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Abstract

viable cell mass profiles over five cycles.

main cause for decreasing xylose consumption.

Background: The Rapid Bioconversion with Integrated recycle Technology (RaBIT) process reduces capital costs,
processing times, and biocatalyst cost for biochemical conversion of cellulosic biomass to biofuels by reducing total
bioprocessing time (enzymatic hydrolysis plus fermentation) to 48 h, increasing biofuel productivity (g/L/h) twofold,
and recycling biocatalysts (enzymes and microbes) to the next cycle. To achieve these results, RaBIT utilizes 24-h
high cell density fermentations along with cell recycling to solve the slow/incomplete xylose fermentation issue,
which is critical for lignocellulosic biofuel fermentations. Previous studies utilizing similar fermentation conditions
showed a decrease in xylose consumption when recycling cells into the next fermentation cycle. Eliminating this
decrease is critical for RaBIT process effectiveness for high cycle counts.

Results: Nine different engineered microbial strains (including Saccharomyces cerevisiae strains, Scheffersomyces
(Pichia) stipitis strains, Zymomonas mobilis 8b, and Escherichia coli KO11) were tested under RaBIT platform
fermentations to determine their suitability for this platform. Fermentation conditions were then optimized for

S. cerevisiae GLBRCY128. Three different nutrient sources (corn steep liquor, yeast extract, and wheat germ) were
evaluated to improve xylose consumption by recycled cells. Capacitance readings were used to accurately measure

Conclusion: The results showed that not all strains are capable of effectively performing the RaBIT process.
Acceptable performance is largely correlated to the specific xylose consumption rate. Corn steep liquor was found
to reduce the deleterious impacts of cell recycle and improve specific xylose consumption rates. The viable cell
mass profiles indicated that reduction in specific xylose consumption rate, not a drop in viable cell mass, was the
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Background

Biofuels have recently gained momentum in academic
research, government, and large companies [1,2]. The
benefits of biofuels have been widely accepted by society,
although some controversy remains because of perceived
conflicts with food production [3]. Nevertheless, biofuels
represent a renewable option to replace a depleting oil
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supply and can help mitigate the climate change impacts
of fossil fuel use [4]. Furthermore, a large-scale biofuel
industry would improve energy security and strengthen
the world economy.

Lignocellulosic biomass is a potential feedstock for low
cost biofuel production [5]. The cost of lignocellulosic
biomass is projected to be lower than prices for starch,
which is currently used to produce bioethanol in the US
[6,7]. Currently, agricultural residues such as corn stover
(the leaves, husks, and stalks of corn plants) are usually
left in fields [8]. There is also the potential to plant
double crops and cover crops for added biomass prod-
uctivity, improved soil chemistry, and fertilizer seques-
tration [9]. Additional biomass could be produced by
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cultivating dedicated energy crops on marginal lands un-
suitable for food production [10].

Lignocellulosic biomass is highly recalcitrant and diffi-
cult to convert into monomeric sugars that can be fer-
mented into biofuels by microorganisms [11]. Chemical
and physical pretreatment processes are thus used to
disrupt biomass allowing the structural carbohydrates to
be more easily hydrolyzed to monomeric sugars by bio-
mass degrading enzymes [11,12]. Thermochemical pre-
treatment processes generate degradation products that
often are toxic to the microorganisms and reduce etha-
nol production and xylose consumption [13-15]. The
high price of lignocellulosic enzymes and the long
process times required for enzymatic hydrolysis and
microbial fermentation are two bottlenecks preventing
economical production of lignocellulosic ethanol [6]. To
help overcome these bottlenecks, the Rapid Bioconver-
sion with Integrated recycle Technology (RaBIT) process
was developed in our laboratory. In previous publica-
tions and poster presentations we have referred to this
process as BCRL SHF, BCRL SSCEF, Fast SHEF, and Fast
SSCF (BCRL: Biomass Conversion Research Laboratory,
SHEF: separate hydrolysis and fermentation, SSCF: simul-
taneious saccharification and co-fermentation) [16].

