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Analytical method for the determination of organic
acids in dilute acid pretreated biomass hydrolysate
by liquid chromatography-time-of-flight mass
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Abstract

Background: For the development of lignocellulosic biofuels a common strategy to release hemicellulosic sugars
and enhance the enzymatic digestibility of cellulose is the heat pretreatment of biomass with dilute acid. During
this process, fermentation inhibitors such as 5-hydroxymethylfurfural, furfural, phenolics, and organic acids are
formed and released into the so-called hydrolysate. The phenolic inhibitors have been studied fairly extensively,
but fewer studies have focused on the analysis of the organic acids profile. For this purpose, a simple and fast
liquid chromatography/mass spectrometry (LC/MS) method for the analysis of organic acids in the hydrolysate has
been developed using an ion exchange column based on a polystyrene-divinylbenzene polymer frequently used in
biofuel research. The application of the LC/MS method to a hydrolysate from Miscanthus has been evaluated.

Results: The presented LC/MS method involving only simple sample preparation (filtration and dilution) and
external calibration for the analysis of 24 organic acids present in dilute acid pretreated biomass hydrolysate is fast
(12 min) and reasonably sensitive despite the small injection volume of 2 μL used. The lower limit of quantification
ranged from 0.2 μg/mL to 2.9 μg/mL and the limit of detection from 0.03 μg/mL to 0.7 μg/mL. Analyte recoveries
obtained from a spiked hydrolysate were in the range of 70 to 130% of the theoretical yield, except for glyoxylic
acid, malic acid, and malonic acid, which showed a higher response due to signal enhancement. Relative standard
deviations for the organic acids ranged from 0.4 to 9.2% (average 3.6%) for the intra-day experiment and from 2.1
to 22.8% (average 8.9%) for the inter-day (three-day) experiment.

Conclusion: We have shown that the analysis of the profile of 24 organic acids present in biomass hydrolysate can
be achieved by a simple LC/MS method applying external calibration and minimal sample preparation. The organic
acids eluted within only 12 min by isocratic elution, enabling high sample throughput. Repeatability (precision and
accuracy) and recovery were sufficiently accurate for most of the organic acids tested, making the method suitable
for their fast determination in hydrolysate. We envision that this method can be further expanded to a larger
number of organic acids, including phenolic acids such as p-coumaric acid and ferulic acid and other molecules
depending on the researchers’ needs.
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Background
In the quest for renewable and sustainable energy, ligno-
cellulosic biomass, such as herbaceous plants and hard-
woods and softwoods, has been shown to be a promising
feedstock for the production of second generation bio-
fuels [1]. Lignocellulosic biomass essentially consists of
the polysaccharides cellulose and hemicellulose and the
aromatic macromolecule lignin. These compounds are
present in the plant cell wall as a three-dimensional net-
work giving the plant structure, stability, and resistance.
Pretreatment of the biomass is necessary in order to

overcome this recalcitrance and facilitate degradation of
polymeric structures [2-4]. In particular, the pretreat-
ment methods aim to improve the conversion efficiency
of the plant cell wall polysaccharides into fermentable
monosaccharides by reducing the cellulose crystallinity
or by simply splitting the carbohydrates and lignin for
separate downstream processing technologies.
Various pretreatment methods have been developed for

this purpose, comprising alkaline, acidic, or oxidative condi-
tions (for a review see [2-4]). Dilute acid pretreatment is
the most common pretreatment method and results in an
almost complete solubilization of hemicellulose and a high
enzymatic digestibility of the cellulose in the pretreated
biomass. The acidic conditions and the higher temperature
applied during this process also lead to degradation of the
released monosaccharides and the lignin polymer [5]. These
degradation products comprise compounds such as pheno-
lics, furans, and organic acids which are inhibitory to fer-
menting microorganisms [6,7].
Whereas the phenolic inhibitors have been studied fairly

