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Abstract

Background: Butyric acid as a renewable resource has become an increasingly attractive alternative to petroleum-
based fuels. Clostridium tyrobutyricum ATCC 25755" is well documented as a fermentation strain for the production
of acids. However, it has been reported that butyrate inhibits its growth, and the accumulation of acetate also
inhibits biomass synthesis, making production of butyric acid from conventional fermentation processes economically
challenging. The present study aimed to identify whether irradiation of C. tyrobutyricum cells makes them more tolerant
to butyric acid inhibition and increases the production of butyrate compared with wild type.

Results: In this work, the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at
36,72 and 108 g-L4 equivalents were studied. The results showed that, regardless of the irradiation used, there was a
gradual inhibition of cell growth at butyric acid concentrations above 10.8 g-L™', with no growth observed at butyric
acid concentrations above 3.6 gL' for the wild-type strain during the first 54 h of fermentation. The sodium dodecy!

enhanced by using '“C®*

sulfate polyacrylamide gel electrophoresis also showed significantly different expression levels of proteins with
molecular mass around the wild-type and irradiated strains. The results showed that the proportion of proteins with
molecular weights of 85 and 106 kDa was much higher for the irradiated strains. The specific growth rate decreased
by 50% (from 042 to 0.21 h™") and the final concentration of butyrate increased by 68% (from 22.7 to 33.4 gL for the
strain irradiated at 114 AMeV and 40 Gy compared with the wild-type strains.

Conclusions: This study demonstrates that butyric acid production from glucose can be significantly improved and
heavy ion-irradiated C. tyrobutyricum. The approach is economical, making it competitive
compared with similar fermentation processes. It may prove useful as a first step in a combined method employing
long-term continuous fermentation of acid-production processes.

Keywords: Acid inhibition, Butyrate, Clostridium tyrobutyricum,

12C%* heavy ion, Fermentation, Irradiation

Background

The trends of globalization and population expansion, in
addition to technological advances, have led to skyrock-
eting energy demands worldwide [1]. The annual oil
consumption, currently at around 32 billion barrels, con-
tinues to rise at the rate of population growth - about
1% a year (chart by Morgan Downey). As oil prices re-
main high, there are once again murmurs of anticipated
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doom from various quarters. This is reflected in the trans-
portation industry where increased demand and a limited
supply of fuel have resulted in vastly inflated prices. While
more oil deposits will likely be identified in the future, the
fact remains that oil is a non-renewable resource that will
eventually run out. Thus, the use of various kinds of re-
newable energy sources is of interest throughout the
world.

The consumers’ preference is for bio-based natural in-
gredients as additives for increasing fruit fragrance and
aromatic compounds for production of perfumes [2-6].
Butyric acid is a short-chain fatty acid produced from
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sugars by Clostridia species such as Clostridium tyrobu-
tyricum, C. beijerinckii, C. butyricum, C. populeti sp., C.
thermobutyricum sp. nov. and C. acetobutyricum. Cur-
rently, the most promising microorganism used for the
bioproduction of butyric acid is C. tyrobutyricurmn ATCC
25755" [7-10]. The microorganism is a Gram-positive,
rod-shaped, spore-forming, obligate anaerobic bacter-
jum. Its main fermentation products are butyric acid,
acetate, n-butanol, acetic acid, hydrogen and carbon di-
oxide from various carbohydrates including glucose, xy-
lose, fructose, disaccharides, sucrose and lactose [11-16].
This strain is known to produce CO, and hydrogen and
grows well at pH 6.0 and 37°C [17-19]. It is known that
phosphotransacetylase Clostridium can utilize various
polymeric substrates, including cellulose and galactan,
with very little production of unnecessary materials
[20-22]. In addition to its industrial use as a chemical
feedstock, butyric acid has recently drawn strong inter-
est as a precursor for biobutanol production via biocon-
version [23,24]. Biobutanol (108.46 British thermal units
per gallon) is a next-generation biofuel, primarily as a
petroleum derivative, because of its low vapor pressure,
high energy content and similar energy content to
gasoline [25-28]. Butyrate can also be bioconverted to
butanol by the fermentation action of certain strains of
bacteria [29-31]. Moreover, biobutanol, like other bio-
fuels, has many advantages, including that it is more
economical, renewable, environmentally friendly and
carbon neutral [32-34]. Normally, butyric acid is pro-
duced through the oxosynthesis of butyraldehyde from
propylene [35-37]. However, the chemical synthesis of
butyric acid is not attractive or sustainable because the
raw materials are obtained from fossil fuels [38,39].

As such, butyrate fermentation is an alternative method
for producing butyrate [40-44]. C. tyrobutyricum ATCC
25755" has been extensively studied for its ability to pro-
duce butyric acid and hydrogen [45-50]. There has been
increasing interest in the production of butyric acid from
agricultural commodities and processing wastes using C.
tyrobutyricum ATCC 25755 [51-53]. The metabolic path-
way for butyric acid fermentation of glucose, pentose, xy-
lose and hexose in acidogenic C. tyrobutyricum ATCC
25755 has several possible end-products, including butyr-
ate, with acetate, CO,, H, and lactate as its main fermen-
tation byproducts. Two analogous pathways lead to the
formation of acetate and butyrate, with acetyl-coenzyme A
(CoA) and butyryl-CoA functioning as key intermediates,
respectively. First, acetyl phosphate and butyryl phosphate
are produced from their CoA derivatives, catalyzed by
phosphotransacetylase (PTA) and phosphotransbutyrylase
(PTB), respectively. Then these acyl phosphates are
converted to acetate and butyrate, catalyzed by acetate
kinase (AK) and butyrate kinase (BK), respectively
[18,48,54]. However, conventional butyric acid fermentation
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biotechnology is not yet economically competitive. For in-
stance, a number of studies have shown that the butyrate
yield is only 0.8 to 1.1 mol-mol™ of fermented glucose,
pentose, xylose and hexose, and the acetate yield is only
0.32 to 0.42 mol-mol ™" [4,24,55-58].