The RaBIT process (Figure 1) reduces capital costs by
shortening enzymatic hydrolysis and fermentation time
to a total of 48 h and can potentially reduce enzyme
usage up to 50%. This is accomplished by recycling the
unhydrolyzed solids and the accompanying adsorbed en-
zymes into the next cycle of enzymatic hydrolysis. This
will lead to a buildup of unhydrolyzed solids. For a large
number of cycles, a portion of the unhydrolyzed solids
will need to be removed periodically. Future research is
needed to address this issue. To overcome slow xylose
utilization, long fermentation times, and low ethanol
productivity, the fermentation rate is increased by
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utilizing a high initial cell density (approximately 10 g/L
dry cell weight [DCW]) coupled with cell recycling into
the next fermentation stage. As a result, fermentations
that normally take 96 to 168 h are completed in 24 h.
The use of Ammonia Fiber Expansion (AFEX™) pre-
treated biomass is highly suitable for this process. AFEX
material produces fewer inhibitory compounds com-
pared to dilute acid pretreatment, thereby permitting
faster fermentation and providing a high level of viable
cells for subsequent fermentation cycles [17]. In addition,
AFEX allows pretreated biomass to retain most of its
inherent nutrients while adding residual ammonia as a
nitrogen source, thereby potentially promoting microbial
growth after recycling in the RaBIT process [18]. When
utilizing the Saccharomyces cerevisiae 424A(LNH-ST)
strain in previous research, ethanol titers reached 40 g/L
during each cycle and progressively increased. However,
the xylose consumption decreased during subsequent
cycles despite increasing cell mass [16].

While promising, the feasibility of RaBIT as an indus-
trial process still faces some questions, including the
economics of the process, large-scale yeast cell recycling,
and high solids operation. However, most of these ques-
tions have been answered. Preliminary economic analysis
reported by Jin in 2012 showed that the RaBIT process
with five-recycle events saved 62% of capital costs asso-
ciated with hydrolysis and fermentation, had similar cen-
trifugation and filtration costs, and reduced the enzyme
cost by 38% [16]. In regard to cell recycling, large-scale
cell recycling is commonly performed in the brewing in-
dustry and has also been used for fuel ethanol produc-
tion [19]. High solid loading enzymatic hydrolysis may
raise the most questions. However, work towards high
solid loading enzymatic hydrolysis is promising, as
Jorgensen has shown that a 40% initial dry matter en-
zymatic hydrolysis is possible when using a horizontal
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reactor [20]. These results support the industrial capabil-
ity of the RaBIT process. Future work will need to be
performed to confirm these results.

The present work expands on the first version of
RaBIT published in 2012 under the BCRL SHF name by
investigating high density cell recycling in fermentations
[16]. In this work, multiple engineered ethanologens
were tested to determine their suitability for the RaBIT
process. Three different nutrient sources (corn steep li-
quor, yeast extract, and wheat germ) were investigated
to improve xylose consumption by recycled cells. We
also evaluated the potential relationship between cell
viability and reduced xylose consumption.

Results and discussion

Strain evaluation

Nine different strains were tested for their suitability in
high cell density fermentations with cell recycling. Four
Saccharomyces cerevisiae strains, three Scheffersomyces
stipitis strains, one Escherichia coli strain, and one Zymo-
monas mobilis strain were chosen to represent all major
ethanologens available for commercial use. The first goal
of our study was to identify a suitable strain to further in-
vestigate high cell density fermentations with cell recycle
for the RaBIT process. The second goal was to determine
if the RaBIT process could be carried out by all ethanolo-
gens. Similar fermentation processes have been carried
out previously with success by Jin and Fan using S. cerevi-
siae and Pichia guilliermondii, respectively [16,21].
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Strain evaluation was performed using 6% (w/w) glu-
can loading AFEX treated corn stover hydrolysate. Both
traditional fermentations (Figure 2) and RaBIT fermenta-
tions (Figure 3) were performed using each strain. By
performing both types of fermentations, we hoped to ob-
serve correlations between the two processes that would
help identify strains suitable for the RaBIT process. In
the strain evaluation using traditional fermentation
methods, S. cerevisiae 424A and Z. mobilis 8b showed
the best performance, yielding more than 40 g/L ethanol
and consuming all but 5 g/L and 6.5 g/L xylose, respect-
ively. Strain 8b was able to consume 75% of the xylose
after 48 h, while 424A had only consumed 56% of the
xylose by 48 h. S. cerevisiae GLBRCY128 (Y128) was the
next highest performing strain, yielding 39 g/L ethanol
and consuming all but 13 g/L xylose. However, its fer-
mentative rate was much slower than those of 424A and
8b (Table 1). The results summarized in Figure 3 show
that three of the nine strains were suitable for RaBIT fer-
mentations: Y128, 424A, and 8b. These three strains
were capable of consuming almost all of the glucose and
xylose in the first fermentation cycle and produced more
than 40 g/L of ethanol. Of the three strains, 424A
showed the best potential for recycle due to greater xy-
lose consumption in the second cycle coupled with less
reduction in ethanol production during the second cycle.
However, Y128 and 8b gave greater ethanol yields. Due
to higher xylitol and glycerol production by 424A (data
not shown), we hypothesized that use of the xylose
isomerase pathway instead of the xylose reductase-
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Figure 2 Strain evaluations during traditional fermentations using AFEX corn stover hydrolysate. Concentrations are shown for glucose
(blue squares), xylose (orange circles), ethanol (green diamonds), and dry cell weight (purple triangles). Error bars are present for all data points,
but may be hidden by the symbol.
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Figure 3 Strain evaluations during RaBIT fermentations using AFEX corn stover hydrolysate. The initial glucose and xylose concentrations
were 62 g/L and 32 g/L respectively. Final concentrations are shown for glucose (blue), xylose (orange), ethanol (green), and dry cell weight
(purple triangles). Error bars are present for all data points, but may be hidden by the symbol.

