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Abstract 

Background:  Alkaline hydrogen peroxide pretreatment catalyzed by Cu(II) 2,2′-bipyridine complexes has previously 
been determined to substantially improve the enzymatic hydrolysis of woody plants including hybrid poplar as a con-
sequence of moderate delignification. In the present work, cell wall morphological and lignin structural changes were 
characterized for this pretreatment approach to gain insights into pretreatment outcomes and, specifically, to identify 
the extent and nature of lignin modification.

Results:  Through TEM imaging, this catalytic oxidation process was shown to disrupt cell wall layers in hybrid poplar. 
Cu-containing nanoparticles, primarily in the Cu(I) oxidation state, co-localized with the disrupted regions, provid-
ing indirect evidence of catalytic activity whereby soluble Cu(II) complexes are reduced and precipitated during 
pretreatment. The concentration of alkali-soluble polymeric and oligomeric lignin was substantially higher for the 
Cu-catalyzed oxidative pretreatment. This alkali-soluble lignin content increased with time during the catalytic oxida-
tion process, although the molecular weight distributions were unaltered. Yields of aromatic monomers (including 
phenolic acids and aldehydes) were found to be less than 0.2 % (wt/wt) on lignin. Oxidation of the benzylic alcohol in 
the lignin side-chain was evident in NMR spectra of the solubilized lignin, whereas minimal changes were observed 
for the pretreatment-insoluble lignin.

Conclusions:  These results provide indirect evidence for catalytic activity within the cell wall. The low yields of lignin-
derived aromatic monomers, together with the detailed characterization of the pretreatment-soluble and pretreat-
ment-insoluble lignins, indicate that the majority of both lignin pools remained relatively unmodified. As such, the 
lignins resulting from this process retain features closely resembling native lignins and may, therefore, be amenable to 
subsequent valorization.
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Background
Non-renewable fossil resources have fueled economic 
development for the past two centuries and are a signifi-
cant contributor to high standards of living around the 

world [1]. To meet future needs for the growing global 
demand for fuels, chemicals, polymers, and materi-
als, new renewable resources must be accessed and new 
technologies employed in a sustainable fashion. Plant 
biomass accumulates and stores both solar energy and 
organic carbon through photosynthetic carbon fixation. 
As such, plant biomass results from efficient natural path-
ways for harnessing solar energy and can be utilized as a 
renewable source for reduced carbon for the production 
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of biobased fuels and products to augment products that 
are currently derived from fossil resources [2].

Plant biomass is a highly heterogeneous material com-
posed of multiple cell wall biopolymers that are associ-
ated primarily by non-covalent interactions and with 
composition and properties varying by cell and tissue 
type [3]. A diverse range of approaches is available for 
the conversion of plant cell wall-derived renewable fuels 
and chemicals. Many of these utilize a cell wall decon-
struction strategy involving chemical pretreatment 
followed by enzymatic hydrolysis of the cell wall poly-
saccharides into sugar intermediates that can be sub-
sequently utilized in chemical or biological conversion 
processes [4–7]. Structural and transport tissues com-
prise the bulk of the mass of hardwoods such as hybrid 
poplar, and are responsible, unless subjected to a cell 
wall-modifying pretreatment, for the substantial resist-
ance to hydrolysis by cellulolytic enzymes [8]. Pretreat-
ments improve hydrolysis through a combination of 
chemical and morphological changes to the cell wall that 
may include lignin and hemicellulose solubilization and/
or relocalization that provides improved accessibility of 
cell wall polysaccharides to hydrolytic enzymes [9]. The 
higher order structure of the cell wall strongly impacts 
its response to deconstruction and conversion, and cell 
wall heterogeneity within woody plants has been impli-
cated in differing responses to deconstruction [10]. The 
cell walls of woody plants often exhibit higher recalci-
trance to these pretreatment processes than gramina-
ceous plants due to higher lignin contents and denser 
vascular structures [11]. Acid sulfite pulping [12–14], 
alkaline pulping [15], organosolv pulping [16], dilute sul-
furic acid pretreatment [17], liquid hot water pretreat-
ment [18, 19], and steam pretreatment [20] have all been 
successfully employed as pretreatments for woody bio-
mass, although these processes typically require higher 
chemical loadings, higher temperatures, and/or longer 
treatment times to achieve comparable hydrolysis yields 
to those from grasses. Chemical pulping technologies 
may require substantially less severe reaction conditions 
when adapted as pretreatments because high levels of 
delignification are not required [15].

