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Abstract

Background: Biological fermentation routes can provide an environmentally friendly way of producing H, since
they use renewable biomass as feedstock and proceed under ambient temperature and pressure. In particular,
photo-fermentation has superior properties in terms of achieving high H, yield through complete degradation of
substrates. However, long-term H, production data with stable performance is limited, and this data is essential for
practical applications. In the present work, continuous photo-fermentative H, production from lactate was
attempted using the purple non-sulfur bacterium, Rhodobacter sphaeroides KD131. As a gradual drop in H,
production was observed, we attempted to add ethanol (0.2% v/v) to the medium.

Results: As continuous operation went on, H, production was not sustained and showed a negligible H; yield

(< 0.5 mol Hy/mol lactate,ygeq) Within two weeks. Electron balance analysis showed that the reason for the gradual
drop in H, production was ascribed to the increase in production of soluble microbial products (SMP). To see the
possible effect of ethanol addition, a batch test was first conducted. The presence of ethanol significantly increased
the H, yield from 1.15 to 2.20 mol H,/mol lactate,gqeq, by suppressing the production of SMPs. The analysis of SMPs
by size exclusion chromatography showed that, in the later period of fermentation, more than half of the low
molecular weight SMPs (< 1 kDa) were consumed and used for H;, production when ethanol had been added,
while the concentration of SMPs continuously increased in the absence of ethanol. It was found that the addition
of ethanol facilitated the utilization of reducing power, resulting in an increase in the cellular levels of NAD" and
NADP*. In continuous operation, ethanol addition was effective, such that stable H, production was attained with
an H, yield of 2.5 mol H,/mol lactate,ggeq. Less than 15% of substrate electrons were used for SMP production,
whereas 35% were used in the control.

Conclusions: We have found that SMPs are the key factor in photo-fermentative H, production, and their production
can be suppressed by ethanol addition. However, since external addition of ethanol to the medium represents an extra
economic burden, ethanol should be prepared in a cost-effective way.
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Background

Hydrogen (H,), considered the cleanest energy alterna-
tive to fossil fuels, is now made exclusively by using fos-
sil fuels: by steam reforming of natural gas, thermal
cracking of light oil, and coal gasification. In contrast, bio-
logical fermentation routes can provide an environmentally
friendly way of producing H, since they use renewable bio-
mass as feedstock and proceed under ambient temperature
and pressure [1,2]. Biological H, production occurs via two
main pathways, classified as dark and photo-fermentation
according to light dependency. Dark fermentative produc-
tion has the advantage that the organic substrates are con-
verted to H, at a fast production rate, with, however, the
disadvantage that volatile fatty acids are produced as side
products, thus limiting total H, yields [3,4].

Photo-fermentation is a process that can theoretically
achieve maximum H, yields through complete degrad-
ation of substrates [5]. Purple non-sulfur (PNS) bacteria
have been the most intensively studied photosynthetic
H,-producing bacteria due to their demonstrated high
substrate conversion yields. Under illuminated anaerobic
conditions, PNS bacteria can grow photoheterotrophically
using organic substrates and can potentially produce Ha.
However, they have several alternative metabolic modes
such as photoautotrophy, fermentation, and aerobic/
anaerobic respiration, which are non-H,-producing or
even H,-consuming pathways [6]. Therefore, it is critical
to adjust the culture conditions so that they are suitable
for H, production.

Although PNS bacteria can use a wide variety of or-
ganic acids as a carbon source, the catabolic pathway
involved depends on the substrate type. For example,
acetate and butyrate are easily converted to acetyl units
during metabolism by PNS bacteria and yield mainly poly-
hydroxyalkanoic acids (PHAs) rather than H, [7]. This
leads to a decrease in H, production, since PHA produc-
tion is an undesirable electron sink in competition with
photo-fermentative H, production. Compared to acetate
and butyrate, lactate and succinate are known to yield
more H, [6,8]. Furthermore, since lactate can be easily
obtained from anaerobic fermentation of agricultural
and food wastes, it could be an ideal substrate for photo-
fermentative H, production [9].