xylitol dehydrogenase pathway was a factor for the
higher ethanol production per gram of sugar consumed
observed with Y128 and 8b [22]. The higher cell mass
concentration was seen as a benefit for the 424A and
Y128 strains. Excess cell mass can perhaps become a co-
product, for example, as animal feed. For these reasons,
Y128 was chosen over 424A as the most promising of
these nine strains for further evaluation in the RaBIT
process. A major goal of these further studies is to
understand and then overcome the reduced performance
after cell recycling.

E. coli KO11 performance was vastly improved in the
RaBIT fermentation compared to the traditional fermen-
tation. E. coli KO11 was able to consume almost three

Table 1 Traditional and RaBIT fermentation comparison

times as much xylose and produce more than 7.5 g/L
more ethanol in the 24-h RaBIT fermentation compared
to the 120-h traditional fermentation. Interestingly, Y128
also showed a large improvement by consuming 8 g/L
more xylose, while producing 5 g/L more ethanol in the
RaBIT fermentation compared to the traditional 120-h
fermentation. The four other strains studied gave com-
parable performance in the two (traditional and RaBIT)
fermentation processes.

Results for the S. stipitis strains were not shown in
Figures 2 and 3. S. stipitis FPL-061 performed compar-
ably to S. cerevisiae GLBRCY73 (Additional file 1 and
Additional file 2). However, S. stipitis FPL-DX26 and Y-
7124 were not capable of consuming most of the glucose

48 h traditional
fermentation
EtOH prod.™®, g/L/h

Traditional ferm.
specific xylose
cons. rate*?, g/g/h

120 h traditional
fermentftion
EtOH prod. ™, g/L/h

Traditional
fermentation
EtOH conc., g/L

Average RaBIT
fermentftion
EtOH prod.™, g/L/h

Average RaBIT
fermentation
EtOH conc., g/L

Strain
Y73 0.022 + 0.001 0.604 + 0.001 0271 + 0.001 1315+ 0017 325+ 0.1 316+ 04
Y127 0.015 + 0.003 0.603 + 0.007 0.250 + 0.001 1.346 £ 0.014 300+ 02 323+03
Y128 0.077 + 0.003 0.720 = 0.006 0.322 + 0.001 1.808 + 0.045 386 £ 0.1 434 + 1.1
424A 0.107 + 0.001 0.752 + 0.002 0345 + 0.003 1.694 + 0.005 413+03 40.7 £ 0.1
8b 0.650 = 0.011 0.856 = 0.004 0.356 = 0.001 1.808 + 0.021 42.7 £ 0.01 434 + 05
KOM 0.018 + 0.003 0416 + 0.001 0.205 + 0.000 1319 + 0.026 246+ 00 316+ 06

*Specific xylose consumption rate was calculated by dividing the xylose consumed by the time period and average dry cell weight concentration as correlated
from OD measurements; “ethanol productivity was calculated by dividing the ethanol concentration by time of fermentation;

calculated from 224 to 48 h, ®0 to 48 h, 0 to 120 h, or 90 to 24 h;

average RaBIT fermentation calculations were performed by averaging the data from the two cycles.
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during RaBIT fermentations (Additional file 2). We
hypothesize that the latter two strains require supple-
mental oxygen as typical for most S. stipitis strains. In
our view, supplementation of oxygen would not be eco-
nomically practical for industrialization of the RaBIT
process. For those reasons, we chose to exclude the
results for the S. stipitis strains from comparisons in
Figures 2 and 3, as they do not fully represent the poten-
tial of S. stipitis under these experimental conditions.