Alkaline-oxidative treatments are ideally suited for 
the delignification of feedstocks such as woody biomass. 
These processes have been utilized commercially for 
wood pulp delignification and bleaching since the early 
1980s [21], and for the commercial production of vanillin 
derived from the lignin removed during sulfite pulping of 
softwoods since the 1940s [22]. In addition, homogene-
ous catalysts and activators of O2 and H2O2 have been 
extensively investigated for their abilities to enhance 
delignification, for pulp brightening, and for their 

selectivities toward the desired lignin-directed oxida-
tion reactions versus cellulose scission reactions [23–29]. 
In one study, Korpi et  al. screened 189 different metal–
ligand combinations for the oxidation of veratryl alcohol 
to veratraldehyde and found that copper complexes of 
2,2′-bipyridine and 1,10-phenanthroline were especially 
active [30, 31]. These complexes were also reported to be 
effective delignification catalysts when H2O2 [32], O2 [33, 
34], or both [35] were used as the oxidant. All approaches 
exhibited concurrent cellulose depolymerization that, 
although detrimental in instances where the cellulose 
is to be utilized in materials applications in which fiber 
strength is a crucial property, may prove beneficial if the 
desired product is monomeric sugars.

Previously we demonstrated that alkaline hydrogen 
peroxide (AHP) pretreatment in the presence of com-
plexes of copper(II) 2,2′-bipyridine (Cu-catalyzed AHP 
pretreatment) is an effective method for improving the 
enzymatic digestibility of switchgrass, silver birch, and 
hybrid poplar [36, 37]. This improvement is accompanied 
by a decreased content of Klason lignin in pretreated bio-
mass [36] that is associated with better enzyme accessi-
bility to polysaccharides [38]. Similar associations have 
been reported for NaOH-only pretreatment [8], uncata-
lyzed AHP pretreatment [39], alkaline-oxidative deligni-
fication [40], and catalytic oxidative pretreatment with 
molecular oxygen using CuSO4 and 1,10-phenanthroline 
[34]. Despite the demonstrated efficacy of Cu-catalyzed 
AHP pretreatment in increasing lignin removal and 
enzymatic hydrolysis yields, the details of the structural 
and chemical modifications to the cell wall presumably 
responsible for these improvements remain unclear. To 
obtain a better understanding of the effects of Cu-cata-
lyzed AHP pretreatment on both the cell walls and the 
pretreatment-solubilized compounds, a series of char-
acterization techniques were employed. These included 
transmission electron microscopy (TEM) to investigate 
the structural changes in the plant cell wall and, as it 
turned out, to reveal the appearance of nanoscale par-
ticles within cell walls. This imaging was coupled with 
energy-dispersive X-ray spectroscopy (EDS) and electron 
energy-loss spectroscopy (EELS) to identify the elemen-
tal composition of these particles and verify the presence 
of Cu. NMR was used to structurally characterize the 
lignin fractions solubilized by the pretreatment as well 
as the residual insoluble lignin. LC–MS was employed to 
identify and quantify solubilized lignin-derived aromatics 
generated during pretreatment. Together, these data were 
integrated to provide insights into the Cu-catalyzed AHP 
process as well as the structural and chemical changes 
in the plant cell wall polymers that enhance enzymatic 
digestibility.
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Results and discussion
Modifications to cell wall ultrastructure
Although uncatalyzed AHP has been shown to be quite 
effective at delignification, and substantially improves 
enzymatic hydrolysis yields of monomeric sugars for 
corn stover, it has minimal effect on hardwoods [41]. For 
example, uncatalyzed AHP pretreatment of hybrid pop-
lar, using H2O2 loadings in the range of 125–500  mg/g 
biomass, results in only 10–36  % lignin removal and 
18–30  % hydrolysis yields [36, 39]. The addition of 
copper(II) 2,2′-bipyridine [Cu(bpy)] complexes during 
AHP pretreatment, however, significantly increases both 
lignin removal (by up to 40  %) and glucose hydrolysis 
yields (by more than 60 %), even with short pretreatment 
times and low H2O2 loadings [37]. This removal of lignin 
has obvious structural implications for the accessibility of 
hydrolytic enzymes to cell wall polysaccharides.