Along with PHAs, soluble microbial products (SMPs)
can also be an electron sink in photo-fermentation, com-
peting with the H, production pathway [10]. SMPs are
soluble organic compounds that are released during bio-
mass growth and cellular decay through normal meta-
bolic processes [11,12]. Most studies on SMPs have been
focused on aerobic systems, because SMPs often form
the majority of the effluent chemical oxygen demand
(COD) from biological treatment systems and are related
to bio-fouling in membrane bioreactors (MBRs) [13,14].
However, there is little information about SMP production
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during photo-fermentation. Yilmaz et al. [10] quanti-
tatively analyzed the partitioning of nutrient electrons into
H,, cell biomass, PHAs, and SMPs in photo-fermentation
by Rhodobacter sphaeroides. They reported that SMPs
were a major electron sink, taking a large amount of redu-
cing power away from H, production. Similarly, Kim and
Kim [15] found that 3% to 17% of substrate electrons were
partitioned to SMP production during semi-continuous
photo-fermentation, suggesting that SMPs are a major
electron sink, taking large amounts of reducing power
away from H, production.

So far, numerous studies have been conducted to optimize
photo-fermentative H, production in batch-type opera-
tions, but there are only a few reports on continuous
operation [16-18]. To our knowledge, long-term H, pro-
duction data with stable performance is limited; however,
this data would be essential for the practical application
of the process. In the present work, continuous photo-
fermentative H, production from lactate was attempted
using the PNS bacterium Rhodobacter sphaeroides KD131.
Electron balances were established to evaluate electron
partitioning of lactate into Hy, cell biomass, and SMPs. As
a gradual drop in H, production was observed during con-
tinuous operation, 0.2% (v/v) ethanol was externally added
to the medium, since it has recently been shown that
the presence of ethanol can enhance H, production by R.
sphaeroides [19]. In addition, size exclusion chromatog-
raphy (SEC) and excitation-emission matrix (EEM) ana-
lysis were carried out to characterize the SMPs produced
during photo-fermentation.

Results and discussion

Continuous performance

As shown in Figure 1a, H, production from lactate was not
sustained. H, production gradually dropped and showed a
negligible H, yield (< 0.5 mol Hy/mol lactate,gqeq) within
two weeks. The theoretical maximum H, yield from lac-
tate is 6 mol Hy/mol lactate,qgeq [7]- Although the fer-
menter was reseeded with a new inoculum (trials 2 and 3),
the same phenomenon was observed. Unlike H, produc-
tion, lactate degradation and cell growth did not fluc-
tuate during the entire operation period, suggesting that
some portion of electrons contained in the substrate
was diverted towards other paths (Figure 1b). Here, we
have quantified the SMPs and demonstrate that changes
in SMP concentration show an opposite trend to H,
production.

Establishing an electron balance is important in anaer-
obic fermentative processes, as it indicates the accuracy
of the experiment and provides basic information re-
garding metabolic flux control [15,20,21]. In the present
study, the COD was used as the common unit for elec-
tron balance, and the substrate and all metabolic prod-
ucts were converted to this unit. The electrons in the
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Figure 1 Daily performance of photo-fermentative H, production from lactate. (a) H, yield and lactate degradation, and (b) cell
concentration and SMPs.

substrate that were utilized can be distributed to H,, cell
growth, and SMPs. The result of this electron balance
exercise can be seen in Figure 2. Unlike the work of
Yilmaz et al. [10], in our study, PHA was not separately
considered with cell growth since most of the PHA is
retained inside the cell [22]. The amount of SMPs was
measured by subtracting the residual lactate from the
COD of samples that had been filtered through a 0.45-
pum membrane. The COD of a cell was calculated by as-
suming a composition of CsH;O,N, resulting in a COD

value of 1.42 g COD/g DCW (dry cell weight) [23]. While
a fully accurate and precise electron balance was not
possible since H, production and SMP concentration
fluctuated during the experimental period, it was inform-
ative to roughly determine electron distribution at the
point of failure by collecting data at each trial after 10 days
of operation.

The sum of metabolic products and the residual sub-
strate accounted for 100+ 10% of the input substrate,
which indicates that the experiments were conducted
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Figure 2 Effect of ethanol addition on electron distribution in continuous photo-fermentative H, production. In the control (absence of
ethanol), data from three independent experiments were collected after 10 days of operation and were averaged.
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with sufficient accuracy. From the electron balance ob-
tained, a number of observations about the reasons for
unsuccessful H, production can be made. In the control,
it would seem that most of the electrons were consumed
for cell growth and SMP production rather than for H,
production. Around 45% and 38% of the electrons were
diverted toward cell growth and SMP production, re-
spectively. As the cell concentration did not vary during
the continuous operation, the reason for the gradual
drop in H, production can be ascribed to the increase in
SMP production as continuous operation proceeded.