extensively (see, for example, [8,9]), fewer studies have
focused on the analysis of organic acids present in hydrol-
ysate [10-13]. The predominant organic acids found in the
hydrolysate after dilute acid (and other) pretreatment are
acetic acid (released from acetate groups of hemicellulose
and lignin) and levulinic and formic acid (both mainly de-
rived from sugar degradation) [6,7]. Besides these, other
organic acids are also observed, although in lower concen-
trations [10,11]. However, these compounds add up to the
overall organic acid loading and can even contribute to
synergistic toxic effects. A variety of analytical techniques
have been developed for the measurement of organic
acids, predominantly involving chromatography and capil-
lary electrophoresis [14,15]. Although gas chromatography
methods exist [14,16], liquid chromatography (LC) is the
preferred technique, since it does not require derivatiza-
tion. Many different stationary phases have been tested for
this purpose, including reversed-phase [10,12,13,17-21],
normal phase [22-24], and ion exchange [25-36]. If avail-
able, liquid chromatography coupled to a mass spectrom-
eter results in specific detection of individual organic acids
and unambiguous compound confirmation in contrast to
refractive index (RI), ultraviolet (UV), or electrochemical
detection. This is especially advantageous when the ana-
lysis has to be performed on samples with a complex
matrix including potentially interfering compounds such
as those found in hydrolysates. Only a few studies exist
that apply mass spectrometry (MS) and also cover meth-
odical approaches including basic method validation steps
for the analysis of organic acids in pretreatment hydroly-
sates [12,13,19]. Chen et al. used reversed-phase chroma-
tography and UV detection for the analysis of both
aliphatic and phenolic acids and aldehydes after an organic
solvent (methyl tertiary butyl ether) extraction step [12].
The method was further revised by a combination of UV
and triple quadrupole MS detection to improve the speci-
ficity of the analysis [19]. This method was applied by Du
et al. [10] for the measurement of both aliphatic and
phenolic acids and aldehydes after a variety of pretreat-
ments and also by Chundawat et al. [11] for the analysis
of decomposition products formed by ammonia fiber
expansion and dilute acid pretreatments. A single quadru-
pole MS method for formic acid and acetic acid was
reported by Davies et al. [13].
One of the most popular types of liquid chromatography

column used in biomass conversion research is a
polymer-based matrix of polystyrene-divinylbenzene
(for example, BioRad Aminex® HPX-87H, Phenomenex
Rezex™-RFQ) [28,37]. This type of column provides
good separation of simple sugars (such as glucose and
xylose), many organic acids, alcohols (for example,
ethanol and n-butanol), and sugar degradation prod-
ucts (such as 5-hydroxymethylfurfural and furfural). It
only requires acidified water as the mobile phase, has
excellent pH stability, and requires minimal sample
preparation. For mass spectrometry coupling, the com-
monly used sulfuric acid is replaced with the volatile
formic or acetic acid [34,38]. With this setup, organic
acids have been analyzed [33-35,38,39], but its applica-
tion to the analysis of organic acids in hydrolysate has
had only very limited study [13]. We therefore evalu-
ated the applicability of measuring organic acids in
hydrolysate without any extraction or derivatization
steps or the use of internal standards by applying a
simple isocratic elution and time-of-flight mass spec-
trometry detection for high mass-accuracy compound
confirmation.

Results and discussion
A commercially available ion exclusion column packed
with a cation exchange resin based on a polystyrene-
divinylbenzene polymer was used for the analysis. This
column type has excellent stability at acidic pH and, in
our experience, results in very reproducible retention
times which are almost unaffected by other matrix
components. Since the widely employed non-volatile
eluent modifier sulfuric acid is not compatible with mass



Table 1 Relative signal response of the organic acids with
the method source parameters chosen (gas temperature
285°C, fragmentor 75 V, and capillary 3,000 V) relative to
optimum conditions determined for each organic acid

Compound Relative signal response with method
source parameters chosen compared
to optimum condition [%]