Comparing the results of the traditional and RaBIT
fermentations, the performance of the RaBIT process
seems to be tied to the specific xylose consumption rate.
The three strains (424A, 8b, and Y128) with a specific
xylose consumption rate greater than 0.075 g/g/h were
capable of performing RaBIT process fermentations
(Table 1). An assumption is that all strains have a cell
population ceiling that depends on the availability of
sugar and nutrients. The ceiling in the RaBIT fermenta-
tion system depends on cell maintenance needs, cell bio-
mass yields on substrates, and cell growth/death rate.
The cell population ceiling is the maximum cell density
that could be sustainably maintained in a RaBIT fermen-
tation system. It would then be necessary for each strain
to have a sufficient specific xylose consumption rate to
consume the xylose in 24 h when near or below this ceil-
ing. An initial cell density above the ceiling results in im-
proved performance during the first cycle, but poor
performance after recycling of the cells (data not shown).
For the typical S. cerevisiae strains, the required xylose
consumption rate appears to be around 0.075 g/g/h.

Overall, this comparison also shows one of the key
benefits of the RaBIT process, namely increased ethanol
productivity (gram EtOH/fermentation volume/time).
The RaBIT fermentations increased ethanol productivity
more than twofold for the three suitable strains (Table 1).
For Y128 specifically, the ethanol productivity increased
by 2.5 times for the RaBIT fermentation compared to a
48-h traditional fermentation.

Process optimizations

After Y128 was selected for further study, the initial cell
loading, initial pH, and temperature for RaBIT fermenta-
tions (24 h) were optimized. Initial cell loading is the key
to rapid fermentation and was examined in 6.0% glucan
loading hydrolysate. Cell loadings of 10 g/L, 9 g/L, 8 g/L,
and 7.5 g/L (DCW) were tested at 30°C and an initial pH
of 5.5 (Figure 4). All initial cell loadings were able to per-
form the RaBIT process effectively. However, only an ini-
tial cell loading of 10 g/ DCW was able to consistently
achieve our goal of consuming all but <5 g/L xylose.

To investigate the effects of temperature and initial
pH on the RaBIT fermentation, an initial cell loading of
7.5 g/L. DCW was used and three-cycle RaBIT fermenta-
tions were performed. Using a cell loading of 7.5 g/L
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DCW would not be sufficient to consume the desired
level of xylose (below 5 g/L at the end of fermentation)
allowing clearer observance of improvement in xylose
consumption due to changing temperatures and pH.
The optimum temperature was determined using an ini-
tial pH of 5.5. The results (Figure 5a) showed that in-
creasing the temperature from 30°C to 32°C did not
significantly affect the fermentation, with only 1 g/L
more ethanol produced on average at 32°C compared to
30°C. Performance decreased at 35°C with 2.5 g/L less
ethanol produced on average compared to 32°C. At 35°C,
the ethanol metabolic yield was possibly reduced due to
maintenance requirements. The fermentations performed
at 37°C greatly affected the cell population. The 70% drop
in ethanol production during cycle 2 appeared to be due
to significant cell death at the elevated temperature. At
the end of the first cycle, no viable colonies were found
when plating at 50* times dilution. Viable colonies were
found for all other temperatures and cycles. Also, optical
density (OD) measurements indicated that the cell mass
at the end of cycles 1 and 2 was less than that of the initial
inoculum.

The final optimization test determining the optimal
initial pH is shown in Figure 5b. At 32°C and 7.5 g/L
DCW initial loading, the optimal pH was 6.0. At this
pH, the highest ethanol titers were reached. Further-
more, for the first time during this work, ethanol pro-
duction increased after both recycling events. An initial
pH of 6.5 was also attempted, but produced unstable cell
behavior as manifested by the large variability in results
(data not shown). Another experiment was performed to
determine if the higher pH was beneficial due to the
physiological state of the cell or due to precipitation of
inhibiting compounds (data not shown). Hydrolysates
prepared by solely raising the pH from 4.8 (enzymatic
hydrolysis pH) to 5.0, 5.5, or 6.0 were compared
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fermentatively to hydrolysates that were raised to pH 6,
sterile filtered, and then acidified back down to 5.0, 5.5, or
6.0. The study was necessary as raising pH can cause the
removal/precipitation of degradation products as com-
monly practiced in overliming [23]. The results showed
no significant difference in fermentability of the two sets
of hydrolysates, indicating that the pH was affecting
physiological state rather than precipitating inhibitors.