Effect of ethanol addition on batch-type fermentation

We first assessed any possible effect of ethanol addition
(0.2% v/v) by examining batch-type photo-fermentative
H, production (Figure 3). In the presence of ethanol, H,
production continued for 80 h while there was no more
H, production after 40 h in the control. Moreover,
H, yield was enhanced from 1.15 to 2.20 mol H,/mol
lactate,qqeq by the addition of ethanol (448 mL H,/L-
broth=1 mol H,/mol lactate,gqeq). There was not
much difference in the profile of residual lactate concen-
tration and pH (data not shown), but significantly differ-
ent patterns were observed for cell concentration and
SMP production depending on whether ethanol had been
added or not. As operation continued, the pH gradually
increased from 7.5 to 8.0 with lactate consumption. In
the control (in the absence of ethanol), the cell con-
centration increased significantly until 20 h, and then
gradually decreased afterwards. However, in the presence
of ethanol, cell concentration continuously increased, fi-
nally reaching about a 20% higher cell concentration. In
contrast, while SMP production continued for the entire

experimental period in the control, it can be clearly seen
that the addition of ethanol suppressed SMP production
after 40 h. It is likely that the production of SMPs in the
later periods of incubation resulted from microbial decay,
since no further lactate degradation occurred after 50 h.

Characterization of SMPs
SMPs are defined as soluble organic compounds that are
released during normal substrate metabolism (utilization-
associated SMPs, UAPs) and decay in biological processes
(biomass-associated SMPs, BAPs) [11]. UAPs are known
to be further utilized by microorganisms, while BAPs are
responsible for final effluent organic matter [11,24]. Dur-
ing batch photo-fermentation, it is likely that cell decay
(or production of BAPs) became dominant after 40 h in the
absence of ethanol, while additional conversion of SMPs to
H, took place in the presence of ethanol, as indicated by
the data shown in Figure 4. Indeed, characterization of
SMPs strongly supports this idea. The molecular weight
distribution of SMPs analyzed at various incubation times
showed that the mass of high molecular weight SMPs kept
increasing during the incubation in both samples. How-
ever, the mass of low molecular weight SMPs (<1 kDa)
was significantly reduced from 197 mg dissolved organic
carbon (DOC)/L at 32 h fermentation to 96 mg DOC/L at
72 h fermentation in the presence of 0.2% ethanol, while
that of the control increased from 205 mg DOC/L to 280
mg DOC/L over the same time period. This supports the
contention that the low molecular weight SMPs were con-
verted to H, in the presence of ethanol.

In Figure 5, the EEM of SMPs taken at various fermen-
tation times shows that the locations of peaks in the two
samples are similar except for the peak with excitation at
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around 270 nm and emission at around 340 nm, thought
to correspond to BAPs [25]. In the presence of ethanol,
the BAP peaks were weaker than those of the control, in-
dicating that the majority of SMPs produced in the pres-
ence of ethanol were mostly UAPs which could be further
fermented to produce H,. After 72 h of incubation, at
which point photo-fermentation is complete in both sam-
ples, the peaks responsible for high molecular weight
SMPs (> 10 kDa) were revealed to be due to humic acid-
like (excitation-emission at 320 to 360 nm and 400 to 450
nm) compounds which cannot be degraded by the micro-
organism. Compared to the control, these peaks were also
weaker in the EtOH,qqeq case, suggesting that the pres-
ence of ethanol can lead to less production of SMPs.

Alteration of redox balance by the addition of ethanol

The reducing power for nitrogenase activity is provided by
ferredoxin, which is reduced by NADPH/NADP" (nico-
tinamide adenine dinucleotide phosphate):ferredoxin oxi-
doreductase [26]. Thus, the H, production by nitrogenase
is affected by the state of cellular reducing equivalents. To
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investigate the effect of ethanol on the equilibrium of cel-
lular reducing equivalents, the cellular levels of NAD(H)
(nicotinamide adenine dinucleotide) and NADP(H) were
determined in the absence and presence of 0.2% ethanol.
As shown in Figure 6a, NAD" was increased by up to ap-
proximately 50% with the addition of ethanol, whereas the
level of NADH was relatively unchanged by the presence
of ethanol, in comparison with the case of the control.
Interestingly, concomitant with the 10% to 30% decrease in
NADPH, NADP" increased almost threefold by the addition
of ethanol (Figure 6b). Accordingly, the ratios of both
NADH/NAD" and NADPH/NADP" were lowered to 40%
to 70% of the control values that were determined in the
absence of ethanol (Figure 6¢). Since the nitrogenase

activity of R sphaeroides is elevated in the presence of
ethanol [19], the consumption of reducing power appears
to be accelerated by ethanol. Previously, an increase in the
cellular NAD" level was also observed following the dele-
tion of nonessential metabolic pathways in R. sphaeroides
[27]. When the metabolic flux leading to H, production is
increased, the equilibrium of cellular reducing equivalents
appears to move towards a more oxidized state.