Recently, a number of approaches have been applied 
to relate cell wall supramolecular organization to its 
recalcitrance and to determine how cell wall structure 
is altered by pretreatment, as reviewed [42]. Notably, 
TEM imaging has been used to characterize corn stover 
cell wall structural changes associated with pretreat-
ments by dilute acid [43], and anhydrous ammonia 
[44], as well as acid chlorite delignification [45]. TEM 
micrographs of untreated hybrid poplar (Fig.  1a) and 
AHP-only pretreated hybrid poplar (Fig. 1b, c) showed 
identifiable features of the cell walls comprising wall 
layers that include secondary cell wall layers (S1 and 
S2) and the compound middle lamella (CML) as well as 
cell corners (CC) and individual lumens. The dark black 
stripes observed in the micrographs are artifacts intro-
duced during ultramicrotome sectioning and KMnO4 
staining [46]. Following uncatalyzed AHP pretreatment 
(Fig. 1b, c), the cell walls retained much of their struc-
tural integrity, as seen by their similarities to those of 
untreated cell walls. The only notable changes were that 
dislocations formed between the middle lamellae and 

the primary cell walls, possibly due to removal of some 
lignin and pectic polysaccharides during pretreatment 
[36, 39].

Addition of Cu(bpy) complexes during AHP pretreat-
ment of hybrid poplar improved delignification and 
enzymatic hydrolysis yields [36]. TEM imaging showed 
that significant cell wall structural changes had occurred 
(Fig. 2). One obvious change was the major dislocations 
in the cell wall, examples of which are shown in Fig. 2a, 
and the formation of fractures in which the secondary 
cell wall layers were perturbed. Fractures and disruptions 
were also observed in other lignin-rich regions includ-
ing cell corners and compound middle lamellae, suggest-
ing that the structural changes may be caused by lignin 
modification and/or removal. Plant cell wall imaging fol-
lowing dilute acid [43] and anhydrous ammonia [44] pre-
treatments of delignified wood pulps [47], and following 
acid chlorite for delignified corn stover [45], has shown 
both dislocations and delaminations within the second-
ary cell wall.

Lignin removal from the cell wall can be achieved 
through relocalization by a combination of solvent and 
temperature [44, 48], or through low- [45] or high-tem-
perature delignification [49]. An important consideration 
for Cu-catalyzed AHP pretreatment is that it was per-
formed at 25–30  °C, temperatures well below the lignin 
glass transition (100–170 °C) [50]. As a consequence, the 
lignin removal we observed is primarily due to chemical 
modification and/or solvent effects rather than thermal 
effects. We also observed that electron-opaque particles 
with diameters in the range of 20–100 nm were often co-
localized with the modified regions of cell walls (Fig. 2c, 
d). These particles were not found in untreated hybrid 
poplar or AHP-pretreated poplar (Fig. 1). As such, they 
can be hypothesized to originate from the catalyst rather 
than as artifacts introduced during the TEM sample 
preparation. This suggests that copper is involved in the 
observed cell wall modification (e.g., via lignin oxidation).

Fig. 1  TEM micrographs of cross sections of a untreated and b, c AHP-only pretreated hybrid poplar cell wall. The micrographs in b and c exhibit 
some dislocations between and within cell walls as a consequence of AHP pretreatment.
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Elemental profiling of pretreated cell walls
When combined with electron microscopy, in  situ 
elemental profiling using energy-dispersive X-ray 

spectroscopy (EDS) and electron energy-loss spectros-
copy (EELS) can provide chemical characterization at a 
spatial resolution on the order of 100 nm [51]. To char-
acterize the elemental composition of the nano-scale 
particles observed in the TEM images, EDS spectra were 
acquired at different locations in a TEM sample (Fig. 3a), 
including at a cell corner (identified as area i in Fig. 3a), 
within a secondary cell wall (area ii), and over the pre-
viously described particles (areas iii, iv). TEM images at 
high magnification show that these particles are aggre-
gates with dendritic structures and diameters on the 
order of 50 nm (Fig. 3b). A comparison of the EDS spec-
tra reveals both similarities and differences in elemental 
composition of the cell wall regions (Fig. 3c–f). Mn peaks 
are apparent in all four spectra and are a consequence of 
the permanganate staining, whereas the Au peaks corre-
spond to the X-ray emissions from the grid that supports 
the TEM sample. The EDS spectrum from the cell corner 
(area i) has a strong Ca L-edge peak indicating the pres-
ence of Ca ions that are known to complex with pectin 
[52]. Ca K-edge peaks (3.7 keV) are also present at a lower 
relative abundance in the spectra of the other cell areas. 
For areas ii and iii where electron-opaque particles were 
analyzed, the EDS spectra feature characteristic peaks for 
Cu. The Cu L-edge and K-edge peaks are not seen in the 
EDS spectra of either the cell corner (area i) or the sec-
ondary cell wall (area ii). EELS was used to identify the 

