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Abstract 

Background:  Due to its cost-effectiveness and rich sugar composition, sugarcane molasses is considered to be 
a promising carbon source for biorefinery. However, the sugar mixture in sugarcane molasses is not consumed as 
efficiently as glucose in microbial fermentation due to complex interactions among their utilizing pathways, such as 
carbon catabolite repression (CCR). In this study, 2,3-butanediol-producing Enterobacter aerogenes was engineered to 
alleviate CCR and improve sugar utilization by modulating its carbon preference.

Results:  The gene encoding catabolite repressor/activator (Cra) was deleted in the genome of E. aerogenes to 
increase the fructose consumption rate. However, the deletion mutation repressed sucrose utilization, resulting in the 
accumulation of sucrose in the fermentation medium. Cra regulation on expression of the scrAB operon involved in 
sucrose catabolism was verified by reverse transcription and real-time PCR, and the efficiency of sucrose utilization 
was restored by disrupting the scrR gene and overexpressing the scrAB operon. In addition, overexpression of the ptsG 
gene involved in glucose utilization enhanced the glucose preference among mixed sugars, which relieved glucose 
accumulation in fed-batch fermentation. In fed-batch fermentation using sugarcane molasses, the maximum titer of 
2,3-butanediol production by the mutant reached 140.0 g/L at 54 h, which was by far the highest titer of 2,3-butan‑
ediol with E. aerogenes achieved through genetic engineering.

Conclusions:  We have developed genetically engineered E. aerogenes as a 2,3-butanediol producer that efficiently 
utilizes sugarcane molasses. The fermentation efficiency was dramatically improved by the alleviation of CCR and 
modulation of carbon preference. These results offer a metabolic engineering approach for achieving highly efficient 
utilization of mixed sugars for the biorefinery industry.
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Background
The development of biorefineries has attracted a great 
deal of interest due to increasing energy costs and envi-
ronmental concerns resulting from fossil fuel utilization 
[1, 2]. As an example, microbial production of 2,3-butan-
ediol has been intensively studied in the past few years 

due to its multiple industrial applications, including the 
production of synthetic rubber, plasticizers, fuel addi-
tives, and fumigants [3, 4]. In microbial fermentation 
for 2,3-butanediol production, the carbon source is one 
of the major drivers of cost. Therefore, much effort has 
been made to find inexpensive feedstocks, such as corn-
cob [5], jatropha hulls [6], Jerusalem artichoke tubers [7], 
and molasses [8]. In general, most biomass derived from 
lignocellulose and waste materials contains a few mixed 
sugars. For example, the hydrolysis of lignocellulosic 
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biomass produces a mixture of sugars containing glucose, 
xylose, and arabinose [9]. The main carbohydrate of Jeru-
salem artichoke tuber is inulin, which can be hydrolyzed 
by inulinase to fructose and glucose [10].

When provided with a mixture of different carbon 
sources, most microorganisms prefer to use one carbon 
source for the fastest growth. The presence of preferred 
carbon sources often prevents the utilization of second-
ary substrates by the regulatory mechanisms, including 
transcription activation or repression of certain genes 
concerned with the use of alternative carbon sources, 
which is called carbon catabolite repression (CCR) [11, 
12]. In enteric bacteria, two dominant CCR mechanisms 
involve transcriptional regulation by cyclic AMP recep-
tor protein (Crp) and by catabolite repressor/activator 
(Cra) [13]. Crp is known to regulate the genes involved in 
carbon metabolism, such as lactose, arabinose, mannose, 
glucosamine, and amino sugars operons, in response to 
the depletion of preferred carbon source [14, 15]. On the 
other hand, Cra generally regulates carbon flux through 
by repression of genes encoding glycolytic pathway 
enzymes, or by activating key genes involved in the Krebs 
cycle, glyoxylate shunt, gluconeogenic pathways and elec-
tron transfer [16]. After the preferred carbon source is 
depleted, an intermediate lag-phase is caused by a shift in 
the catabolic system to utilize a secondary sugar. Because 
the catabolic characteristic of microbial fermentation 
with mixed sugars results in a delayed and complicated 
fermentation process, alleviation of CCR of a host micro-
organism is very helpful for improving its fermentation 
efficiency [17].