Oxalic acid 100

cis-Aconitic acid

Maleic acid

Glucuronic acid

Citric acid

Galacturonic acid

Gluconic acid

Pyruvic acid

Tricarballylic acid 95

Glyoxylic acid 94

Malic acid 92

Malonic acid 91

trans-Aconitic acid

Methylmalonic acid

Succinic acid 90

Glycolic acid 89

Lactic acid 88

Itaconic acid

Glutaric acid 83

Fumaric acid 81

2-Hydroxy-2-methylbutyric
acid

77

Adipic acid 73

Levulinic acid

2-Furoic acid 72
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spectrometry detection, the volatile formic acid was used
at a concentration of 0.5% (v/v) [34]. Acetic acid was
also used in other works without any advantages in
sensitivity in one study [34], although with enhanced
sensitivity in another [38]. Lowering the formic acid con-
centration did not significantly change the retention
times, but it can lead to a lower background signal and
higher sensitivity [34]. The 0.5% formic acid was kept to
ensure appropriate acidity in order to keep the organic
acids in their non-ionized state for chromatography. The
flow rate of 0.3 mL/min was chosen based on a reason-
able compromise of sensitivity and time. A lower flow
rate did not result in a better chromatographic separ-
ation of the analytes, but it extended the analysis time
(data not shown). The mass spectrometer source param-
eters were varied in the range of 285 to 385°C for the
source temperature, 75 to 175 V for the fragmentor
voltage, and 3,000 to 4,000 V for the capillary voltage.
Despite the aqueous mobile phase, a lower source
temperature (285°C), combined with a low fragmentor
(75 V) and capillary (3,000 V) voltage, was the best com-
promise for the detection of the organic acids under
study. These settings provided optimum conditions for a
larger number of organic acids compared to other set-
tings. As it can be seen in Table 1, this was optimum for
8 acids, and 12 other acids had at least >80% response
signal with these source parameters compared to their
optimum settings (data not shown). For the remaining 4
acids, the responses were still in the range of 72 to 77%.
The negative ion mode resulted in a more intense signal
compared to the positive mode, except for acetic and
propionic acid (both omitted for the purpose of this
study). The internal mass reference ions used during
the analysis resulted in a stable mass axis calibration,
enabling the measured ions to be kept within the
2 ppm mass accuracy specified by the instrument
manufacturer. Figure 1 shows the extracted ion chro-
matograms (EICs) of a standard mixture of the 24
organic acids analyzed and their theoretical mass-to-
charge ratio used for ion extraction. The organic acids
selected were chosen based on previous and our own
findings in hydrolysate [10,11]. These organic acids
were eluted within a narrow retention time window in
a comparably short time (<12 min), as observed previ-
ously [33]. Good peak separation was achieved based
on the combination of chromatographic retention time
and accurate mass differences. Exceptions were the
two pairs of isobaric compounds glucuronic/galacturo-
nic acid and methylmalonic/succinic acid, which could
only be distinguished by their retention time. Although
no baseline separation was achieved for the pair glu-
curonic/galacturonic acid, the results obtained were
considered satisfactory. However, the pair methylmalo-
nic/succinic acid was almost baseline separated.
Calibration range, limit of detection, limit of
quantification
Calibration curves were generated, analyzing a set of
serial dilutions from a concentrated mixture containing
all 24 acids. The concentrations tested ranged between
0.01 μg/mL to 100 μg/mL (200 μg/mL for levulinic acid),
and every level was run five times. Table 2 shows the lin-
ear adjustments for the 24 compounds. The lower limit
of quantification (LLQ) was determined as the lowest
concentration for which the obtained relative standard
deviation (RSD) was smaller than 10%. The upper limit
of quantification (ULQ) was determined as the highest
concentration level before signal saturation. The limit of
detection (LOD) was calculated as the resulting concen-
tration after using a signal-to-noise criterion of 3. For this
limit, an average noise signal of five blanks on the EIC was
used. Linear fittings were possible for all acids, most of
them in a range wide enough to allow quantification of



Figure 1 Extracted negative ion chromatograms for the deprotonated organic acids [M - H]- based on the theoretical mass-to-charge
ratio used for detection and quantification. A standard mixture comprising all 24 organic acids was used. Therefore, extracted ion chromatograms
show double peaks for the isobaric pair glucuronic/galacturonic acid and methylmalonic/succinic acid. For these pairs, glucuronic acid and methylmalonic
acid eluted before their isobaric counterpart, respectively.
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the hydrolysate after 1:10 dilution. For the measurement
of glucuronic acid, galacturonic acid, and glyoxylic acid
only, the hydrolysate sample had to be diluted 1:100 so
that the analyte concentrations were within the linear
range. The LLQ ranged from 0.2 μg/mL to 2.9 μg/mL and
the LOD from 0.03 μg/mL to 0.7 μg/mL. Note that the
presented method only uses a 2 μL injection volume, since
no sample preparation or clean-up step other than filtra-
tion and dilution is performed. This reduces the amount
loaded onto the column and minimizes the contamination
of the ion source and mass spectrometer by matrix
compounds. When normalized to the injection volume
applied, the LOD values reported here were similar or
even lower compared to those of other studies using ion
exclusion columns with formic or acetic acid as the eluent
and MS detection [12,33,38,39]. Most linear dynamic
ranges comprised two orders of magnitude, and some up
to three. The regression coefficients ranged from 0.9940
to 0.9998, reflecting the good linearity of the calibration.
For lactic acid an accurate LOD was not determined, since
the signal obtained for the lowest concentration tested
(0.01 μg/mL) was higher than the 3 times noise criterion.
For some acids, linearity was achieved only in a small