Fig. 2  TEM characterization of hybrid poplar cell wall after Cu-
catalyzed AHP pretreatment demonstrating a delamination and b 
dislocations of cell wall layers along with accumulation of nanoparti-
cles in disrupted regions (c, d).

Fig. 3  TEM micrographs of hybrid poplar cell wall (a) and high-resolution image of an electron-opaque aggregate (b) together with acquired X-ray 
EDS spectra of select regions within this sample (c–f).
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oxidation state of the Cu-containing particles (Additional 
file  1: Figure S1), which shows the spectrum of a Cu-
containing particle with the pre-edge background sub-
tracted. The white-line intensity (i.e., the sharp threshold 
peaks) of the Cu L2,3 edge indicates that the majority of 
the Cu is in the Cu(I) oxidation state, while the relatively 
low white-line intensity of L3 implies that Cu(0) is also 
present.

The identification of Cu-containing particles suggests 
that the Cu catalyst is localized in the cell wall matrix at 
sites corresponding to those with significant structural 
modification. One compelling interpretation of this result 
is that the soluble Cu catalysts diffuse into the porous 
cell wall matrix during pretreatment and subsequently 
catalyze the formation of localized reactive oxygen spe-
cies that may be involved in the oxidative delignification 
and structural modification of the cell wall in their vicin-
ity. Although the active catalytic complexes have not yet 
been identified, one possibility is that the oxidation reac-
tions are accelerated by Cu complexes that catalyze the 
decomposition of H2O2 [53] and/or activate H2O2 via the 
formation of Cu-peroxide complexes [54].

Whether the formation of the Cu-containing parti-
cles occurs during pretreatment or sample preparation 
is still unknown. A number of scenarios can explain the 
results. The solubility and speciation of the Cu(bpy) com-
plexes are a function of pH, concentration, and ligand to 
metal ratio [55], with Cu(bpy) complexes being substan-
tially more soluble at the alkaline pH where pretreat-
ment occurs. As a consequence, Cu-containing particles 
may precipitate at the neutral pH where sample fixation 
is performed. Another possibility is that the observed 
Cu-containing particles provide indirect evidence of 
catalytic activity as the soluble Cu(bpy) complexes are 
reduced from Cu(II) to the observed Cu(I) and Cu(0) 
oxidation states during the pretreatment process and are 
subsequently deposited as insoluble aggregate particles. 
Whether these particles are catalytically active or inactive 
remains to be determined. Furthermore, the reduction 
of Cu(II) by the incident electrons during TEM imaging 
cannot be ruled out.

Characterization of solubilized cell wall biopolymers 
and phenolic monomers
Our previous work demonstrated that a significant frac-
tion of the lignin can be removed from the cell wall during 
Cu-catalyzed AHP pretreatment [36]. This delignifica-
tion could result from depolymerization (which would 
increase the phenolic hydroxyl content and the solubility 
of the lignin in alkali) [56], oxidation of the lignin (which 
in many cases increases the hydrophilicity of the lignin), 
or a combination of the two processes. Cell wall biopoly-
mer structural changes associated with this pretreatment 

were assessed using multiple analytical approaches. In 
the first approach, the relative abundance and molecular 
weight distributions of the lignin solubilized during pre-
treatment were determined by size-exclusion chromatog-
raphy (SEC) as a function of pretreatment time (Fig. 4). 
A single large peak representing phenolic monomers and 
oligomers eluted below an apparent molecular weight 
of 1,000  Da. The clear trend from these elution profiles 
is that Cu-catalyzed AHP releases significantly more 
soluble lignin fragments than uncatalyzed AHP pretreat-
ment, supporting our previous findings that lignin solu-
bilization during the pretreatment results in increased 
enzymatic hydrolysis yields [37]. It should be noted, how-
ever, that carbonyl functional groups on oxidized lignins 
may also strongly absorb at 280 nm and result in differ-
ing response factors for lignins with differing levels of 
oxidation. Another key observation is that the molecu-
lar weight distributions of the solubilized lignins are not 
noticeably altered for either of the pretreatments over 
time (Fig.  4), indicating that soluble lignins are neither 
undergoing substantial depolymerization, nor repolym-
erization through condensation reactions.