Sugarcane molasses contains several mixed sugars, a 
dominant amount of sucrose, and similar amounts of 
glucose and fructose. It is considered to be a promising 
feedstock for biorefinery due to its rich sugar content and 

cost-effectiveness [18]. In our previous study, disruption 
of the scrR gene, a transcriptional repressor of the scr 
regulon for sucrose catabolism, was conducted in Entero-
bacter aerogenes for efficient utilization of sucrose in sug-
arcane molasses for 2,3-butanediol fermentation [19]. 
The scrR mutation increased the sucrose consumption 
rate significantly, resulting in 2,3-butanediol production 
from sugarcane molasses that was enhanced by 56.8% 
in batch fermentation over its parent strain. In addi-
tion, 98.7 g/L of 2,3-butanediol production was achieved 
at 36  h of fed-batch fermentation with molasses feed-
ing. However, despite these advances, several obstacles 
remain for more efficient utilization of sugarcane molas-
ses in fed-batch fermentation. First, the efficiency of fruc-
tose utilization in the scrR mutant was relatively reduced, 
which resulted in a significant amount (~30  g/L) of 
fructose accumulation in the medium after the fermen-
tation period. Second, the fermentation duration of the 
scrR mutant with sugarcane molasses for 2,3-butanediol 
production was shorter by 33.3% than that with glucose, 
which might be caused by cell stress from the repeated 
catabolic shift between consumed sugars (glucose and 
sucrose), according to the feeding of sugarcane molasses.

Therefore, the purpose of this study was to develop a 
2,3-butanediol-producing mutant that can utilize all 
three sugars contained in sugarcane molasses efficiently 
and simultaneously. As shown in Fig.  1, all sugars in 
molasses (glucose, fructose, and sucrose) are trans-
ported into cells by the phosphotransferase system (PTS) 
and then converted to intermediates, such as glucose-
6-phosphate (G6P), fructose-6-phosphate (F6P), and 
fructose-1,6-bisphosphate (F1,6BP), involved in the pre-
paratory phase of glycolysis [20–23]. Transcription of the 
fruBKA operon, encoding genes for fructose uptake and 
utilization, was negatively regulated by Cra, previously 

Fig. 1  Catabolic pathway of PTS-mediated sugars contained in sugarcane molasses in E. aerogenes. Symbols represent deleted genes (red cross). 
ScrA EII transport protein for sucrose, ScrB sucrose-6-phosphate hydrolase, ScrK fructokinase, PtsG EIIBCGlc complex, FruA EIIBCfru complex, FruB EIIAfru 
component, FruK fructose-1-phosphate kinase.
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designated as fruR [24]. When glucose is depleted, Cra 
activates the metabolic pathways utilizing gluconeogenic 
carbon sources, such as acetate, pyruvate, glycerol, and 
glucogenic amino acids [25, 26].

In this study, deletion of the cra gene in E. aerogenes 
showed a much higher fructose utilization rate, but sig-
nificantly retarded sucrose utilization. The reduced 
sucrose consumption in cra-deficient E. aerogenes was 
examined by reverse transcription real-time PCR. In 
addition, the carbon preference and efficiency were 
modulated by overexpression of the key genes involved 
in each carbon catabolism, which reduced the accumu-
lation of certain carbon sources in fed-batch fermenta-
tion. The catabolic regulation of carbohydrates involved 
in sugarcane molasses and the strategies for constructing 
2,3-butanediol production strain are shown in the Addi-
tional file 1.

Results and discussion
Effects of cra deletion on sugar utilization and metabolite 
production
To improve fructose utilization, disruption of cra was 
performed. An open-reading frame that contained a 
95% amino acid sequence identity to Cra of Escherichia 
coli K-12 MG1655 was identified from the E. aerogenes 
genome using BLAST (Basic Local Alignment Search 
Tool). The deletion of cra was performed from EMY-01 
(△ldhA) and EMY-68 (△ldhA △scrR), respectively, and 
was verified by colony PCR (data not shown). The result-
ing strains were named EMY-69 (△ldhA △cra) and 

EMY-70 (△ldhA △scrR △cra), respectively (Table  1). 
In our previous study, the ldhA-deficient E. aerogenes 
mutant (EMY-01) showed improved carbon flux and 
NADH availability for 2,3-butanediol production [27]. In 
addition, acidification of the culture medium was allevi-
ated due to reduced lactate production. Because of these 
advantages, EMY-01 was used as a control strain in this 
study.