range. That was the case for oxalic acid (2.9 to 28.7 μg/



Table 2 Calibration results for each organic acid

Compound Equation Regression coefficient LLQ (μg/mL) ULQ (μg/mL) LOD (μg/mL)

Oxalic acid y =8187.5x - 7954.7 0.9988 2.87 28.71 0.50

cis-Aconitic acid y =21093x - 5565.6 0.9985 0.31 124.00 0.06

Maleic acid y =84067x - 16233 0.9992 0.27 81.00 0.05

Glucuronic acid y =14419x +1094.2 0.9993 0.53 15.60 0.11

Citric acid y =20732x +6991.4 0.9996 0.34 102.00 0.07

Galacturonic acid y =15778x +7460.2 0.9986 0.72 36.00 0.11

Gluconic acid y =12550x +6863.1 0.9990 0.29 58.00 0.10

Pyruvic acid y =14707x +10512 0.9990 0.96 48.00 0.10

Tricarballylic acid y =26542x +1315 0.9998 0.28 55.44 0.05

Glyoxylic acid y =4295.9x +1770.2 0.9940 1.09 19.50 0.15

Malic acid y =32279x - 2606.8 0.9992 0.35 70.00 0.04

Malonic acid y =29560x - 17152 0.9951 0.82 54.45 0.18

trans-Aconitic acid y =12279x +5867.4 0.9998 0.71 47.00 0.07

Methylmalonic acid y =34174x - 869.82 0.9992 0.25 9.90 0.03

Succinic acid y =26782x +4284.6 0.9987 0.25 24.50 0.03

Glycolic acid y =18633x +16302 0.9970 0.78 39.11 0.04

Lactic acid y =23633x +25347 0.9980 0.34 34.17 <0.01

Itaconic acid y =33879x - 2761.6 0.9993 0.23 22.50 0.10

Glutaric acid y =34426x - 6184.7 0.9988 0.23 23.27 0.10

Fumaric acid y =31579x +19428 0.9991 0.49 98.00 0.05

2-Hydroxy-2-methylbutyric acid y =79616x +936.42 0.9998 0.26 50.96 0.03

Adipic acid y =29753x - 3138.7 0.9996 0.23 46.00 0.05

Levulinic acid y =4245.6x +11213 0.9976 1.52 152.00 0.30

2-Furoic acid y =4437.7x +2071.3 0.9990 2.25 45.00 0.70

Lower limit of quantification (LLQ) was determined as the concentration level with a relative standard deviation (RSD) <10% (n =3). Upper limit of quantification
(ULQ) was determined as the upper concentration level at which the calibration started to deviate from a linear response. Limit of detection (LOD) was
determined as the resulting concentration for a signal-to-noise (S/N) =3 criterion.
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mL), glyoxylic acid (1.1 to 19.5 μg/mL), and 2-furoic acid
(2.3 to 45 μg/ml) acid. A wider calibration range can be
achieved by applying a quadratic calibration equation
(data not shown and not further pursued for the purpose
of this study). This is an accepted strategy as long as suf-
ficient calibration points are used throughout the meas-
urement range [40].