Strain improvement by mutagenesis and selection is a
highly developed technique that plays a central role in the
commercial development of microbial fermentation pro-
cesses. The Heavy Ion Research Facility in Lanzhou
(HIRFL) is committed to finding solutions to real prob-
lems through basic research. HIRFL comprises a super-
conducting Electron Cyclotron Resonance ion source, the
1.7 m Sector Focused Cyclotron (K = 69), the large Sector-
Separated Cyclotron (K =450), the Cooler-Storage Main
Ring (CSRm) and the Cooler-Storage Experimental Ring
of the newly built Cooler-Storage Ring, the radioactive ion
beam lines (Radioactive Isotope Beam Line in Lanzhou -
RIBLL1 and RIBLL2) and experimental terminals. It is
capable of providing ion beams from protons to uranium
with energies of up to 2,800 MeV u' and 1,000 MeV u™*
for protons and heavy ions, respectively. Mutagenic proce-
dures can be carried out by varying the type of mutagen
and dose to obtain mutant types that may be screened for
improved activity [59-61]. At present, not only have muta-
genic sources such as neutrons, UV light, a-rays, y-rays
and lasers been developed and successfully employed to
acquire various sorts of valuable strains, but novel sources
are still under development with the aim to obtain a wider
mutation spectrum and a higher ratio of mutation [62-67].
In recent years, the term irradiation technology has also
been used to refer to novel techniques such as *C®*-ion
irradiation. Specifically, '*C®*-ion beam irradiation is a
type of high linear energy transfer irradiation that is used
to bombard the target with higher energy than can be
achieved using different linear energy transfer forms of ir-
radiation [68-71]. However, linear energy transfer, energy,
and radiation dose may play a more fundamental role in
regulating the synthesis and secretion of microbial
biofuels.

To the best of our knowledge, measurements of the bu-
tyric acid levels produced by C. tyrobutyricum ATCC
25755 strains as a result of combined **C®*-ion beam radi-
ation and fermentation have not been reported. The main
objective of this study was to evaluate and characterize
these C. tyrobutyricum mutants for their ability to produce
butyric acid from glucose as a carbon source. In this work,
the kinetics of cell growth and butyrate/butyric production
in culture fermentation by mutant and wild-type C. tyro-
butyricum were studied and compared.

Results and discussion

Cell survival after irradiation

Investigation of radiation-induced cell growth and death,
defined as the time period required for a complete loss
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of the proliferation capacity or exaltation of the prolifer-
ation capacity, is one of the most commonly and reliably
used methods to study radiation effects on cells. For the
irradiation experiments, our laboratory verified that the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) readings were proportional to the num-
ber of cells in vitro, at least in the phase of exponential
growth (data not shown). >C°®" ion irradiation at high
energy usually results in the death of the vast majority of
cells. The fraction of cell death in the lag phase after ir-
radiation and changes in doubling-time can be measured
by assaying at various time points after irradiation. Be-
cause our assay was not only a single-point determin-
ation of survival, information about growth performance
could also be acquired easily. The survival curve was
drawn on a natural logarithmic scale of the survival frac-
tion versus different physical parameters.

C. tyrobutyricum 25755 cells were irradiated 20 h after
seeding. The strains with the lowest metabolic activity
and slowest proliferation or cells that ceased to prolifer-
ate were excluded from the assay by washing and trypsi-
nization when the plating was done after irradiation.
The survival fraction as obtained from Equation (1) was
compared with a representative set of experimental data.
Figure 1 shows a comparison of the survival curves after
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12C% jon irradiation at different beam energies for the

various strains of C. tyrobutyricum ATCC 25755. The re-
sults of the MTT assay are plotted against the irradiation
dose (10 to 50 Gy) at 68 AMeV of energy and 10° to 10®
ions - pulse™ levels, which were ¢’ — ¢™** for Figure 1A,
e’ —e>® for Figure 1B and e’— 0 for Figure 1C.
Figure 1D-F shows the cellular survival data from the re-
sults of the MTT assay against the irradiation dose (10
to 50 Gy) at 114 AMeV of energy and 10° to 10® of ion-
s-pulse’’ levels, which were e’ — 0. In general, sufficient
agreement between the calculations and experimental
data was obtained. For the strains treated at 68 AMeV,
the equation underestimated the effectiveness of the
dose, whereas for the cells irradiated at high energies
(114 AMeV), the result was overestimated. The maximal
deviation, derived from the ratio of calculated to mea-
sured doses for a given effect level, was 15%. The sur-
vival fraction of the strains strongly depended on the
particular physical characteristics of the "*C®*-ion beam,
as determined by the energy, dose and ions-pulse™
levels of the particles under consideration (Figure 1).
Obviously, the survival fraction decreased with increas-
ing carbon ion energy. As expected, the survival loga-
rithmic of the assays showed the same characteristics:
the survival depended on the energy, ions-pulse’ and
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Figure 1 The effect of '>C%*-ion irradiation on the survival of Clostridium tyrobutyricum ATCC 25755. The cells were irradiated 20 h after
seeding and the extent of survival was determined by MTT assay. Survival data is plotted against the irradiation levels. (A-C) '°C®*-ions were
accelerated up to 68 AMeV, and their ions/pulse ranged from 10° to 10%, at a dose rate of 10 to 50 Gy. (D-F) '°C%*-ions were accelerated up to
114 AMeV, and their ions/pulse ranged from 10° to 10%, at a dose rate of 10 to 50 Gy. Cells with low metabolic activity and slow proliferation or
cells that cease to proliferate were excluded from the assay by washing and trypsinization when the plating was done after irradiation.
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Figure 2 (See legend on next page)
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(See figure on previous page.)

butyric acid.