The distribution and abundance of the phenolic mono-
mers solubilized following pretreatment were quantitated 
by LC–MS and HPLC. These monomers arise primarily 
through the cleavage of ether bonds or by saponification 
of phenolic acids that acylate the lignin polymer. The 
distribution of phenolic monomers was found to be sub-
stantially different when the Cu catalyst was present, with 
aldehyde products favored over acids (Fig. 5a). This quan-
titative difference between the release of phenolic acids 

Fig. 4  SEC elution profiles for plant cell wall polymers solubilized 
during pretreatments referenced to elution times for polystyrene 
standards. For reference, the phenolic monomers vanillin, vanillic acid, 
syringaldehyde, syringic acid, and p-hydroxybenzoic acid elute at elu-
tion volumes between 9.1 and 9.35 mL.
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and aldehydes suggests that the Cu-catalyzed reaction 
may utilize a different reaction mechanism that results in 
less oxidation of the lignin polymer, yet yields more intra-
lignin bond cleavage and lignin solubilization than uncat-
alyzed AHP. Another important result is that phenolic 
monomer yields reach only 2  mg/g lignin (i.e., mass of 
monomer to mass of cell wall lignin) for both AHP-only 
and Cu-catalyzed AHP pretreatment, and only 0.5 mg/g 
lignin by alkali-only pretreatment (Fig.  5a). In contrast, 
the complete scission of β–O–4-bonds is expected to 
generate maximum phenolic monomer yields ranging 
up to 50 % or more depending on properties such as the 
syringyl/guaiacyl (S/G) ratio and whether the lignins 
have undergone extensive condensation during process-
ing or extraction [41, 57–60]. Thus, our results suggest 
that the cleavage of β–O–4-bonds is far from complete.

Plants within the family Salicaceae, including the genus 
Populus, are known to have lignins with p-hydroxyben-
zoate groups acylating the γ-OH of syringyl subunits [61, 
62]. As expected, the most abundant phenolic monomer 
in all of the pretreatment liquors was p-hydroxybenzo-
ate (Fig. 5b), as these esters are easily saponified during 
alkaline pretreatments. The results show that alkali-only 
treatment results in the highest yields (14.8 mg/g lignin) 
with AHP-only and Cu(bpy)-AHP releasing roughly one-
third or one half of this quantity. The lower yields fol-
lowing the oxidative treatments are presumably due to 
the lower pHs during these treatments (due to the acidic 
contribution of H2O2) that may result in incomplete 
saponification of the p-hydroxybenzoate, although oxida-
tive degradation/modification may also contribute to this 
difference.

2D HSQC NMR of whole cell walls and solubilized lignins
We used 2D HSQC (heteronuclear single-quantum 
coherence) NMR spectroscopy to analyze lignin after 

Cu-catalyzed AHP pretreatment. NMR characteriza-
tion was performed on untreated whole cell wall mate-
rial from hybrid poplar (Fig.  6a), the lignin that was 
solubilized following 1  h of catalytic pretreatment and 
recovered via acid precipitation (Fig. 6b), and the resid-
ual insoluble cell wall material following pretreatment 
(Fig. 6c). Several important insights can be gained from 
these experiments. First, the NMR data provide evidence 
for lignin oxidation. The aromatic region of the pretreat-
ment-solubilized lignin (Fig.  6b, lower panel) revealed 
a substantial increase in oxidized S and G units to their 
benzylic ketone analogues S′ and G′ plus new vanillate 
units (VA). The aliphatic region (Fig.  6b, upper panel) 
further supports these chemical changes. Although 
most of the correlations corresponding to β-ether units 
in the aliphatic region remained intact, correlations for 
the corresponding oxidized analogues A′ provide fur-
ther evidence of benzylic oxidation. Whether this oxida-
tion occurred prior to or following lignin solubilization 
cannot be established. Currently, we do not know how 
other lignin structures such as β–5-linked units (phe-
nylcoumaran), and β–β-linked (resinol) units (structures 
B and C in Fig.  6) react, but such structures obviously 
remain intact in this fraction. We also noted that cinna-
maldehyde end groups (X1) are completely absent from 
the oxidized lignin samples, whereas benzaldehyde end 
groups (X2) remain. Monomeric and oligomeric frag-
ments with aryl-aldehyde and aryl-acid structures have 
been identified in milled wood lignins following cata-
lytic oxidation [60], and also in lignosulfonates [63, 64]. 
Although the aromatic ring is inactivated toward oxida-
tion due to carbonyl conjugation [65], the aryl α-carbonyl 
is susceptible to nucleophilic attack by hydroxyl groups 
followed by cleavage of the side-chain Cα–Cβ bond [60, 
66]. Such cleavage will decrease the molecular weight of 
polymeric lignin and create hydrophilic lignin fragments 