Excessive reducing power is generated during photosyn-
thetic growth on reduced carbon compounds, and balance
needs to be maintained through reductive pathways such
as CO, fixation, thereby yielding NAD* and NADP™" [28].
It has been suggested that, when growing heterotrophi-
cally under photosynthetic conditions, R. sphaeroides forms
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SMPs to remove excess reducing power [10]. As can
be seen in Figure 6, it turns out that the NAD(H) and
NADP(H) pools in the control photosynthetically grown
R. sphaeroides still remain in the reduced state. Since
BAPs were dominantly produced under photosynthetic
conditions, the formation of BAPs is likely to result from
this reduced state. On the other hand, when ethanol was
added to the medium, the redox balance shifted to a more
oxidized state, implying that more reducing power had
been consumed by the cell. The level of BAPs was con-
sistently decreased in the presence of ethanol. Moreover,
UAPs, which were produced instead of BAPs in cultures
exposed to ethanol, can be further utilized as a secondary
fermentative organic source for H, production. Thus,

although excess reducing power can be eliminated by
SMP formation (more specifically, BAP formation) during
photo-fermentative growth of R. sphaeroides, more redu-
cing power appears to be used up in the presence of etha-
nol, resulting in an increase of cellular NAD* and NADP™.

Effect of ethanol addition on continuous operation

Next we assessed the effect of ethanol addition on con-
tinuous photo-fermentative H, production from lactate.
Ethanol (0.2%) was added to the medium, which was con-
tinuously fed to the fermenter. As shown in Figure 7a, H,
production was stable for one month while giving an aver-
age H, yield of 2.5 mol Hy/mol lactate,qqeq (corresponding
to 41.6% of the total electron consumption). Lactate
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degradation and cell concentration were stable over
this time period, and SMP production was minimized
(Figure 7b). Less than 15% of electrons contained in the
substrate were used for SMP production, whereas 35%
were used in the control (Figure 2).

From the series of experiments, we found that SMPs
are the key factor in photo-fermentative H, production,
and the SMP production can be suppressed by ethanol
addition. However, since the external addition of ethanol
to the medium represents an extra economic burden,
ethanol should be prepared in a cost-effective way. For
example, hetero-fermentative lactic acid bacteria ferment
organic wastes to lactate and ethanol, which could be a
suitable feedstock for photo-fermentative H, production
[29]. This process could be further developed by the
optimization of operational parameters such as cell

retention time, organic loading rate, and pH, all of which
could influence SMP production.

Conclusions

From the series of batch and continuous experiments on
photo-fermentative H, production from lactate in the
absence and presence of ethanol presented here, the fol-
lowing conclusions can be drawn:

1. H, production was not sustained during continuous
photo-fermentative H, production, as the H, yield dropped
lower than 0.5 mol H,/mol lactate,qqeq Within two weeks
with increasing production of SMPs. Rather than Hj,, most
of the electrons were diverted towards cell growth and
SMP production.2. In batch operation, the presence of
ethanol (0.2%) increased the H, yield from 1.15 to 2.20
mol H,/mol lactate,qqeq by suppressing the production of
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SMPs. Cell decay became dominant after 40 h in the ab-
sence of ethanol, while additional conversion of SMPs to
H, took place in the presence of ethanol. In the later
period of fermentation, more than half of the low molecu-
lar weight SMPs (<1 kDa) were consumed when ethanol
had been added, whereas the SMP concentration continu-
ously increased in the absence of ethanol. It was found that
the addition of ethanol facilitated the utilization of redu-
cing power, resulting in an increase in the cellular level of
NAD" and NADP".

3. When ethanol was added during continuous oper-
ation, H, production was stable for one month with an
average H, yield of 2.5 mol Hy/mol lactate,qqeq (corre-
sponding to 41.6% of total electron consumption). Less
than 15% of substrate electrons were used for SMPs pro-
duction, whereas 35% were used in the control.