Figure 2 Time-course of the activities of wild-type and irradiated cells as a function of added butyric acid concentrations during the
first 54 h of fermentation. (A) Cell growth of the wild-type strains, unaffected by the addition of butyrate (control cultures). (B-D) Cell growth
of the irradiated strains (energy 68 AMeV and doses of 20, 30 and 40 Gy), unaffected by the addition of butyrate (control cultures). (E,F) Cell
growth of the irradiated strains (energy 114 AMeV and doses of 20, 30 and 40 Gy), unaffected by the addition of butyrate (control cultures).
(A1-A3) The effects of added butyrate on wild-type cell growth. Individual batch cultures were carried out in chemically defined P2-medium
(performed in serum bottles) containing glucose (approximately 42 g<L’1) and supplemented with 3.6 (A1), 7.2 (A2) and 10.8 g»L'1 (A3) of butyric
acid. (B1-B3, C1-C3, D1-D3) The effect of added butyrate on the growth of the irradiated cells (energy 114 AMeV and doses of 20, 30 and

40 Gy). Individual batch cultures were carried out in chemically defined P2-medium (performed in serum bottles) containing glucose (approximately
42 g-L’W) and supplemented with 3.6 (X1), 7.2 (X2) and 108 g~L’1 (X3) of butyric acid. (E1-E3, F1-F3, G1-G3) The effects of added butyrate on the
growth of the irradiated cells (energy 114 AMeV and doses of 20, 30 and 40 Gy). Individual batch cultures were carried out in chemically defined
P2-medium (performed in serum bottles) containing glucose (approximately 42 g~L’1) and supplemented with 3.6 (X1), 7.2 (X2) and 10.8 g-L'1 (X3) of

12464 . .
dose of ““C°"-ion irradiation. The increase of one phys-

ical parameter at a time led to a decrease in survival
rate. Very limited survival (e3° > e%°) was obtained
when the ">C®-ion was irradiated using 114 AMeV of
energy, a 20 to 40 Gy dose and 10° to 10° ions-pulse™.

Many cell types are characterized by regular cell div-
ision every 12 to 24 h. Because of the power of exponen-
tial growth, a single cell can produce thousands of
daughter cells within approximately 9 to 12 normal div-
ision cycles, that is, a few days. After irradiation, the sur-
vivors may then be composed of some mutants. A very
small percentage of the C. tyrobutyricumm ATCC 25755
survivors may show an improved ability to produce
butyrate.

The effects of butyric acid on cell growth following
irradiation

C. tyrobutyricum ATCC 25755 uses glucose or xylose as a
carbon and energy source. The monosaccharide is trans-
ported into the cell via a phosphoenolpyruvate-dependent
phosphotransferase uptake system. Thereafter, glucose or
xylose is metabolized via glycolysis [72,73], which exhibits
an insignificant pH dependence in the range pH 7 to
pH 5.5. However, the fermentations were stopped when
glucose or xylose was no longer consumed by the cells be-
cause of inhibition by butyrate. To further investigate the
specific effect of irradiation on the cell growth profiles
(based on measurements of the optical density (OD) of
cell suspension at 600 nm), individual batch cultures were
carried out in chemically defined P2-medium (performed
in serum bottles) containing 42 gL of glucose and
supplemented with 3.6, 7.2 and 10.8 g-L ™ of butyric acid.
The pH of the culture of C. tyrobutyricum ATCC 25755
(Figure 2A, control) dropped to around 4.8 (ApH of 14,
from pH 6.2) compared with when it was supplemented
with 3.6 gL of butyric acid (Figure 2A1), 7.2 gL' of
butyric acid (Figure 2A2) and 10.8 gL' of butyric acid
(Figure 2A3), the corresponding pH values were about 6.0
(ApH of 0.5 starting from 6.5), 6.1 (ApH of 0.3 starting
from 6.4) and 5.9 (ApH of 0.5 starting from 6.4), respect-
ively. However, when the culture was irradiated with 68

AMeV at a dose of 40 Gy (Figure 2D, control), the pH
dropped to around 4.8 (ApH of 1.7 starting from 6.5)
while at a dose of 40 Gy (supplemented with 3.6 gL ™" of
butyric acid) (Figure 2D1), a dose of 40 Gy (supplemented
with 7.2 g~L’1 of butyric acid) (Figure 2D2) and a dose
of 40 Gy (supplemented with 10.8 gL' of butyric acid)
(Figure 2D3), the pH values were about 4.6 (ApH of 1.6
starting from 6.2), 4.8 (ApH of 1.4 starting from 6.2) and
5.9 (ApH of 0.3 starting from 6.2), respectively. When the
culture was irradiated at 114 AMeV and a dose of 40 Gy
(Figure 2G, control), the pH dropped to around 5.7 (ApH
of 0.6 starting from 6.3) while at a dose of 40 Gy (supple-
mented with 3.6 g-L’1 of butyric acid) (Figure 2G1), a dose
of 40 Gy (supplemented with 7.2 gL' of butyric acid)
(Figure 2G2) and a dose of 40 Gy (supplemented with
10.8 g-L’1 of butyric acid) (Figure 2G3), the pH values were
about 5.7 (ApH of 0.6 starting from 6.3), 5.4 (ApH of 0.9
starting from 6.3) and 5.6 (ApH of 0.7 starting from 6.3),
respectively. When the culture was irradiated at 68 AMeV
and a dose of 20 Gy (supplemented with 7.2 g.L" of bu-
tyric acid) (Figure 2B2), the pH dropped to around 4.4
(ApH of 0.9 starting from 6.3) while at a dose of 30 Gy
(supplemented with 7.2 g-L ™ of butyric acid) (Figure 2C2)
and a dose of 40 Gy (supplemented with 7.2 g-.L" of bu-
tyric acid) (Figure 2D2), the pH values were about 4.6
(ApH of 1.7 starting from 6.3) and 4.8 (ApH of 1.5 starting
from 6.3), respectively. When the culture was irradiated at
114 AMeV and a dose of 40 Gy (supplemented with
10.8 goL’1 of butyric acid) (Figure 2E3), the pH decreased
to 59 (ApH of 04 starting from 6.3) while at a dose
of 30 Gy (supplemented with 10.8 gL ™ of butyric acid)
(Figure 2F3) and a dose of 40 Gy (supplemented with
10.8 g-L’1 of butyric acid) (Figure 2G3), the pH values were
about 6.0 (ApH of 0.3 starting from 6.3) and 5.8 (ApH of
0.5 starting from 6.3), respectively.