Fig. 5  Yields of a phenolic acids and aldehydes (excluding p-hydroxybenzoate) and b p-hydroxybenzoate following alkali-only, AHP, and Cu-cata-
lyzed AHP pretreatment.
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with benzoate and benzaldehyde end-groups, consistent 
with the MS data (Fig.  5a). A second important insight 
is that lignin depolymerization is not extensive for pre-
treatment by Cu-catalyzed AHP. Using peak integrations 
as described previously [67], it can be observed that the 
β–O–4, β–5 and β–β linkages are still present in both the 
solubilized lignin (Fig.  6b) and in the residual pretreat-
ment-insoluble lignin (Fig. 6a) in approximately the same 
ratio as in the native lignin. Together with the low yields 
of aromatic monomers observed in LC–MS (Fig. 5a) and 
the SEC studies that reveal an increase in solubilized 

lignins without a noticeable shift in the molecular weight 
distributions (Fig.  4), these NMR results strongly sup-
port a pathway in which Cu-catalyzed AHP pretreatment 
solubilizes and removes a fraction of the cell wall-bound 
lignin with minimal depolymerization and minimal oxi-
dation of the residual lignin.

The lignins from Cu-catalyzed AHP pretreatment 
may be a promising source of lignin for the produc-
tion of value-added products if integrated into a biore-
fining process. Specifically, two lignin streams with 
distinct structural properties are generated comprising 

 9  8  7  6

Pyr

PB2/6

S2/6
S'2/6

G2

G5/6+PB3/5

G5/6
S:44%
S':5%
G:51%
G':0%
VA:0%

PB:16%
S:G:49:51
S':S:10:90
G':G:0:100

 6  5  4  3

a Untreated Poplar

X1γ

Bβ

AγMethoxyl

Aβ-S

Aα

Aβ-G
Bα

Cβ

Cα

X2α

Cγ

Bγ

A:93%
A':0%
B:3%
C:4%

X2α:1%
X1γ:6%

A':A:0:100

9.8 9.6 

194 

192 

 9  8  7  6

PB2/6

S2/6
S'2/6

G'2

G'6

G2
VA2

VA6

G5/6+PB3/5+VA5

G5/6
S:43%
S':10%
G:39%
G':3%
VA:5%

PB:22%
S:G:55:45
S':S:18:82
G':G:1:99

 6  5  4  3

b Cu-AHP Solubilized Lignin
Bβ

AγMethoxyl

Aβ-S

Aα

Aβ-G
A'β(S'/G'-S')

Bα

Cβ

Cα

X2α

Cγ

A:92%
A':1%
B:4%
C:3%

X2α:17%
X1γ:1%

A':A:1:99

9.8 9.6 

194 

192 

 9  8  7

 130

 120

 110

S:51%
S':4%
G:44%
G':1%
VA:0%
PB:8%

S:G:55:45
S':S:7:93
G':G:2:98

1H

13C
ppm

bpy

bpy

bpy
Pyr

PB2/6

S2/6
S'2/6

G2

G5/6+PB3/5

G5/6

 100

 90

 80

 70

 60

 6  5  4  3

A:93%
A':0%
B:2%
C:5%

X2α:6%
X1γ:0%

A':A:0:100

9.8 9.6 

194 

192 

c Cu-AHP Pretreated Residual

13C
ppm

Methoxyl

Aβ-S

Aα

Aβ-G
Bα

Cβ

Cα

X2α

Cγ

Aγ

1H

O
R

OMeMeO

O

26

α

S'
Syringyl

O
R

OMeMeO

26

S
Syringyl

O
R

OMe

O

26

α

G'
Guaiacyl

5

O
R

OMe

2

5

6

G
Guaiacyl

OH

O O

26

α

5 3

PB
p-Hydroxybenzoate

OH
α

X2
Benzaldehyde

end-groups

S/G

OH

α β

γ

X1
Cinnamaldehyde

end-groups

S/GS/G

O

HO OMe
5

4

1

B
phenylcoumaran (β-5)