Flask cultivations of EMY-01, EMY-68, EMY-69, and 
EMY-70 were conducted with 80  g/L of three differ-
ent carbon sources (fructose, glucose, and sucrose) for 
10 h to confirm the effect of cra deletion on sugar utili-
zation (Fig.  2; Additional file  2). The removal of scrR, a 
transcriptional repressor of the scr regulon for sucrose 
catabolism, caused considerable enhancement of sucrose 
utilization, but did not affect the utilization of fructose 
and glucose, in accordance with a previous report [19]. 
The disruption of cra did not affect the consumption of 
glucose, while significantly increasing fructose utiliza-
tion by 32.9 and 39.0% in EMY-69 and EMY-70, respec-
tively (Fig. 2a, b). The improvement in fructose utilization 
increased 2,3-butanediol production by 32.5 and 35.1%, 
respectively. Interestingly, the removal of cra repressed 
the utilization of sucrose significantly. The sucrose con-
sumption of EMY-69 and EMY-70 was reduced by 58.2 
and 24.6%, respectively, compared to that of their parent 
strains (Fig. 2c).

The effect of cra mutation was also confirmed in flask 
cultivation with a mixture of the three sugars. As shown 
in Fig.  3a, b, glucose was the preferred carbon source 

Table 1  Strains and plasmids used in this study

Strains or plasmids Genotype or relevant characteristics Source or reference

Strain

 E. coli DH5α Invitrogen

 E. aerogenes  
KCTC 2190

Wild type Korean Collection for Type Culture

 EMY-01 E. aerogenes KCTC 2190 △ldhA [27]

 EMY-68 E. aerogenes KCTC 2190 △ldhA △scrR [19]

 EMY-69 E. aerogenes KCTC 2190 △ldhA △cra This study

 EMY-70 E. aerogenes KCTC 2190 △ldhA △scrR △cra This study

 EMY-70S Plasmid-based scrAB overexpression strain of EMY-70 by introduction of pZS21MCS::scrAB This study

 EMY-70SP Plasmid-based ptsG overexpression strain of EMY-70S by introduction of pZA31MCS::ptsG This study

Plasmid

 pKM208 lacI, λ Red + Gam-producing vector, tac_promoter, f1_ori, AmpR Addgene

 pCP20 FLP recombinase-producing vector, cI857, pSC101 ori, AmpR, CmR [40]

 pKD4 FRT flanked resistance cassette involved vector, oriRγ, KmR [40]

 pZA31MCS E. coli—K. pneumoniae shuttle vector, PLtetO-1, p15A ori, CmR Expressys

 pZS21MCS E. coli—K. pneumoniae shuttle vector, PLtetO-1, pSC101 ori, KmR Expressys

 pZA31MCS::ptsG pZA31MCS derivative containing ptsG, PLtetO-1, p15A ori, CmR This study

 pZS21MCS::scrAB pZS21MCS derivative containing scrAB, PLtetO-1, pSC101 ori, KmR This study
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Fig. 2  Comparison of consumed concentration of a glucose, b fructose, and c sucrose by E. aerogenes mutants in 10 h of flask cultivation. Gray bars 
concentration of consumed sugars; black bars 2,3-butanediol production. Error bars represent the standard deviations of three experiments.
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of EMY-01 and EMY-68. After glucose was depleted, 
EMY-01 utilized fructose and sucrose at similar rates, 
while EMY-68 consumed sucrose faster than fructose 
due to the disruption of scrR. Meanwhile, the most pre-
ferred sugar of the cra-deficient mutants was fructose. 