These differences in pH regulate the temporal switch
associated with solvent formation for each irradiated
strain. This suggests that the wild-type and irradiated
strains exhibited a biphasic metabolic pattern strongly
influenced by the pH of the medium. As a general trend,
the cells initially consumed glucose to support growth



Zhou et al. Biotechnology for Biofuels 2014, 7:22
http://www.biotechnologyforbiofuels.com/content/7/1/22

and produce and excrete organic acids (butyrate and
acetate) as primary metabolites (acidogenesis), which
caused a decrease in the medium pH when they accu-
mulated to certain levels. This increase in broth acidity
shifted the formation of acids towards the production of
solvents when the culture reached the stationary phase
of cell growth (solventogenesis). At high pH, organic
acids are mainly formed, whereas at low pH, solvent
production is stimulated. As expected, the nature of the
metabolic shift and the kinetic pattern of solvent forma-
tion were strain dependent, given that irradiated strains
exhibited their own intrinsic genetic and metabolic char-
acteristics. Butyric acid has previously been reported to
inhibit cell growth [74]. The results showed that in the
wild-type strains, there was a gradual inhibition of cell
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growth, with no realistic growth observed at butyric acid
concentrations above 3.6 g-L'. However, in the irradi-
ated strains, there was no gradual inhibition of cell
growth, and no realistic growth was observed for butyric
acid concentrations above 10.8 gL'\,

To examine in more detail the effect of added butyrate,
the cell growth profiles (based on OD measurements) for
the wild-type strains and irradiated strains were compared
(Figure 2A1-G3) during the first 54 h of fermentation.
Interestingly, the butyric acid tolerance of strains was
greatly enhanced when the energy and dose of '*C®*-ion
irradiation was increased. The metabolic pathways of glu-
cose metabolism in C. tyrobutyricum ATCC 25755 are
shown in Figure 3. The acetyl-CoA, acetoacetyl-CoA and
butyryl-CoA are three key intermediates, and are of
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particular interest for fermentation with respect to the
potential for formation of different products during acido-
genesis or solventogenesis. These intermediates are im-
portant branch points that direct the metabolic flow either
to acid or to solvent formation. As the last key intermedi-
ate, butyryl-CoA initiates the formation of butyric acid/
butyrate. Butyrate is produced by the sequential activities
of PTB, and BK [75,76]. Both enzymes are most active
during acidogenesis and their specific activities decline
during solventogenesis, two-fold for PTB and six-fold for
Buk [76,77]. Usually a strong pH-dependent activity with
an in vitro optimum at acidogenic pH levels of pH 5.5 (op-
timal around pH 4.7) and an in vivo (endogenous) pH
greater than 5.5 are required to induce solventogenesis.
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Yet, a comparative analysis of these plots clearly revealed
one major cluster composed of the strains irradiated at 68
AMeV and 40 Gy and the strains irradiated at 114 AMeV
and doses of 30 and 40 Gy. The two groups showed a very
similar overall tolerance to increasing butyrate concentra-
tions when compared with the wild-type bacteria.