α

β
γ

G

C
resinol (β-β)

O

O

1

1

α

β

γ
α

β

γ

S/G

S/G

S/G

A
β-aryl ether (β-O-4)

OHO

HO

OMe

α
β 4

1

γ S/G
MeO

S΄/G΄

O

HO

α
β

1

γ

O
OMe

MeO
S/G

4

α

OH

A'
β-aryl ether (β-O-4)

Unresolved, unassigned, polysaccharides, etc. Pyridine (Pyr) 2,2'-Bipyridine (bpy)

OMe

VA
Vanillate

OHO

O

26

α

5

Fig. 6  Partial 2D HSQC NMR spectra of a whole cell wall untreated poplar, b solubilized lignin, and c residual poplar cell walls following Cu-cata-
lyzed AHP pretreatment. Contours are colored to match the structures for aromatic components.



Page 8 of 12Li et al. Biotechnol Biofuels  (2015) 8:123 

pretreatment-solubilized lignins and residual pretreat-
ment-insoluble lignins. The solubilized lignins (Fig.  6b) 
showed minimal depolymerization, exhibited minor 
oxidative modification, and would contain soluble xylan 
oligosaccharides unless these are further hydrolyzed 
and converted. The residual, pretreatment-insoluble 
lignin (Fig. 6c) exhibited minimal modification as a con-
sequence of the pretreatment with structures closely 
resembling native lignins (albeit requiring recovery of 
bipyridine). Furthermore, by controlling the pretreat-
ment time and the oxidation stoichiometry, it might be 
possible to control the molecular weight and chemical 
properties of solubilized lignins, customizing them for 
the production of functional materials and fine chemicals 
with targeted properties.

Conclusions
Our previous work demonstrated that Cu-catalyzed 
AHP pretreatment of hybrid poplar at moderate chemi-
cal loadings and under mild conditions substantially 
improves hydrolysis yields relative to uncatalyzed AHP 
pretreatment. One of the primary outcomes of pretreat-
ment is the solubilization of a fraction (less than 30  % 
under these reaction conditions) [36] of the cell wall-
bound lignin that results in improved accessibility of 
cell wall carbohydrates to hydrolytic enzymes. The cur-
rent work provided a number of insights into the struc-
tural changes that occur to the cell wall and cell wall 
biopolymers following Cu-catalyzed AHP pretreatment 
of hybrid poplar. Specifically, we demonstrated that the 
catalyzed pretreatment resulted in disrupted cell walls 
manifested by dislocations between individual cell walls 
as well as delaminations within cell walls and that cop-
per-containing nanoparticles co-localized with these 
zones of disruption. We hypothesize that sorption of 
catalyst into the cell wall during pretreatment results in 
oxidation, solubilization, and removal of lignin resulting 
in observable cell wall disruptions and enhanced sus-
ceptibility to enzymatic hydrolysis. Consistent with this 
hypothesis, both LC–MS and NMR characterization of 
the solubilized lignins and the residual material follow-
ing Cu-catalyzed AHP pretreatment revealed the pres-
ence of oxidized lignin fragments. Specifically, a fraction 
of the hydroxyl groups at the α-carbon in β–O–4-units 
were oxidized to carbonyls, and end-groups characteris-
tic of hydrolytic cleavage of oxidized lignin side-chains 
were created, suggesting that depolymerization results 
in lignin solubilization and removal during the pretreat-
ment. Intriguingly, whereas the pretreatment-solubilized 
lignins exhibited a more than threefold increase in the 
oxidation of the benzylic alcohol relative to native lignin 
(with correlation peak integrals increasing from 5 to 
18  %), the extent of lignin oxidation was limited in the 

pretreatment-insoluble lignin, which resembled native 
lignins. Formation of the Cu-containing nanoparticles 
with oxidation states of Cu(I) and Cu(0) lower may be 
attributed to reduction of soluble Cu(bpy) complexes 
during pretreatment, although we cannot rule out the 
possibility that these particles are formed during sample 
preparation. Additionally, relative to the lignins gener-
ated during other pretreatments and/or delignification 
processes that are performed at elevated temperatures 
and often result in substantial lignin modification, the 
mildly oxidized lignins generated in this work retain fea-
tures closely resembling native lignins and, as such, may 
add more value to an integrated biorefining process.