Nutrient testing

As shown in Figure 3, xylose consumption decreases
upon recycling Y128. Decreasing xylose consumption
was also experienced during the optimization work (data
not shown). Lack of sufficient nutrients may be one rea-
son for decreasing xylose consumption through add-
itional cycles. AFEX-treated corn stover supports cell
growth to high concentrations [17]. However, there may
not be enough nutrients present to fully support the
high cell populations in the demanding RaBIT process
conditions. Three different nutrient sources were tested:
yeast extract, wheat germ, and corn steep liquor. Yeast
extract, the product of autolysed yeast cells, was used as
a potentially ideal nutrient source. However, industrially
yeast extract would probably not be feasible due to its
high price. Corn steep liquor (CSL) and wheat germ
were chosen as cheaper and more practical options. CSL
is the cheaper of the two and is produced as a by-
product of corn wet-milling [24]. CSL provides a reason-
able amount of nutrients, but also contains inhibitors
such as lactic acid [24]. Furthermore, CSL is well estab-
lished as a nutrient source for industrial fermentations
[25]. Wheat germ is a by-product of flour milling [26]. It
contains high levels of metals such as zinc and magne-
sium (Additional file 3), which have been shown to help
yeast resist ethanol stress [27-29]. The addition of yeast
extract (Figure 6b) did not benefit the fermentation very
much. Compared to control experiments, the addition of
up to 5 g/L yeast extract improved the xylose consump-
tion by about 2 g/L and showed up to 2 g/L higher

ethanol production. However, yeast extract addition did
not prevent decreased xylose consumption.

Wheat germ was added during the enzymatic hydroly-
sis to help release the nutrients (Figure 6¢). The addition
of 5.0 g/L. wheat germ improved the overall xylose con-
sumption by up to 3.5 g/L and ethanol production by up
to 4.5 g/L for the third cycle. These results concur with
our initial hypothesis that wheat germ would allow the
yeast to resist the higher ethanol concentrations by con-
suming more xylose and lowering the cell maintenance
energy requirements. The xylose consumption, however,
still decreased during subsequent cycles.

The addition of CSL to the fermentation broth gave
the best results (Figure 6d). CSL promoted increased xy-
lose consumption in subsequent cycles. This was ob-
served at concentrations of 1, 2.5, and 5 g/L. The best
results were at 2.5 g/L. At the higher concentration of
5 g/L, ethanol production decreases, likely due to excess
cell growth or inhibition from the CSL. In the third
cycle, the addition of CSL caused 3.5 g/L more xylose
consumption and 2.5 g/L more ethanol production com-
pared to the control. Additionally, the improvement be-
tween the first and third cycles showed 2 g/L more
consumed xylose and 1.25 g/L more ethanol. This may
indicate an increase in cell viability across cycles com-
pared to the drop seen in all other cases.

Wheat germ and CSL were also added in combination
(Additional file 4). We expected better ethanol production
with increased xylose consumption after each cycle. How-
ever, the results were similar to those for yeast extract
addition. There was an initial benefit to the fermentation
but still a drastic decrease in xylose consumption and
ethanol production as the cycles progressed.

The final nutrient test was performed by adding CSL
(2.5 g/L) during the xylose consumption phase (at 6 h) ra-
ther than at the beginning of the fermentation (Additional
file 5). In the end, the addition of the CSL at the beginning
was more beneficial to both xylose consumption and etha-
nol production. This indicates that nutrient addition is
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more important during the high growth phase than during
high stress phase. However, the xylose consumption still

improved over each cycle regardless of when the CSL was
added.

Five-cycle viable cell profiling

The five-cycle comparisons were performed in a bioreac-
tor to better imitate industrial conditions. The experimen-
tal goal was to profile the viable cell mass through five
cycles with the use of a capacitance probe. A no nutrient
addition case was compared to the optimal nutrient
addition case (2.5 g/L CSL) as determined previously. The
five-cycle comparison used the optimal initial inoculum of
10 g/L DCW, initial pH of 6.0, and 32°C. Previously, cell
population was measured using the OD method, which
does not accurately measure the viable cell population.
Traditionally, viability plating or staining can be used to
measure cells capable of growth or cells with intact cellu-
lar membranes, respectively. Because the Y128 strain floc-
culates, these traditional methods were not sufficiently
accurate. This problem was solved using a capacitance
probe. Cells with intact membranes give a capacitance
reading when an electrical current is passed around them.
When the membrane is compromised, the current can
pass through the cells, and this capacitance is lost. Thus,
capacitance readings can measure cell biomass with intact

membranes, while not including cells with disrupted
membranes [30,31]. Capacitance readings were taken
every 10 seconds and averaged over 10 readings to reduce
signal noise. An accurate viable cell profile was necessary
for determining the cause of reduced xylose consumption
as the cycles increased. From previous OD measurements,
there appeared to be only minor or no growth after the
first cycle. A lack of growth or death could create a cell
population that is accumulating biomass degradation
products inside the cell causing reduced metabolic activ-
ity. Furthermore, the OD measurements may not have ac-
curately measured cell death. The outer membranes of
some cells may have been disrupted enough to stop meta-
bolic activity, but still have enough integrity to scatter the
light associated with an OD measurement. Accurate viable
cell measurements would also help determine if CSL
addition benefited cell growth or cell metabolism.