Effect of '>C®* ion irradiation on butyric acid production

The butyric acid production of the irradiated strains was
greatly improved in terms of both the final product con-
centration and yield compared with the wild-type strain
as shown in Figure 4B,E. The non-irradiated (wild-type
strain, control) C. tyrobutyricum culture inoculated into
glucose-minimal media started to consume sugar almost
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immediately, with butyric acid production beginning 12
to 18 h later (Figure 4A,B). The same control culture in-
oculated into clostridial growth medium (CGM) con-
taining 60 gL' glucose required over 96 h to acclimate
despite the fact that the irradiated strains and wild-type
strain fermentations were tested under the same condi-
tions. The extended period of minimal metabolism and
productivity is because the radiation (different parame-
ters) caused a delay in the log phase of cellular growth
(Figure 4C,F). The butyric acid tolerance of the irradi-
ated strains was greatly enhanced, allowing them to pro-
duce more butyric acid, resulting in complete glucose
utilization and production of over 32 gL™ of butyric
acid and similar levels of cell biomass. Furthermore, the
butyric acid/control ratio increased from 1.0 for the
wild-type strain to 1.52 for the strains irradiated at 114
AMeV and 40 Gy, 1.37 for the strains irradiated at 114
AMeV and 30 Gy, 141 for the strains irradiated at
68 AMeV and 40 Gy, and 1.31 for the strains irradiated
at 68 AMeV and 30 Gy. This trend indicates that the
carbon and energy flux were redistributed in the meta-
bolic pathways of the irradiated strains, which also
resulted in significant changes in the production of vari-
ous fermentation products. It should be noted that the
acetic acid production (data not shown) leveled off much
sooner than butyrate/butyric during the fermentation.
The fermentations stopped when glucose was no longer
consumed by the cells because of an accumulation of or-
ganic acids and waste products in the broth, which
caused inhibition of cell growth and other activities.
However, the irradiated strains were more tolerant to
butyric acid, as indicated by the much higher final butyr-
ate concentration attained in the fermentations with
these irradiated strains compared with the wild-type.
This is not altogether surprising; as shown in Figure 3,
the increased butyric acid tolerance of the irradiated
strains may also be attributed to the reduced flux
through the butyrate PTA/AK pathway. Since the irradi-
ated strains were no longer dependent on the PTA/AK
pathway for energy production and survival, they
became less sensitive to butyric acid inhibition [11,18].
Induction of the ack and pta genes, which encode en-
zymes associated with the acetate formation pathway,
significantly improve butyric acid production [76-78]. To
better understand the fermentation kinetics of glucose
metabolism after exposure of C. tyrobutyricum to “*C°
"-ion irradiation and the resulting damage to the ack
and pta genes, the protein expression of wild-type and
irradiated strains were studied and compared. Figure 4G
shows the results from SDS-PAGE. Analysis confirmed
the expression of the protein (molecular weight, ap-
proximately 85 kDa) in four irradiated strains, with the
highest protein expression level in lane 4. The amount
of an approximately 106 kDa protein was much higher
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for the strain irradiated at 114 AMeV and 40 Gy than
the wild-type strain. AK and PTA from several microor-
ganisms have been characterized, but the results showed
large variations in their molecular weight [77]. Enzyme
activity assays were thus carried out to further study the
roles of AK, PTA and PTB in the acid-forming pathways
(Figure 3). The metabolic selectivity in C. tyrobutyricum
is influenced by growth stage, with exponentially grow-
ing cultures producing both butyric and acetic acids,
whereas slower stationary growth rates tend to produce
butyric acid [3,78,79]. As such, during the log phase
growth of each batch, culture samples were removed
and analyzed for the activities of PTA, PTB and AK in
the irradiated and wild-type strains. The specific enzyme
activities for PTA, PTB and AK in the irradiated strains
(different physical parameters) were assayed and their
relative activities were compared with those of the wild-
type strain. The AK activity was reduced by approxi-
mately 47% for the strains irradiated at 114 AMeV and
40 Gy, 31% for the strains irradiated at 114 AMeV and
30 Gy and 26% for the strains irradiated at 68 AMeV
and 40 Gy. Compared with the wild-type strains, the
strains irradiated at 114 AMeV and 40 Gy had a lower
AK activity (47%) but unexpectedly higher PTA activity
(129%), although similar PTB activities. Because the
strains irradiated at 114 AMeV had much lower AK ac-
tivity, the PTA-AK pathway would have been impaired
and, thus, they produced more butyrate (60 gL ™) from
glucose than the wild-type strains. As mentioned earlier,
these enhancements and improvements can be attrib-
uted to an enhanced tolerance to butyrate inhibition and
to some extent the reduced carbon flux through the
PTA-AK pathway as evidenced by the increased butyr-
ate/acetate ratio in the irradiated strains.

Effect of '>C®* irradiation on acid yield and growth

of C. tyrobutyricum

An experiment was conducted in fermentation mode
using glucose as the primary carbon source in order to
determine the butyrate production capacity of C. tyrobu-
tyricum ATCC 25755 after irradiation. As can be seen in
Figure 5A,B, the butyric acid yield from glucose in-
creased significantly, from 0.43 g-g’ for the wild-type
strains to 0.56 g.g”* for the strain irradiated at 68 AMeV
and a dose of 30 Gy, 0.59 g.g”* for the strain irradiated
at 68 AMeV and a dose of 40 Gy, 0.63 g-g* for the strain
irradiated at 114 AMeV and a dose of 30 Gy, and
0.66 g-g ' for the strain irradiated at 114 AMeV and a
dose of 40 Gy. It is of note that the butyrate yield for the
strain irradiated at 114 AMeV and a dose of 40 Gy
would have been higher (>0.66 g-g™*) if the glucose con-
sumption during the lag phase was neglected. The acetic
acid produced by the strain irradiated at 68 AMeV and
doses of 30 and 40 Gy were similar to that from the wild
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type. However, the acetic acid produced by the strain ir-
radiated at 114 AMeV and doses of 30 and 40 Gy de-
creased compared with that of the wild type. As shown
in Figure 5B, the acetic acid yield from glucose also de-
creased significantly, from approximately 0.11 g-g' for
the wild-type strain to around 0.08 g-g* for the strain ir-
radiated at 114 AMeV and 30 Gy, and around 0.07 g-g*
for the strain irradiated at 114 AMeV and 40 Gy. Never-
theless, the butyrate/acetate ratio (g/g) increased from
3.99 for the wild-type strain to 5.82 for the irradiated
strains, a clear indication that the metabolic pathways in
the irradiated strains were shifted to favor butyric acid
production over acetic acid production. As shown in
Figure 3, since AK and PTA activities were significantly
reduced in the irradiated strains, more pyruvate must
have been catabolized through the butyrate-producing
pathway, leading to higher butyrate yields from glucose.
In addition, the butyric acid could have also promoted
an earlier shift to the acid-producing pathway, which
might be reflected in a slower growth rate. For the same
reason, the irradiated samples suffered from a slower
growth rate because less ATP was produced from the
acetate-producing (PTA-AK) pathway, which normally
can generate more ATP per mole of glucose metabolized
than the butyrate-producing (PTB-BK) pathway [36].

A plot of y,,,, was then determined at high concentra-
tions of initial glucose (40, 60, 80 and 120 g-L™") by fit-
ting the fermentation data to the predictions from the
model simulation. Linearization (integration) of the kin-
etic growth profiles of biomass dry weight (BDW) over
time were achieved by using the natural logarithm
transformation:

x(t) = xo-exp(u)—lnx(t) = p-t + Inxg—y
= m + b(straight line equation).

Where x(¢t) = BDW concentration at every time x; t =
initial BDW concentration; g,,,, = maximum specific
growth rate (h™); and the specific growth rate is y = (1/x
(£)) - (dx/dt). For simplification purposes, it was assumed
that all bacteria followed the exponential law of cell
growth in a batch culture according to a first-order kin-
etic model [80-82]. The specific growth rate of cells, or
increase in cell mass over time, represents a shift in se-
lectivity at different growth rates, which has a significant
impact on the fermentation process [83]. Rapid cell
growth has a higher energy demand and preferentially
produces acetic acid. At low growth rates, the produc-
tion of butyric acid is favored over acetic acid [84]. For
continuous fermentation, the production of butyrate/
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butyric acid is higher when p is lower. When y tends to
zero, an oscillation in productivity occurs [85-88]. These
equations allow a comparison of the growth rate of
batch and continuous systems within the wild-type and
the radiated strains.