The fructose consumption rates of EMY-69 and EMY-70 
increased by 124.0 and 420.5%, respectively, compared 
to that of their parent strains in 10 h of flask cultivation 
with mixed sugars. Furthermore, a significant decrease 
(81.3%) in the sucrose consumption of EMY-69 was also 

Fig. 3  Comparison of flask cultivations of a EMY-01, b EMY-68, c EMY-69, d EMY-70, e EMY-70S, and f EMY-70SP with the consumption of sugars. 
Error bars represent the standard deviations of three experiments.
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observed with 12 h of flask cultivation with mixed carbon 
sources, resulting in a 24.1% reduction of 2,3-butanediol 
production (Fig. 3; Additional file 3).

Transcription of the fructose operon is repressed 
when Cra is bound to the operator, which is located on 
the downstream region of the RNA polymerase binding 
site [24]. Whereas, derepression of the fructose operon 
takes place when cytoplasmic glycolytic catabolites, such 
as fructose-1-phosphate and fructose-1,6-bisphosphate, 
bind to the Cra protein, causing it to dissociate from 
the operator. Our results demonstrate that cra deletion 
improves the consumption rate of fructose significantly 
and removes CCR with respect to fructose utilization, 
which increased 2,3-butanediol production. At the same 
time, a significant decrease in the sucrose uptake rate was 
observed with deletion of Cra, indicating a significant 
interaction between the scr regulon and Cra. The efficient 
utilization of sucrose is essential for maximizing the use 
of sugarcane molasses, because 70% of the carbon con-
tained in sugarcane molasses is sucrose. However, the 
regulation of sucrose catabolism by Cra remains unex-
plored in enteric bacteria.

Regulation of genes involved in sucrose catabolism 
in cra‑deficient E. aerogenes
To observe the mechanism of Cra regulation of sucrose 
catabolism, reverse transcription and real-time PCR was 
conducted with a cra-deficient mutant, which was grown 
in sucrose medium. Six genes related to sucrose utiliza-
tion (scrA, scrB, scrR, scrK, cra, and crp) were selected for 
the reverse transcription and real-time PCR assay. The 
transcription level of genes involved in the sucrose catab-
olism of EMY-01 and EMY-69 was compared in the mid-
exponential growth phase (6 h), using gapA as a reference 
gene [28]. As shown in Fig.  4, there were no significant 
differences in the relative expression levels of scrR, scrK, 
or crp in the strains, whereas the transcription levels of 
scrA and scrB decreased by 32.0 and 24.9%, respectively, 
by disruption of the cra gene.

In E. aerogenes, the scr regulon for sucrose catabolism 
consists of four genes, which encode ATP-dependent 
fructokinase (ScrK), PTS EII transport protein (ScrA), 
sucrose-6-phosphate hydrolase (ScrB), and sucrose-
dependent regulator (ScrR) [29, 30]. The scr regulon 
contains two independent promoters, one in front of the 
scrK and a second in front of the scrAB operon, both of 
which are negatively regulated by ScrR (Additional file 1) 
[31]. In E. coli, the sequence of the Cra-binding site (Cra 
box), TGAAACGTTTCA, has been well characterized 
[16]. Interestingly, a sequence similar to the consensus 
sequence of the Cra box, TAAAACGTTTTA, was found 
in the scrAB promoter region of E. aerogenes. In addition, 

no significant change in the transcription level of crp was 
observed in our results when cra was disrupted. These 
results demonstrate that Cra directly binds to the scrAB 
promoter region to regulate its expression.

The CCR mechanisms by Crp and Cra are complex and 
interconnected. Indeed, Cra regulates the utilization of 
several carbon sources, such as xylose, glycerol, lactose, 
and sorbitol, through activating expression of the crp 
gene, even though Cra does not regulate the transcription 
of relevant catabolic genes directly [13]. In this experi-
ment, we demonstrated the sugar consumption genes can 
be modulated by cra deletion, and that regulation is inde-
pendent with Crp. This result is another example of con-
trolling CCR. Previously Ji et al. tried it by overexpression 
of crp(in) gene, which made Klebsiella oxytoca utilize 
glucose and xylose simultaneously and resulted in higher 
growth and 2,3-butanediol productivity [32].