Methods

Inoculum preparation

The phototropic bacterium R. sphaeroides KD131, isolated
from mud off the coast of Daebu Island in the West Sea
of South Korea, was used for photo-fermentative H, pro-
duction. R. sphaeroides KD131 was pre-cultured in a modi-
fied Sistrom’s broth [30] containing 4 mM (NH4),SOy,
0.3 mM L-aspartic acid, and 20 mM lactate at 30°C
for 24 h under 110 W/m? irradiance using halogen lamps
(12 V, 50 W). The cells were capped in anaerobic tubes
with O-rings and collected by centrifugation (8,000 rpm
for 10 min, Supra 22 K, Hanil Co.) under anaerobic condi-
tions, and used as an inoculum for H, production.

Experiments

For continuous operation, a 3.5-L glass fermenter (work-
ing volume of 3.0 L, 830 mm high by 80 mm in diam-
eter) installed with a pH sensor at the top was used.
Centrifuged biomass was added to reach an initial cell
concentration of 0.56 g DCW/L equivalent to an optical
density of 1.0. After purging with Ar gas (99.999%) for 1
h, the fermenter was operated for 48 h by batch mode as
an adaptation period, and then switched to continuous
mode. One liter of lactate (20 mM) containing medium
(a modified Sistrom’s broth containing 4 mM (NH,4),SO,,
and 0.3 mM L-aspartic acid) was continuously fed and
removed per day, corresponding to three days of hydraulic
retention time (HRT). During the operation, pH was main-
tained at 7.5 £ 0.2 by use of the pH sensor and the addition
of 1 N HClI solution.

For the batch experiments to assess the effect of etha-
nol addition (0.2% v/v) on H, production, 100 mL (ef-
fective volume of 50 mL) serum bottles were used, and
the preparation procedure was the same as that used for
continuous operation. The initial substrate concentra-
tion and cell concentration were 20 mM lactate and 0.56
g DCW/L, respectively. The amount of H, production
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and the concentration of cell, residual lactate, and SMPs
were measured periodically at intervals of 5 to 20 h. The
experiment was conducted in triplicate and the results
were averaged.

The light intensity (measured at the surface of the fer-
menter) was adjusted to 110 W/m? using halogen lamps
(12 V, 50 W), and all experiments were conducted in a
temperature-controlled room at 30°C.

Analytical methods

Measured biogas production was corrected to standard
temperature (0°C) and pressure (760 mmHg) (STP). The
H, content in the biogas was analyzed using a gas chro-
matograph (Model 14-B, Shimadzu Co., Japan) equipped
with a thermal conductivity detector and a stainless steel
column packed with Molecular Sieve 5A (80/200 mesh;
Altech, Deerfield, USA). 1 mL of sampled gas was injected,
and the lower detection limit was 0.1%. The temperatures
of the injector, detector, and column were kept at 100, 120,
and 80°C, respectively. Organic acids were analyzed using
a high performance liquid chromatograph (HPLC, Model
VP, Shimadzu Co., Japan) equipped with a sulfonated divi-
nyl benzene-styrene co-polymer column (300 mm x 7.8
mm, Aminex HPX-87H, BioRad, USA). 20 pL of sampled
liquid was injected, and the lower detection limit was 0.01
mM. The column temperature was maintained at 35°C,
and a photometric detector (216 nm) was used to quantify
the organic acids eluted from the column. An aqueous
solution of 10 mM H,SO, was used as the eluting buffer
and was dispensed at a flow rate of 0.6 mL/min. Liquid
samples were pretreated with a 0.45-um membrane
filter (Millipore, USA) prior to injection to HPLC. The
COD concentration was measured according to standard
methods [31].

The supernatant filtered through a 0.45-um membrane
was regarded as SMPs after subtracting the residual lactate.
After normalization of DOC to 3 mg DOC/L, the EEMs
were examined using fluorescent spectroscopy (Shimadzu
RF530, Japan) at excitation from 220 nm to 380 nm and
emission from 250 nm to 600 nm. The EEMs were further
normalized by using signals from water molecules as well
as Rayleigh scattering, as previously suggested [25]. The
average molecular weight of SMPs was analyzed by size ex-
clusion chromatography using an HPLC (Younglin YL9101,
Korea; Waters column, USA) with polysaccharides (dex-
tran) as the molecular weight standard. The measure-
ments of cellular NAD", NADH, and their ratio as well as
NADP*, NADPH, and their ratio were determined by using
an NAD"/NADH quantification kit (BioVision, USA) and
an NADP'/NADPH quantification kit (BioVision, USA),
respectively.
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