The model is not media-independent: the media used
as described above affects both the cell growth rate and
the quantities of butyrate/butyric acid produced, and dif-
fering glucose consumption profiles would produce dif-
ferent results. To better quantify the optimal glucose
concentration for the cell growth, the maximal specific
growth rates were determined for the wild-type and irra-
diated strains from kinetic data taken from the exponen-
tial growth phase and plotted against the concentration
of added glucose. As can be seen in Figure 5C, the max-
imal specific growth rates for the strains irradiated at
114 AMeV and a dose of 40 Gy were calculated accord-
ing to the example where the strain was grown in CGM
medium containing 60 g-L™ of glucose. The best linear
range of data points was chosen that corresponded to
the exponential growth phase of the strain. In some
cases, where the minimum requirement of three experi-
mental data points was not satisfied, an alternative ex-
pression was utilized that accounted only for two
extreme points (at the beginning and at the end of the
exponential phase). The straight line slope (m = pay)
gives the maximal specific growth rate (0.213 h™). The
unary linear regression model (y = 0.2129x - 2.6457) had
an adjusted determination coefficient of R” = 0.9765, in-
dicating that all data points were included on the line of
best fit and no data points varied from this line. Add-
itionally, each specific growth rate was estimated from
the slope of the corresponding semi-logarithmic plot of
the BDW versus time. Error bars are expressed in terms
of the standard deviation (SD) obtained from calcula-
tions of each independent fermentation replicate for the
irradiated strains and wild type (the original data is not
shown). The results demonstrate that these irradiated
strains had a significantly lower specific growth rate (x4 =
0.38 +0.03 to 0.21 +0.02 h™") as compared with the wild
type (4 =0.38 to 0.42 h'"). The use of *C®*-ion irradiation
at 68 AMeV, 20 to 40 Gy and 10° to 10® ions-pulse™ re-
sulted in a particularly long lag phases of 10, 12 and 16 h,
respectively. By comparison, the use of "*C®*-ion irradi-
ation at 114 AMeV, 20 to 40 Gy and 10° to 10® ions-pulse™
resulted in lag phases of 12, 18 and 24 h, respectively.
These longer lag phases may be partially attributed to the
different radiation parameters and the low density inocula-
tion amount used in the fermentation. The lower specific
growth rate for the irradiated cells may be a result of the
metabolic burden placed on cells as a result of the lower
amount of energy generated by glucose metabolism be-
cause of damage induced at higher energy and doses.
Compared with the wild-type strains, the 20 and 30 Gy
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irradiated strains at 68 AMeV had similar growth and glu-
cose consumption profiles, with an almost identical spe-
cific growth rate of y = 0.42 +0.03 h™, whereas the 30 and
40 Gy irradiated strains at 114 AMeV showed a signifi-
cantly longer lag phase, slower glucose consumption, and
a much lower specific growth rate of y=0.26 +0.03 h™
(30 Gy) and £ = 0.21 +0.02 h™* (40 Gy).

As noted earlier, acetate is synthesized via PTA and AK
reactions with the latter reaction providing ATP (Figure 3).
For the biosynthesis of butyrate, two molecules of acetyl-
CoA are condensed to acetoacetyl-CoA, followed by a re-
duction to butyryl-CoA, which is then converted to butyr-
ate via PTB and BK reactions with ATP generation. The
lower specific growth rate for the irradiated strains (energy
114 AMeV and doses of 30 and 40 Gy) can be attributed
to the metabolic burden on cells caused by less energy
(ATP) generation during glucose metabolism because of
irradiation damage of ack and pta. The BDW from glucose
for the irradiated strains also varied from the wild-type
strains. The plot of BDW versus time and specific growth
rate of the irradiated strains indicated that the carbon and
energy flux were redistributed throughout the metabolic
pathways of these strains, which also resulted in significant
changes in acid production of fermentation products.

Conclusions

Examination of the effect of heavy ion irradiation on
the fermentation performance of acid-producing C. tyro-
butyricum ATCC 25755 strain was performed. Following
irradiation, the presence of increasing butyrate concentra-
tions in the media resulted in a gradual inhibition of cell
growth for butyric acid concentrations above 10.8 g-L™,
with no realistic growth observed for butyric acid concen-
trations above 3.6 gL' for the wild-type strains during the
first 54 h of fermentation. The irradiated strains were
shown to be tolerant to butyric acid inhibition. In addition,
the specific growth rate decreased by 50% and the final
concentration of butyrate increased by 68% when the
strains were irradiated at 114 AMeV and a dose of 40 Gy
compared with the wild-type strains. This study demon-
strates that butyric acid production from glucose can be
significantly improved and enhanced by using >C®* heavy
ion irradiated C. tyrobutyricum. Future work includes
adaptation of the concept of acetone-butanol-ethanol fer-
mentation for use in a continuous fibrous-bed bioreactor
by using 2C®" heavy ion irradiated Clostridium sp. to im-
prove and enhance the bioproduction of biofuels. Im-
provement in the production of biofuels should ultimately
make them more competitive in the marketplace.