Effects of scrAB and ptsG overexpression on the sugar 
utilization preference in sugarcane molasses
The decreased sucrose utilization by deletion of cra in 
EMY-69 was partially relieved by scrR mutation, shown 
in EMY-70 (Fig.  2c). However, sucrose utilization in 
that strain was not as efficient as glucose or fructose. 
Therefore, the scrAB operon was cloned in the expres-
sion vector pZS21MCS and overexpressed in EMY-70 to 
increase sucrose utilization. The resulting strain, EMY-
70S, showed considerably enhanced sucrose utilization, 
as shown in Fig. 2c. EMY-70S consumed 61.5 g/L sucrose 
for 10  h of flask culture using sucrose as a sole carbon 
source, representing an increase of 42.2% compared to 
that of EMY-70. In flask cultivation of EMY-70S with 
mixed sugars, the consumption rate of sucrose improved 
to a similar rate as that of fructose consumption (Fig. 3e). 

Fig. 4  Real-time PCR results of genes involved in sucrose catabolism 
by the deletion of the cra gene. The transcription level of genes in EMY-
01 was used as the control. Error bars represent the standard deviations 
of three experiments.
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Interestingly, glucose was the carbon source with the 
lowest priority among the three carbon sources in EMY-
70S. The consumption of glucose was reduced by 46.0% 
compared to that of its parent strain (Figs. 3d, e).

Thus, we attempted to resolve the reduced efficiency of 
glucose utilization in EMY-70S at the genetic level. In glu-
cose catabolism, the EIIBCGlc complex encoded by ptsG 
is known to be a major controller of glucose flux in E. coli 
[33, 34]. Therefore, a strain overexpressing the ptsG gene 
was constructed from EMY-70S and named EMY-70SP. 
Although the overexpression of ptsG did not affect the 
carbon source utilization of a sole carbohydrate, such as 
fructose, glucose, or sucrose, the efficiency of glucose uti-
lization was restored in flask cultivations with a mixture 
of sugars (Figs.  2, 3f ). In EMY-70SP, the consumption 
rate of sucrose was slightly reduced. Among the carbo-
hydrate consumption pathways (Fig. 1), G6P is converted 
not only from glucose by the ptsG gene product, but also 
from sucrose by a series of enzymes involved in the scrAB 
operon. Therefore, the result suggested that overexpres-
sion of the ptsG gene presumably activated glucose trans-
port with G6P formation, which resulted in the relative 
repression of G6P synthesis derived from sucrose.

As shown in the Additional file 3, there were no signifi-
cant differences in the total concentration of the carbon 
source consumed by E. aerogenes mutants when the flask 
cultivations were performed with mixed sugars. These 
results indicate that the maximum carbon source con-
sumption through glycolysis might be reached, but the 
sugar preference was modulated by genetic engineer-
ing. Still, predictable control of sugar preference would 
be very beneficial for efficient utilization of biomass that 
contains a variety of carbon sources. This is because the 
concentration and content ratio of sugars contained in 
biomass vary depending on the type of biomass resources 
and local climate and soil conditions even the same type 
of biomass [35–37].

Fed‑batch fermentation with E. aerogenes mutants using 
sugarcane molasses
To improve 2,3-butanediol production from sugarcane 
molasses, a fed-batch fermentation was performed with 
EMY-70S. As shown in Fig.  5c and Additional file  4, 
2,3-butanediol production reached 140.0  g/L at 54  h of 
cultivation. To the best of our knowledge, this was by 
far the highest titer of 2,3-butanediol with E. aerogenes 
achieved by genetic engineering, and was 18.6% higher 
than that with glucose as a carbon source [27]. A total 
of 361.7  g/L of sugars in sugarcane molasses was con-
sumed. Among the major byproducts, ethanol produc-
tion reached 13.7 g/L at 14 h of fed-batch fermentation, 
after which its concentration was gradually decreased 

to 1.6 g/L at 54 h, in accordance with a previous report 
[19]. The production of acetoin, which is a precursor 
of 2,3-butanediol, was under 2.0  g/L until 40  h of fer-
mentation, but its titer steadily increased to 8.6  g/L at 
54  h. The acetoin accumulation is due to the reduced 
activity of 2,3-butanediol dehydrogenase (BudC) by a 
high concentration of 2,3-butanediol in the fermenta-
tion broth. The production of 2,3-butanediol by EMY-
70S was prolonged until 54  h of cultivation, which was 
50% longer than the fed-batch with both EMY-01 and 
EMY-68 (Figs.  5, 6). Even at 36  h of fed-batch fermen-
tation, 2,3-butanediol productivity (g/L/h) of EMY-70S 
increased by 23.8% compared to that of EMY-68. These 
results indicate that disruption of both scrR and cra genes 
presumably relieved the cell stress due to repeated cata-
bolic shift according to the feeding of sugarcane molasses 
in fed-batch fermentation. However, there was significant 
accumulation (30 g/L) of glucose in the medium after the 
fermentation period (Fig. 6c).