Analytical performance characteristics and method
application
The evaluation of the method was performed using a
dilute acid pretreated biomass hydrolysate containing a
complex mixture of innumerable compounds [8,9]. Co-
eluting compounds can potentially cause signal suppres-
sion or enhancement [41] and influence the detection
and quantification of the organic acids. It is known that
dilute acid hydrolysate in general is rich, for example, in
monosaccharides and their degradation products as well
as acetic acid; these compounds can exceed the concen-
trations of the other organic acids by a factor of up to
1,000. Their concentrations in the present hydrolysate
were 51 mg/mL xylose, 23 mg/mL glucose, 5.8 mg/mL
arabinose, 0.9 mg/mL 5-hydroxymethylfurfural (5-HMF),
2.2 mg/mL furfural, and 9.8 mg/mL acetic acid. Whereas
the monosaccharides (3.2 to 4.4 min), acetic acid (5.7 min),
and 5-HMF (11.5 min) eluted within the 12 min suggested
run time, furfural (16.7 min) and potentially other com-
pounds eluted later. Since the method uses isocratic elution
applying only one solvent and does not involve any column
cleaning steps, later eluting compounds will elute during
the next (or later) injection. This is an important fact to
consider, because analysis is not only performed on one
sample alone but rather on a set of samples that are
injected sequentially. Therefore, it was more appropriate to
perform a method of evaluation comprising repeatability
and recovery/precision using a real hydrolysate matrix. The
absolute percentage difference of the values obtained from
analyzing the hydrolysate by using a 20 min isocratic LC
method (ensuring furfural elution before the next injection)
varied from -2.6% to 4.3% compared to the 12 min isocratic
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LC method (data not shown). Therefore, the longer run
time did not improve the accuracy of the results or imply
that later eluting compounds did not interfere with the or-
ganic acid quantification in the following run when using
only a 12-min run time.
Table 3 shows the recovery results after spiking of 1:10

diluted hydrolysate with 1, 5 and 10 ppm (μg/mL) of or-
ganic acid standards. For glucuronic acid, galacturonic
acid, and glyoxylic acid, a 1:100 dilution had to be ap-
plied in order to measure within the linear range. Most
recoveries obtained were in the range of 70 to 130% of
the theoretical yield. In this respect, the method was
comparable to a previously reported method analyzing
organic acids in hydrolysate using two internal standards
(one deuterated, one unlabeled) with 70 to 130% recov-
eries after a sample clean-up step, where organic acids
were extracted first by methyl tertiary butyl ether [10].
In the current study, higher recovery deviations were ob-
served for the 1 ppm level of glyoxylic acid (426%), the
5 ppm levels of malonic acid (217%) and glyoxylic acid
(324%), and the 10 ppm levels of glyoxylic acid (235%),
malic acid (178%), and malonic acid (249%). In a study
Table 3 Recoveries obtained after spiking 1:10 diluted (1:100
hydrolysate with 1 ppm, 5 ppm and 10 ppm

Compound Recovery 1 μg/mL (%)

Oxalic acid 93.5

cis-Aconitic acid 100.0

Maleic acid 108.2

Glucuronic acid 109.8

Citric acid 89.4

Galacturonic acid 98.9

Gluconic acid 106.6

Pyruvic acid 126.4

Tricarballylic acid 94.2

Glyoxylic acid 425.6

Malic acid 108.3

Malonic acid 98.2

trans-Aconitic acid 91.6

Methylmalonic acid 98.3

Succinic acid 94.8

Glycolic acid 73.9

Lactic acid 105.4

Itaconic acid 109.9

Glutaric acid 101.3

Fumaric acid 99.2

2-Hydroxy-2-methylbutyric acid 100.2

Adipic acid 99.1

Levulinic acid 85.0

2-Furoic acid 93.5
measuring the organic acids from plant tissues involving
two 13C-labeled standards and time-of-flight MS detec-
tion, recoveries for three of ten organic acids (oxalic, 2-
oxoglutaric, ascorbic) were reported as 39%, 44% and
22%, respectively, depending on the matrix, although
other recoveries were in the range of 92 to 100% [33]. In
another study applying MS/MS detection for the analysis
of organic acids in plant tissue and exudates, the recov-
eries were in the range of 74 to 115%. However, higher
deviations of 43% and 125% were observed in some sam-
ples for cis-aconitic acid and oxalic acid, respectively
[39]. The application of internal standards is therefore
not a guarantee for accurate recoveries. This is reason-
able, since matrix effects that influence ionization can
usually only be accurately compensated when an isotop-
ically labeled standard for each analyte is used or when
recoveries are determined by spike-in experiments. In
the current study, the obtained absolute values, espe-
cially for glyoxylic acid and also malic acid and malonic
acid, have to be interpreted carefully, although the ob-
served recoveries have been reproduced many times. A
higher analyte signal compared to the calibration sample
for glucuronic acid, galacturonic acid and glyoxylic acid)

Recovery 5 μg/mL (%) Recovery 10 μg/mL (%)