12C6+

Methods

Bacterial cultures and medium

To test butyrate/butyric acid production by various
strains, a rich P2 medium containing 60 gL glucose,
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3.6 gL yeast extract, 2.7 gL' peptone, 3.2 gL’
K,HPO,, 32 gL' KH,PO, 0.2 gL MgSO,, 0.2 gL
MnSQOy, 0.02 gL ! FeSO,, 0.02 gL NaCl, 1.5 gL yeast
extract (Difco, Detroit, MI, USA), 2.5 gL "' ammonium
acetate, 0.0005 g-L"! p-aminobenzoate, 0.0005 g-L™ thia-
min, 0.00005 g-L! biotin and 35 pg-mL™ thiamphenicol
was used. To test butyrate/butyric acid production from
different substrates, the same rich P2 medium contain-
ing 30 gL' of a different carbon source (gluconate, glu-
cose, mannose, sorbitol, mannitol, xylose or glycerol)
was used. Unless otherwise noted, the fermentation was
carried out in serum bottles, each containing 40 mL of
the medium and inoculated with 1% (v/v) of an over-
night culture in reinforced clostridial medium (Difco) at
37°C and 250 rpm. The pH was kept between 5.0 and
6.5 by adding NaOH solution twice a day.

Experimental setup, irradiation and MTT assay

The experiment was performed at the Cancer Therapy
Terminal of the HIRF). The upgraded accelerator system
of HIRFL consists of Sector Focus Cyclotron, Separated
Sector Cyclotron, the CSRm and the experimental Cooling
Storage Ring. High-energy '*C®" ions with energy of 207
AMeV and 162 AMeV were extracted by CSRm. The ener-
gies of 68 AMeV and 114 AMeV were obtained by adding
the absorbers (water) and calibrated by using the LISE
program®, and the corresponding uncertainty of the ener-
gies was no more than 0.22% [89-91]. The extraction time
of the carbon ions (about 10° to 10® ionspulse™) was
about 3 s and the priming dose 10 to 50 Gy. Dose rates
were up to 1.0 Gymin'. For irradiation experiments,
strains cell were grown in flasks (15 c¢m?) to reach 90%
confluence and they were completely filled with Dulbec-
co's modified Eagle's medium to avoid artifacts by irradi-
ation through air layers [92]. The protocol is adapted from
literature methods [93]. Briefly, Dulbecco's modified
Eagle's medium was supplemented with 100 pL of MTT
reagent (c=05 gL™') to each well and incubated for
30 min at 37°C. The MTT solution was then removed.
After addition of 180 pL of dimethyl sulfoxide, the plates
were incubated for 15 min at 37°C to dissolve the forma-
zan crystals [94]. Absorbance readings of dimethyl sulfox-
ide extracts were performed at 560 nm with reference of
690 nm using a Tecan Infinite F 200 microplate reader
(Crailsheim, Germany). Treated cells were harvested the
next day using trypsinization, counted and a specific num-
ber of strains cell (600 and 300 strains cell) were plated in
petri dishes in triplicate for clonogenic assay. The multiple
MTT assay was performed using 96-well-plates with 3,000
or 6,000 cells per well. The survival fraction was calculated
from the following equation:

_ tdelay
Survival = 2 ‘doublingtime ( 1 )
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in which tgoupling time is the time period required for a
quantity of cells to double and tgeqy is the time period to
reach specific absorption value of control versus irradi-
ated cells.

Biomass concentration and specific growth rate

After irradiation, cultures were inoculated with 0.9% (v/v)
of nonsporulated preculture (OD 600,,,,, = 2 on various nu-
tritional medium) and incubated at 37°C and 125 rpm
with CGM containing glucose in 1 L bottles. Growth was
tracked by monitoring light scattering at 600,,, with a
SmartSpec™ 3000 spectrophotometer over a period of
every 24 h for 5 days. Growth kinetics experiments were
determined on a graph representing Ln(OD 600,,,,) = f(t).
Doubling times (d) were calculated during the exponential
phase according to the formula:

n = (Ln(ODty) - Ln(ODt,)/Ln(2) and d =t, - t1/n

where n represents the number of generations. Cultiva-
tion performance was in general judged by the yield of
the butyrate/butyric acid production. As units, the yield
per volume of cultivation broth (grams per 1,000 mL)
and specific yield per biomass cell weight (grams per
1,000 mL) were measured at the end of cultivation. For
determination of specific productivity, the growth curve
of the C. tyrobutyricum ATCC 25755 strains, using
BDW as biomass, was integrated, yielding the biomass
dry weight integral (BDWTI).

BDW,, + BDW,

BDWI, = BDWI,; + 5

(ta - t1)

(2)

The BDW was determined following the protocol given
by Wucherpfennig [95] with modifications. Culture sam-
ples (10 mL) were taken in 20 mL centrifuge tubes. The
cells were measured gravimetrically by filtering (Nalgene
300-4100) a defined amount of biomass suspension
through a pre-dried and pre-weighted suction filter (Filter
Paper, Grade 392, Anugrah Niaga Mandiri, Jakarta,
Indonesia). The filter was rinsed several times with de-
ionized water to remove medium components from the
biomass [96] and dried at 105°C to a constant weigh for
48 h. The BDW concentration (grams per 1,000 mL)
was calculated as the difference between the weight of
the filter with and without dried biomass divided by the
sample volume. The BDW data points from the loga-
rithmic growth phase were plotted on a semi-log graph
to locate the period in which the culture experienced
the fastest growth. These points were then used in the
following equation:

1\ AInBDW _ In(BDW, - BDW )
iumax = = (3)

h AT T,-T,
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where BDW was measured in grams per 1,000 mL and
time in hours. BDW\, is the first point during the fastest
logarithmic growth period and BDW,, is the last point.
T; and T, are described similarly.

Analysis by SDS-PAGE

Protein samples for SDS-PAGE were prepared from the
cell extract after sonication and centrifugation. The
strains cell extract (15 mL) was concentrated using four
volumes of acetone (60 mL) to precipitate protein at
-20°C overnight, and re-dissolved in 3.5 mL of 25 mM
Tris—HCI buffer (pH 7.2), following the standard proto-
col (Bio-Rad, Shanghai, China). Protein samples, 25 pg
per well, were loaded into 12.5% SDS-PAGE gel and run
at 100 V for 2.5 h with PROTEAN II xi Cell (Bio-Rad)
and stained following the instructions of the manufac-
turer [97-99].