To observe the effect of ptsG overexpression on glucose 
consumption, fed-batch fermentation was performed 
with EMY-70SP. As shown in Fig.  5d and Additional 
file  4, 335.58  g/L of sugars in sugarcane molasses was 
consumed, and 2,3-butanediol production reached 
129.36 g/L at 54 h of cultivation. Although 2,3-butanediol 
production was decreased by 7.6% compared to that of 
EMY-70S, all three carbons in sugarcane molasses were 
used efficiently (Fig.  6d). The metabolic burden accord-
ing to overexpression of the scrAB operon and ptsG gene 
may be the main reason for the slight reduction observed 
in fed-batch fermentation with EMY-70SP. These results 
demonstrate the advantage of genetic engineering in uti-
lizing mixtures of sugars contained in biomass under the 
fermentation process [38].

Conclusions
The efficient utilization of biomass is necessary in order 
to develop an economic biorefinery industry. In this 
study, sugarcane molasses was used as a cheap feed-
stock for 2,3-butanediol production with metabolically 
engineered E. aerogenes. For efficient utilization of sug-
arcane molasses, the removal of transcriptional repres-
sors enabled the mutant strain to metabolize all sugars in 
sugarcane molasses simultaneously, which increased fer-
mentation duration and 2,3-butanediol productivity. In 
addition, the carbon preference was modulated by over-
expression of key genes involved in each carbon catabo-
lism, which relieved the accumulation of certain carbon 
sources in fed-batch fermentation. The metabolic engi-
neering approach provided much higher 2,3-butanediol 
production and efficient utilization of carbon sources 
involved in sugarcane molasses. The strategy developed 
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in this study is a promising approach for the biorefin-
ery industry, through employing sugar mixtures derived 
from inexpensive biomass.

Methods
Construction of the gene‑deficient mutants
All E. aerogenes strains were derived from the wild-type 
strain KCTC 2190 (Korean Collection for Type Cul-
ture), for which the genome has been sequenced [39]. 
Previously, the lactate dehydrogenase (LdhA, accession 
number YP_004594301.1) and sucrose regulator (ScrR, 
accession number YP_004593287.1) were disrupted 
from the KCTC 2190 genome by using a λ red recom-
bination method [40], generating EMY-01 (△ldhA) [27] 
and EMY-68 (△ldhA △scrR) [19], respectively. In this 
study, the gene encoding catabolite repressor/activa-
tor, Cra (previously designated fruR, accession number 
YP_004592435.1), was deleted from the genome of EMY-
01 and EMY-68 in a similar manner, and the resulting 
strains were named EMY-69 (△ldhA △cra) and EMY-70 

(△ldhA △scrR △cra), respectively. The cra_FKF_fw 
and cra_FKF_rv primers were used for cra disruption, 
which was confirmed by colony PCR with the primers 
cra_con_A and cra_con_B. All resulting strains, along 
with primers and plasmids, used in this study are listed in 
Tables 1 and 2.