104.3 92.6

115.9 112.3

116.3 113.2

119.4 115.8

104.3 95.0

108.0 108.6

115.4 130.0

110.7 117.9

111.8 120.9

323.9 235.1

117.7 178.6

217.1 248.6

90.6 106.3

105.4 109.5

93.8 92.6

94.8 80.6

107.4 103.7

112.8 120.9

99.9 89.3

101.6 100.0

100.9 102.8

90.5 94.7

96.8 93.7

104.3 92.6



Table 4 Average concentration of organic acids detected
in dilute acid pretreated Miscanthus hydrolysate and
relative standard deviation (RSD) of intra-day and
inter-day repeatability

Intra-day Inter-day

Compound mean
(μg/ mL)

RSD (%) mean
(μg/ mL)

RSD (%)

Oxalic acid 48.4 2.0 47.8 4.3

cis-Aconitic acid 7.2 2.0 7.4 3.4

Maleic acid 11.4 3.1 11.3 1.2

Glucuronic acid 251.9 0.4 259.5 5.4

Citric acid 90.5 1.1 88.6 2.6

Galacturonic acid 607.5 0.7 581.8 3.9

Gluconic acid 218.0 2.7 215.5 1.6

Pyruvic acid 159.5 4.3 158.2 7.9

Tricarballylic acid 64.5 1.4 63.3 7.3

Glyoxylic acid 602.2 9.2 627.8 7.6

Malic acid 92.1 0.8 81.7 11.5

Malonic acid 27.8 1.5 26.7 14.9

trans-Aconitic acid* 98.4 1.7 103.3 6.6

Methylmalonic acid 7.6 4.4 7.6 18.7

Succinic acid 19.0 5.8 19.8 4.8

Glycolic acid 56.0 3.3 57.8 4.0

Lactic acid 31.1 4.9 38.0 7.2

Itaconic acid 5.7 5.8 6.5 13.4

Glutaric acid* 93.8 1.8 90.1 3.9

Fumaric acid* 105.8 2.5 103.6 2.2

2-Hydroxy-2-methylbutyric
acid*

101.4 3.2 107.4 5.7

Adipic acid* 88.6 2.7 84.1 6.1

Levulinic acid 1114.3 1.0 1071.2 4.4

2-Furoic acid 12.2 8.8 13.1 12.9
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is referred to as “ion enhancement” and is a matrix ef-
fect caused by co-eluting compounds influencing the
ionization of the compound in the MS ion source. A
possible cause for ion enhancement is, for example, if
the standard/calibration mixture contains a larger num-
ber (or larger amount) of co-eluting compounds than
the sample [41] (thus, ionization is enhanced in the
“cleaner” sample matrix). In the case of hydrolysate, this
was excluded, since glyoxylic acid, malic acid, and mal-
onic acid elute in a region where the most abundant
hydrolysate component (xylose) also appears. However,
matrix effects are in general complex and can be attrib-
uted to more than one cause [42]. Even the instrumen-
tation can be a reason for matrix effects; therefore, it is
very possible that the same effects will not be observed
on a mass spectrometer from a different vendor. Since
matrix effects are common but influence the perform-
ance of the method, the evaluation of matrix effects is
an important part of any analytical method involving
mass spectrometry detection. Therefore, if sample
clean-up steps are not performed or isotope-labeled
standards are not used, spike-in experiments for recov-
ery determination or standard addition calibration are
recommended for higher accuracy of the determination
of glyoxylic acid, malic acid, and malonic acid.
Repeatability was determined by repeated injection

of the same hydrolysate on different days. Relative
standard deviations (RSDs) ranged from 0.4 to 9.2%
(average 3.6%) for the intra-day experiment and 2.1 to
22.8% (average 8.9%) for the inter-day (three-day)
experiment (Table 4). Overall, the averages obtained
from the inter-day experiment were in good agreement
with the values from the initial day (Table 4). There-
fore, the method is deemed sufficiently accurate for the
analysis of organic acids in hydrolysate from dilute acid
pretreatment.
Hydrolysate was analyzed at day 1 (intra-day, n =3) and also at three different
days (inter-day, n =3). Results respresent the concentration of the non-diluted
hydrolysate (“as is”). Organic acids marked with an asterisk (*) were below the
limit of quantification in the hydrolysate used. For these acids, the 1:10 diluted
hydrolysate was spiked with approximately 10 μg/mL standard solution.
Conclusion