Cell extracts and enzyme assays

The strains were cultivated in the same rich P2 medium
(100 mL) at 37°C to the exponential phase (ODggg =
-1.5). The cells were harvested, washed and suspended
in 5 mL of 25 mM Tris—HCl (pH 7.4) [100]. The sus-
pension was then sonicated, and cell debris was removed
by centrifugation. The protein content of extracts was
determined by the Bradford method with bovine serum
albumin as the standard [101]. All these were done
under ambient conditions. For the hydrogenase activity
assay, cells were suspended in 150 mM Tris—HCI buffer
(pH 7.4), which also contained 15 mMATP, 10 mM
MgCl, and 6% (w/v) hydroxylamine hydrochloride (neu-
tralized with potassium hydroxide), and lysed at 37°C
for 30 min (100 pgmL™; Sigma, Shanghai, China)
[102-104]. The reaction was initiated by adding cell ex-
tract and stopped after 15 min by adding 10% (w/v) ice-
cold trichloroacetic acid. Color was then developed by
adding 2.5% (w/v) FeCl; in 2.0 N HCI, and the absorb-
ance at 540 nm was measured [105,106]. One unit of en-
zyme activity is defined as the amount of enzyme that
produces 1 pumol of hydroxamic acid per min. Phospho-
transacetylase and phosphotransbutyrylase were assayed
with 0.2 mM acetyl-CoA and butyryl-CoA as the enzyme
substrates, respectively, in 0.1 M potassium phosphate
buffer (pH 7.4) following previous methods [107,108].
The enzyme activity was monitored by following the lib-
eration of CoA at 405 nm, and one unit of enzyme was
defined as the amount of enzyme converting 1 pmol of
acetyl-CoA or butyryl-CoA per minute. The specific ac-
tivities of AK, BK, PTA and PTB were defined as the
units of enzyme activity per milligram of total protein.

Fermentation after irradiation
After irradiation, 100 mL of cell suspension prepared in
serum bottles was inoculated into the fermentor and
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then allowed to grow for 3 days at 37°C, agitated at
150 rpm, and pH controlled at 6.0 by adding NH,OH.
After about 33 to 42 h of continuous circulation, most of
the cells were immobilized and no change in cell density
in the medium could be identified. The spent medium in
the fermentor was then replaced with fresh medium, and
the recirculation rate increased to 120 mL-min™ for new
batch fermentation. For the main fermentation, CGM was
used, containing 25 to 100 g glucose, 0.65 g K,HPO,,
0.65 g KH,PO,, 0.6 g MgSO4-7H,0, 0.02 g MnSO,47H,0,
0.02 g FeSO,7H,0, 1.5 g NaCl, 2.5 g asparagines, 6 g
yeast extract and 1.5 g (NH,),SO, in 1.5 L of distilled
water. Modified reinforced clostridial medium (Difco) was
used for pre-culture and solid culture and contained the
following ingredients per liter of distilled water: 15 g glu-
cose, 10 g tryptose, 10 g beef extract, 3 g yeast extract, 5 g
NaCl, 1 g soluble starch, 0.5 g cysteine hydrochloride and
3 g sodium acetate in 15 g-L ™" of agar. After C. tyrobutyri-
cum 25755 was pre-cultured using reinforced clostridial
medium at 37°C and pH 6.0 under anaerobic conditions,
the grown cells were inoculated (10%, v/v) into CGM
containing glucose or pre-treated brown algae substituted
for glucose. The main fermentation was conducted in a
5 L stirred-tank fermentor (BE Marubishi, Pathumthani,
Thailand) with a working volume of 1.5 L, and pH was
controlled at 6.0 using 3 M NaOH solutions. Anaerobiosis
was reached by sparging the fermentor medium with N,
gas for 5 to 10 min before inoculation and constantly
stirred at 150 rpm during cultivation. A detailed de-
scription of the reactor construction has been given
elsewhere [54].

Analytical methods

Cell density was analyzed by measuring the OD of the cell
suspension at 600 nm using a spectrophotometer (Thermo
Electron Scientific Instruments Corp., Madison, WI USA)
with a conversion of 0.42 gL of dry cell weight per OD
unit. Dry weight of immobilized-cell biomass was deter-
mined by centrifugation of the fermentation broth at
10,000 g for 10 min, washing the sediment with distilled
water, and drying at 110°C overnight. Butyric acid and
acetic acid were analyzed with a GC-2014 Shimadzu gas
chromatograph (Shimadzu, Columbia, MD, USA) equipped
with a flame ionization detector and a 30.0 m fused sil-
ica column (0.25 mm film thickness and 0.25 mm ID,
Stabilwax-DA). The gas chromatograph was operated at
an injection temperature of 200°C with 1 uL of sample
injected with the AOC-20i Shimadzu auto injector. Col-
umn temperature was held at 80°C for 3 min, raised to
150°C at 30°C min™, and then held at 150°C for 3.7 min.
A high performance liquid chromatography system was
used to analyze the carbonhydrate compounds, including
glucose, fructose and sucrose in the fermentation broth.
The high performance liquid chromatography system
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consisted of an automatic injector (Agilent Technologies
Inc, Beijing, China), a pump (Agilent 1100, G1311A), a
Zorbax carbohydrate analysis column (250 mm x 4.6 mm,
5 pum; Agilent, USA), a column oven at 30°C (Agilent
1100, G1316A), and a refractive index detector (Agilent

1100, G1362A). The mobile phase was ethyl nitrile (ethyl

nitrile/water = 75:25) at a flow rate of 1.5 mL-min ..

Endnote

*The LISE program is designed to predict the intensity
and purity of radioactive ion beams produced by in-
flight separators. It also facilitates the tuning of experi-
ments where its results can be quickly compared to
on-line data.
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