Construction of plasmids
Enterobacter aerogenes KCTC 2190 was cultured in 
Luria–Bertani medium overnight, and then total genomic 
DNA was extracted using the Wizard Genomic DNA 
Purification Kit (Promega, WI, USA). For scrAB over-
expression, the scrAB fragment (a 2,771-bp segment of 
truncated scrAB gene, accession number YP_004593289.1 
and YP_004593288.1) was amplified by PCR using the 
genomic DNA as a template and the primers pZS21_
scrAB_fw and _rv at an annealing temperature (Tm) of 
62.4°C. The PCR mixture consisted of 100 ng of genomic 
DNA, 200 μmol of dNTPs, 0.5 pmol each primer, 10 μL 
of 5× Phusion GC buffer, 1.5 μL of DMSO, and 1.0 unit 

Fig. 5  Results of fed-batch fermentations using sugarcane molasses with a EMY-01, b EMY-68, c EMY-70S and d EMY-70SP. Symbols represent 
2,3-butanediol (white circles), total sugars (closed squares), pH (pluses), ethanol (open diamonds), and acetoin (open squares).
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of Phusion DNA polymerase (NEB, MA, USA) in a total 
volume of 50  μL. The amplified DNA fragments were 
cloned into the pZS21MCS plasmid joined by the Hin-
dIII and XmaI restriction sites using the DNA Ligation 
Kit Mighty Mix (TaKaRa Bio Inc., Shiga, Japan). The E. 
coli strain DH5α was used for amplification and confir-
mation of the constructed plasmid. The resulting plasmid 
was verified by sequencing. The ptsG fragment (a 1,434-
bp segment of truncated ptsG gene, accession number 
YP_004593473.1) was amplified by PCR using the cor-
responding primers. The PCR mixture composition and 
procedure were the same as that of scrAB, but the anneal-
ing temperature was 64°C. The amplified ptsG fragments 
were cloned into the pZA31MCS plasmid after digestion 
with HindIII and BamHI. The plasmids and primers used 
in this study are listed in Tables 1 and 2.

Media and cultivation conditions
The fermentation medium to produce 2,3-butan-
ediol contained (per L): 3  g KH2PO4, 6.8  g Na2HPO4, 
0.75  g KCl, 5.35  g (NH4)2SO4, 0.28  g Na2SO4, 0.26  g 
MgSO4·7H2O, 0.42  g citric acid, 5  g yeast extract, 10  g 

casamino acid, and 0.3  mL microelement solution 
(1  L) containing 34.2  g ZnCl2, 2.7  g FeCl3·6H2O, 10  g 
MnCl2·4H2O, 0.85  g CuCl2·2H2O, and 0.31  g H3BO3, as 
described previously [19]. In a flask culture, 80  g/L of 
the individual sugars (glucose, fructose, or sucrose) was 
added to the medium as the sole carbon source, and the 
total 90 g/L mixture of sugars, containing 30 g/L each of 
glucose, fructose, and sucrose, was added to the medium 
for the sugar mixture cultivation. For pH neutralization 
of the flask cultivation, 5% calcium carbonate (CaCO3) 
was added to the medium before cultivation. The flask, 
sealed with a silicon stopper, was incubated at 250  rpm 
and 37°C in a 250-mL flask containing 50  mL medium 
with appropriate antibiotics or inducers, when needed, 
at the following concentrations: kanamycin (50 μg/mL), 
chloramphenicol (50  μg/mL), and anhydrotetracycline 
(50 ng/mL). The fed-batch fermentation was carried out 
in a 5-L stirring bioreactor (Bio Control and System, 
Daejeon, Korea) with a working volume of 3 L. The seed 
culture prepared previously was inoculated (5%, v/v) into 
the fermentation medium with an initial pH of 6.8. The 
pH value of the fermentation medium was decreased 

Fig. 6  Comparison of fed-batch fermentations of a EMY-01, b EMY-68, c EMY-70S and d EMY-70SP with the consumption of sugars.
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gradually to 6.0, and then maintained by the automatic 
addition of 5 M NaOH. During the fed-batch fermenta-
tion process, the operating temperature, airflow, and 
agitation speed were maintained at 37°C, 1.5  vvm, and 
280 rpm, respectively. Antifoam 204 (Sigma, MO, USA) 
was added when needed. Brazilian sugarcane molas-
ses was used, and its sugar content was 87 g/L fructose, 
81 g/L glucose, and 387 g/L sucrose, as described previ-
ously [19]. The sterilized sugarcane molasses was fed 
before the sugar was depleted, and the sugar concen-
tration was maintained under 80  g/L during fed-batch 
fermentation.