The sugar, ethanol, and OD measurements are given in
Figure 7. Overall, 2.5 g/L added CSL slightly improved the
performance compared to no CSL addition with regard to
xylose consumption. With CSL addition, final xylose con-
centrations were 3.5 + 0.25 for the first four cycles. Without
the CSL addition, final xylose concentrations were 3.5 g/L,
4.7 g/L, 3.8 g/L, and 6.1 g/L for cycles 1 through 4, respect-
ively. Cycle 5 xylose concentrations and cycles 1 through 5
ethanol concentrations were comparable for the two cases.
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Figure 7 RaBIT fermentation process comparison in the presence and absence of nutrient supplementation. Here, a) shows results for no
nutrient addition and b) those for 2.5 g/L CSL addition. Concentrations are shown for glucose (blue squares), xylose (orange circles), ethanol
(green diamonds), and dry cell weight correlated from OD (purple triangles).
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Figure 8 shows the viable cell density profile for both
no nutrient and 2.5 g/L added CSL through five cycles.
For all cycles, the viable cell density increases during the
first 5 to 7 h. The growth phase appears to end shortly
after all the glucose is consumed. After a brief stationary
phase, the viable cell density then decreases rapidly dur-
ing the rest of the xylose consumption phase. This gen-
eral trend was observed during all cycles and for both
cases: no nutrients added and 2.5 g/L added CSL.

There was a large difference in the fermentation kinet-
ics between the two cases (Table 2). Overall, added CSL
showed faster growth rates and faster death rates. Inter-
estingly, when no nutrients were added, the death rate
increased in later cycles. When CSL was added, no dra-
matic variations in death rate were observed. Differences
were also present in the specific xylose consumption

rates (gram xylose consumed/gram viable cell mass/
hour). When no nutrients were added, the specific xy-
lose consumption rate was lower during the last four cy-
cles compared to the first cycle. When CSL was added,
the specific xylose consumption rate was higher during
cycles 2 through 4 compared to cycle 1. This indicated
that cell populations were more metabolically active with
the addition of CSL.

Conclusion

We found that not all ethanologens are suitable for RaBIT
platform fermentations. Of the nine tested ethanologens,
Saccharomyces cerevisiae 424A(LNH-ST), Zymomonas
mobilis 8b, and S. cerevisiae GLBRCY128 showed good
performance in the RaBIT fermentation process. Y128 was
chosen for optimization of process conditions. Different
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Table 2 RaBIT fermentation cellular rates

Specific xylose cons. rate™?, g/g/h Average viable cell density®, g/L DCW

Growth rate®, g/L/h

Death rate€, g/L/h

No nutrients

Cycle 1 0.092 + 0.005 123+ 05
Cycle 2 0,084 + 0.001 128+ 05
Cycle 3 0,088 + 0.006 12.7 + 09
Cycle 4 0.072 £ 0.003 140 + 0.7
Cycle 5 0.079 £ 0.014 138+ 20
25 g/L CSL
Cycle 1 0.079 + 0.003 144 +10
Cycle 2 0.084 + 0.006 133+ 06
Cycle 3 0,094 + 0.001 120400
Cycle 4 0.089 + 0.003 125+ 04
Cycle 5 0.076 + 0.001 140+ 04

0401 £0.113
0624 + 0356
0.547 £ 0383
0.579 £ 0326
0478 £ 0315

0831 +0.158
0.841 + 0.056
0.728 £ 0.070
0.718 + 0.009
0.688 + 0.162

-0.156 + 0.024
-0.176 £ 0.028
-0.176 £ 0.050
-0.180 + 0.020
-0.197 £ 0.019

-0214 £ 0.024
-0.208 £ 0.012
-0.196 £ 0.005
-0.189 + 0.002
-0.210 £ 0.015

*Specific xylose consumption rate was calculated by dividing the xylose consumed by the time period and average viable dry cell weight concentration as

correlated from capacitance readings;
calculated from 20 to 24 h, ®2 to 4.5 h, or 8 to 24 h;
average cell viable cell concentration was calculated using the integral method.
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nutrient supplementation protocols were evaluated to see
whether xylose consumption could be improved during
subsequent cycles of the RaBIT process. We found that
adding 2.5 g/L corn steep liquor (CSL) improved xylose
consumption for the three cycles tested when 7.5 g/L initial
dry cell weight (DCW) inoculum was used. However, the
xylose consumption problems still existed when 10 g/L
DCW inoculum was utilized for optimal ethanol produc-
tion for five fermentation cycles. Capacitance monitoring
indicated that there is both dynamic cell growth and death
during each RaBIT cycle. Furthermore, the main cause of
reduced xylose consumption with subsequent cycles is de-
creased specific xylose consumption rate rather than de-
creased viable cell mass.