We have shown that the analysis of the profile of 24
organic acids present in dilute acid pretreated biomass
hydrolysate can be achieved by a simple LC/MS method
applying external calibration and minimal sample prepar-
ation comprising only filtration and dilution. Note also
that the present method profiles a larger number of
non-phenolic acids in the pretreatment hydrolysate than
previous studies [10-12,19]. The 24 organic acids were
eluted within only 12 min by isocratic elution, enabling
high sample throughput. Repeatability and recovery were
sufficiently accurate for most of the organic acids tested,
making the method suitable for the fast determination of
organic acids in hydrolysate. We envision that this method
can be further expanded to a larger number of organic
acids including phenolic acids, such as p-coumaric acid
and ferulic acid, and other molecules depending on the re-
searchers’ needs.
Methods and materials
Chemicals
LC/MS grade formic acid and water were obtained from
Fisher Scientific (Pittsburgh, PA). Organic acids, all 99 +%,
were purchased from Sigma-Aldrich (St. Louis, MO).
Hydrolysate was obtained from the National Renew-

able Energy Laboratory (NREL). Pretreatment conditions
were: Miscanthus (around 1 inch size) was incubated
with 1.5% (w/w) sulfuric acid at a 25% biomass loading
(w/w) at 190°C for approximately 1 min, then the
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pressure was rapidly released. The liquid phase after fil-
tration is referred to as “hydrolysate”.

Liquid chromatography/mass spectrometry
Compounds were analyzed using a 1200 Series liquid
chromatography system (Agilent Technologies, Santa
Clara, CA) coupled to a 6520 Accurate-Mass Q-TOF
mass spectrometer (Agilent Technologies, Santa Clara,
CA) equipped with a dual-spray electrospray ionization
source. 2 μL aliquots of the diluted samples were
injected onto a Phenomenex (Torrance, CA) Rezex™
ROA-Organic Acid H + (8%) (150 mm× 4.6 mm) column
equipped with a Phenomenex (Torrance, CA) Carbo-H+

(4 mm× 3 mm) guard column. The compounds were
eluted at 55°C with an isocratic flow rate of 0.3 mL/min of
0.5% (v/v) formic acid in water (132.5 mM formic acid in
water). The negative ion mode mass spectrometry condi-
tions were: gas temperature =285°C, fragmentor =75 V and
capillary =3,000 V, scan range m/z 50 to 1100, 1 scan/s.
Internal mass reference ions m/z 112.9856 and m/z
1033.9881 were used to keep the mass axis calibration stable
during the analysis.

Sample preparation and analysis
A calibration mixture containing all 24 organic acids stud-
ied was prepared in 0.5% formic acid in water at approxi-
mately 100 μg/mL of each acid (200 μg/mL for levulinic
acid). To determine the linear calibration range, limit of
quantification and limit of detection, the calibration solu-
tion was serially diluted to 0.01 μg/mL and each concentra-
tion level was analyzed five times. The hydrolysate sample
was filtered, and 100 μL were diluted with 900 μL 0.5% for-
mic acid in water (100 μL of this dilution were further
diluted with 900 μL 0.5% formic acid in water for the deter-
mination of glucuronic, galacturonic, and glyoxylic acid).
The sample was then analyzed three times with and with-
out spiking of a known standard mixture concentration
and run for 12 min in order to determine analyte recovery
in the presence of matrix compounds (signal suppression
or enhancement). The recovery of the standard spike was
calculated as ([measured amount of analyte in spiked hy-
drolysate] - [measured amount of analyte in unspiked hy-
drolysate])/[amount of analyte spiked in] × 100%.
For intra-day/inter-day comparison of repeatability,

the hydrolysate sample was analyzed three times each
on day one and additionally on three different days
afterwards. Since trans-aconitic acid, glutaric acid, fu-
maric acid, 2-hydroxy-2-methylbutyric aid, and adipic
acid were below the limit of quantification, the hydrolysate
was spiked with about 10 ppm of these compounds.

Data processing
The extracted ion chromatograms for the individual
mass-to-charge ratios were integrated using MassHunter
Quantitative Analysis software version B.05.00 (Agilent
Technologies). Gaussian peak smoothing was applied
with a smoothing function width of 15 and a Gaussian
smoothing width of 5.
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