCACGGCTAACA 1942 bp

Halo-test-1942R CCAGGTACATGGACAAGATG

500 ml artificial seawater was fed to each fermenter ves-
sel within 6 h. On days 25 and 49, 2 L mixed substrates
medium including 25 mg/L chloromycetin was fed to
each vessel within 6 h.

Monitoring process microbial contamination using PCR
Both wild-type and recombinant H. campaniensis LS21
cultures from the above fermentations without sterilization
were collected, diluted and spread on the Petri plates con-
taining the modified LB medium. The colonies grown on
the agar plates were selected randomly for PCR amplifica-
tion to test possible contaminating microorganisms. The
PCR primers (listed in Table 4) were designed according
to the whole genome sequence of H. campaniensis LS21.
Seven sequences was found unique for H. campaniensis
LS21 according to the BLAST results compared with
other strains including Bacillus spp., E. coli and another
moderate Halomonas sp., TDO1. Based on those se-
quences, two pairs of specific test primers were de-
signed to amplify the genome of H. campaniensis LS21
and the sizes of conserved target products were
1,708 bp and 1,942 bp, respectively.

Monitoring plasmid stability using PCR

Cells of recombinant H. campaniensis LS21 sampled after
65 days of fermentation were grown on the agar plates.
CFU were selected randomly for PCR amplification to test
plasmid stability. The PCR primers (listed in Table 5) were
designed according to the pBBRMCSI plasmid backbone.
A pair of specific test primers was designed to amplify
pBBRMCS1 backbone with a size of conserved target
products around 1,278 bp.

Transmission electron microscope analysis

Cells were harvested by centrifugation at 10,000g for
10 minutes and then prepared for transmission electron
microscope analysis as described [34].

Table 5 Primers for testing plasmid stability during the
fermentation process

Primers Sequence (5'-3')
MCS1-test-1278 F - GCGGATGAATGGCAGAAA 1278 bp

MCS1-test-1278R - GGCGAAATGCGAAAGACT

Sizes of target products
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