Materials and methods

Biomass and pretreatment

Corn stover was provided by the Great Lakes Bioenergy
Research Center (GLBRC). The corn (Pioneer 36H56)
from which the stover was produced was planted in
May of 2009 in field 570-N at the Arlington Agricul-
tural Research Station in Columbia Country, WI and
harvested in November of 2009. The biomass was pre-
treated by the Biomass Conversion Research Laboratory
(BCRL) located at Michigan State University in East
Lansing, MI using the AFEX pretreatment process as pre-
viously described in the literature [32]. The AFEX pre-
treatment conditions were 1:1 ammonia to biomass ratio,
60% moisture on dry weight basis, 100°C, and 30 min. re-
action time. Glucan, xylan, and acid insoluble lignin con-
tent plus ash were 38.0%, 23.8%, and 20.4% by dry mass,
respectively. The corn stover was stored at 4°C.

Microorganisms and seed culture preparation
Saccharomyces cerevisiae GLBRCY73 was genetically
modified to contain xylose reductase, xylitol dehydro-
genase, and xylulokinase genes [33]. S. cerevisiae strains
GLBRCY127 and GLBRCY128 were genetically modi-
fied to contain xylose isomerase and xululokinase genes
(T.K. Sato, manuscript in preparation). 424A(LNH-ST) was
provided by Prof. Nancy W.H. Ho of Purdue University in
West Lafayette, IN. S. cerevisiae 424A was genetically modi-
fied with multiple copies of xylose reductase and xylitol de-
hydrogenase genes from Scheffersomyces (Pichia) stipitis
and an endogenous xylulokinase gene incorporated in the
chromosome [34].

Zymomonas mobilis 8b was provided by MBI, Inter-
national (Lansing, MI) and was originally obtained from
the National Renewable Energy Laboratory (Golden,
CO) [35].

Scheffersomyces (Pichia) stipitis FPL-061 and FPL-DX26
strains were provided by Prof. Thomas W. Jeffries of the
University of Wisconsin in Madison, WI [36]. NRRL Y-
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7124 was obtained from ARS Culture Collection (National
Center Agricultural Utilization Research, Peoria, IL) [37].

Escherichia coli KO11 was obtained from the Ameri-
can Type Culture Collection having designated number
55124 [38].

All strains were maintained in glycerol stocks at -80°C.
Seed cultures were prepared in a medium containing
100 g/L dextrose, 25 g/L xylose, 10 g/L yeast extract,
and 20 g/L tryptone. Seed cultures were performed in
250 mL Erlenmeyer flasks using a 100 mL working vol-
ume. The initial ODgg, of seed cultures was 0.1. Cultures
were incubated at 30°C and 150 RPM for 20 h. After
20 h, 1 mL of the culture was transferred to new media
for an additional 20 h. The cultivation was made aerobic
by use of a foam stopper for S. stipitis strains. All other
seed cultures were microaerobic by use of a rubber stop-
per pierced by a needle.

Enzymatic hydrolysis

Enzymatic hydrolysis at 6% (w/w) glucan loading was
performed in 1 L baffled Erlenmeyer flasks with a reac-
tion mixture of 400 g. Biomass was loaded in fed-batch
mode by adding half the biomass at t =0 h and the other
half at t=2 h. The enzyme cocktail consisted of 20 mg
protein/g glucan Cellic CTec2 (Novozymes), 5 mg/g
Cellic HTec2 (Novozymes), and 5 mg/g Multifect Pecti-
nase (Genencor). Hydrolysis was performed for 48 h at
50°C and 250 RPM using a pH of 4.8. Adjustments to
the pH were made using 10 M potassium hydroxide or
12.1 M hydrochloric acid. Hydrolysis slurry was centri-
fuged in 2 L bottles at 7,500 RPM for 30 min and then
sterile filtered. Hydrolysate was used for fermentation
without external nutrient supplementation unless other-
wise indicated.