Quantification of the transcription level of genes involved 
in sucrose catabolism by real‑time PCR
Total RNA isolation was performed as previously 
described [41]. Briefly, cells (1  ×  109) were harvested 
at the mid-exponential phase (6 h) and, then, the total 
RNA in the cell was stabilized using the bacterial rea-
gent RNAprotect (Qiagen, Hilden, Germany). Cell lysis 
was conducted with TE buffer containing lysozyme 
(400 μg/mL), and total RNA isolation was carried out 
using an RNeasy Mini Kit (Qiagen) following the manu-
facturer’s protocol. To synthesize the cDNA from total 
RNA, SuperScript® Reverse Transcriptase (Invitrogen, 

CA, USA) was used. Real-time PCR was performed 
using the synthesized cDNA as a template (Model: MJ 
Mini thermocycler, Software: Opticon Monitor 3, Bio-
Rad, CA, USA) with six sets of PCR primers and a SYBR 
Green mix (Prime Q-Master mix, Genet Bio, Daejon, 
Korea). The primers used in real-time PCR are listed 
in Table  2. The transcription levels of the five genes 
involved in sucrose catabolism were normalized to the 
housekeeping gene glyceraldehyde 3-phosphate dehy-
drogenase (gapA). The experiment was repeated three 
times independently.

Analysis methods
Cell density was monitored by measurement of the opti-
cal density at 600 nm (OD600) with a UV/Visible spectro-
photometer (DU730, Beckman Coulter, CA, USA). The 
concentrations of metabolites, obtained from cultivation, 
were measured by high-performance liquid chromatog-
raphy (Waters HPLC 1500 series, MA, USA), equipped 
with a refractive index (RI) detector at 45°C. The amounts 
of fructose, glucose, and sucrose were measured using 
a High Performance Carbohydrate Column (Waters) at 
35°C, and 80% acetonitrile was used as the mobile phase. 
Organic acids, 2,3-butanediol, acetoin, and ethanol, were 
measured using a Sugar SH1011 column (Shodex, Tokyo, 

Table 2  Primers used in this study

a  Underlined sequences are the homologous sequences with the target genes of E. aerogenes. Restriction sites highlighted in bold.

Primer name Primer sequence (5′ → 3′)a

cra_FKF_fw GTATGTCTATTTAATGGTTGTTTTTTGTACTTCTTACCCAAGGGGCAATTGTGTAGGCTGGAGCTGCTTC

cra_FKF_rv CCATCTGGCGAATAACCTACGAAGAATCTTAACCTTTTTTCGCAAATGAACCTCCTTAGTTCCTATTCC

cra_con_A ACGTAAAAACAGCCCGACAC

cra_con_B CGCTTTTTCTTGCACCATTT

pZS21_scrAB_fw TTTAAGCTTATGGATTTTCAACAGATTTCTCG

pZS21_scrAB_rv AAACCCGGGGCCTGAAAGCAAAACGCTTA

pZA31_ptsG_fw TTTAAGCTTACTCAGGAGCACTCTCAATTATGTT

pZA31_ptsG_rv AAAGGATCCTTAGCTATTGCGGATGTACTCA

RT_scrA_fw TCGGCGGTAACCCTTATCTT

RT_scrA_rv ATTAGCCATCGCCCAGATAG

RT_scrB_fw TGCTACACCGGTAATGTGAAAT

RT_scrB_rv TAGAATTCGAAGCCGCTATCC

RT_scrR_fw CCGGCGTACAGCTGCTTAT

RT_scrR_rv ACGTAGTACCCCTTCCAGCAA

RT_scrK_fw TCAGCCATCTTTCTTTAGATCC

RT_scrK_rv CGGGAAGTGAATATGCTGTTG

RT_cra_fw CCGTATTGCGAACTATCTGGA

RT_cra_rv TAAACAGCAGTTGCGGCATT

RT_crp_fw ATCAAAGAGCACGCTGATTC

RT_crp_rv CCAGCATCTTCAGAATACGG

RT_gapA_fw TTGGTGTTGACGTTGTTGCT

RT_gapA_rv TTCGTAGGACGCTGCTTTTT
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Japan) at 75°C, and 10 mM sulfuric acid was used as the 
mobile phase. The flow rate of both mobile phases was 
maintained at 0.5 mL/min.
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