Fermentations

Fermentations were performed in 125 mL Erlenmeyer
flasks using 50 mL of hydrolysate. Cells for inoculation
were harvested by centrifugation from the seed cultures.
Inoculation size was determined by dry cell weight
(DCW) concentration. Inoculations were performed at
0.1 g/L for traditional fermentations, 4 g/L DCW for
RaBIT fermentations using Z. mobilis and E. coli, and
7.5, 8.0, 9.0, 10, or 12.0 g/L. DCW for RaBIT fermenta-
tions using S. cerevisiae and S. stipitis. The pH was ini-
tially adjusted using 10 M potassium hydroxide. The
initial pH for S. cerevisiae and S. stipitis was 5.5 during
strain testing before pH optimization and 6.0 after. The
initial pH values for Z. mobilis and E. coli were 6.0 and
7.0, respectively. The pH for the E. coli was buffered
using 0.05 M MOPS and adjusted twice daily. The pH
for all other strains was not adjusted during the fermen-
tations. The fermentations were performed in a shaking in-
cubator at 150 RPM. The temperature was set at 37°C for
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E. coli and 30°C for all other strains before temperature
optimization. After optimization, the temperature was in-
creased to 32°C for S. cerevisiae GLBRCY128. The
flasks were kept under microaerobic conditions. Trad-
itional fermentations were incubated for five days.
RaBIT fermentations were performed for 24 h. At the
end of each RaBIT fermentation stage, the broth was
centrifuged in 50 mL centrifuge tubes at 4,000 RPM for
10 min. The corresponding cell pellets were then inoc-
ulated into fresh hydrolysate to begin the next cycle.
All fermentation experiments were performed with at
least two biological replicates.

Five-cycle fermentation in bioreactor

Five-cycle RaBIT fermentations were performed in a 0.5 L
bioreactor with a 60% working volume. Temperature and
stirring rate were set at 32°C and 300 RPM, respectively.
A 6% glucan loading hydrolysate (60 g/L glucose and
30 g/L xylose) with an initial pH of 6.0 and 10 g/L DCW
inoculum were used. A capacitance probe was utilized to
monitor viable cell density. The recycle process was car-
ried out as described in the Fermentations section above.

Nutrient additions

In the nutrient addition experiments, yeast extract (Becton
Dickinson), corn steep liquor (Sigma Aldrich), and wheat
germ (MP Biomedicals) were added at concentrations of
1.0, 2.5, or 5.0 g/L. Yeast extract and corn steep liquor were
weighed out and added to the hydrolysate before fermenta-
tion. Wheat germ was added to the enzymatic hydrolysis
mixture at the beginning of the hydrolysis (the final mix-
ture density was assumed as 1 g/L).

Measurements of cell population

The optical density at 600 nm was used to measure the
cell concentration of the fermentation broths. The ODggg
measurement was then correlated to the DCW by use of a
calibration curve.

Viable cell mass was measured by correlating capaci-
tance reading from an Aber Instruments Ltd. Biomass
Monitor 200. The capacitance versus viable dry cell mass
correlation was created by taking samples during expo-
nential phase seed cultures. The samples were centrifuged
and dried before being compared to the capacitance read-
ings, which produced a linear correlation.

HPLC analysis

Glucose, xylose, and ethanol concentrations were analyzed
by HPLC using a Biorad Aminex HPX-87H column. The
column temperature was maintained at 50°C. The mobile
phase (5 mM H,SO,) flow rate was 0.6 mL/min.
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Additional files

Additional file 1: Figure S1. Strain evaluations during traditional
fermentations using AFEX corn stover hydrolysate. Concentrations are
shown for glucose (blue squares), xylose (orange circles), ethanol (green
diamonds), and dry cell weight (purple triangles). Error bars are present
for all data points, but may be hidden by marks.

Additional file 2: Figure S2. Strain evaluations during RaBIT
fermentations using AFEX corn stover hydrolysate. The initial glucose and
xylose concentrations were 62 g/L and 32 g/L, respectively. Final
concentrations are shown for glucose (blue), xylose (orange), ethanol
(green), and dry cell weight (purple triangles). Error bars are present for
all data points, but may be hidden by marks.

Additional file 3: Table S1. Nutrient additive compositions.

Additional file 4: Figure S3. Combination of corn steep liquor and
wheat germ at a 50% ratio as a nutrient source. Closed symbols represent
xylose concentration; open symbols represent ethanol concentration. Total
concentrations of 1 g/L (blue squares) and 2 g/L (green circles) were tested.

Additional file 5: Figure S4. 2.5 g/L corn steep liquor addition time
testing. Closed symbols represent xylose concentration; open symbols
represent ethanol concentration. Additions were made at t = 0 h (blue
squares) and t = 6 h (green circles).
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