Methods
Biomass, pretreatment, and hydrolysis
Hybrid poplar (Populus nigra var. charkoviensis ×  cau-
dina cv. NE-19) was grown at the University of Wis-
consin Arlington Agricultural Research Station. Prior 
to pretreatment, a mixture of heartwood and sapwood 
of the 18-year-old poplar was hammer-milled to pass a 
5-mm screen. Procedures for the compositional analy-
sis and the pretreatment of the biomass were previously 
reported [36]. For AHP pretreatment, hybrid poplar 
(0.5 g) was pretreated in 5 mL aqueous aliquots of 10.0 g 
H2O2/L (10 % wt/wt loading) and 10.8 g NaOH/L (final 
pH of approximately 11.7) at 30 °C for 1 h unless other-
wise noted. During the pretreatment, the samples were 
agitated at 180 rpm in an orbital shaker. For Cu-catalyzed 
AHP pretreatment, 5 mM CuSO4 and 25 mM 2,2′-bipyri-
dine prepared as described previously [36] were included 
in the 5 mL aliquot during pretreatment. For alkali-only 
pretreatment, 0.5  g of hybrid poplar was pretreated in 
5 mL aqueous aliquots of 10.8 g NaOH/L.

TEM imaging and elemental profiling of pretreated cell 
walls
Structural modification of hybrid poplar cell wall by 
pretreatment was studied using transmission electron 
microscope (TEM) combined with energy-dispersive 
X-ray spectroscopy (EDS) and electron energy-loss spec-
troscopy (EELS). The conditions used for pretreatment 
were identical to those used to prepare SEC samples. 
Cell wall samples of untreated hybrid poplar and hybrid 
poplar treated with AHP and Cu-catalyzed AHP for 
24 h were air dried and fixed in 0.1 M pH 7.0 phosphate 
buffer [68] containing 2.5  % (w/w) glutaraldehyde and 
2.5  % (w/w) paraformaldehyde. The fixed cell wall sam-
ples were embedded in Spurr epoxy resin (Poly/Bed 812, 
Polysciences) and sectioned to 100  nm thickness using 
a PowerTome XL ultramicrotome (Boeckeler Instru-
ments, Tucson, AZ, USA). Thin sections were placed on 
150 mesh gold grids with Formvar/carbon support film 
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(Electron Microscopy Sciences, PA, USA) and stained in 
1 % aqueous solution of KMnO4 for 60 s. Samples were 
then rinsed with deionized water to remove excess stain. 
Bright field TEM micrographs and EELS spectra were 
acquired under a JEOL 2200FS 200  kV field emission 
TEM (Peabody, MA, USA) fitted with a Gatan (Warren-
dale, PA, USA) digital multi-scan camera. EDS spectra 
were acquired using an Oxford INCA system (Oxford 
Instruments, Abington, UK) coupled with the TEM.

Analysis or pretreatment liquors
For analysis by size exclusion chromatography (SEC) or 
LC–MS, pretreatment liquors at alkaline pH were filtered 
through a 0.22-µm mixed cellulose ester membrane filter 
(EMD Millipore, Billerica, MA, USA). SEC analysis was 
performed using an Agilent 1100 HPLC equipped with an 
Ultrahydrogel 250 column (Waters, Milford, MA, USA) 
as described previously [69] only using a mobile phase 
flowrate of 0.6 mL/min. Aqueous solutions of monodis-
perse sodium polystyrene sulfonate (Sigma-Aldrich, St. 
Louis, MO, USA) of known molar mass (2,000, 4,300, 
6,800, 10,000, 32,000, and 77,000 Da) were used as cali-
bration standards.

Samples for LC–MS analysis were prepared as 
described above for SEC analysis except that the concen-
trations of CuSO4 and 2,2′-bipyridine during pretreat-
ment were 2  mM and 4  mM, respectively. For LC–MS 
analysis, 10  µL of undiluted pretreatment liquor sam-
ple was adjusted to pH 2.0 with formic acid and was 
injected into a XEVO G2SQTOF mass spectrometer in 
combination with a Waters Acquity UPLC system, and 
equipped with an ESI interface capable of operating 
in both positive- and negative-ion modes. Chromato-
graphic separation was carried out on a Thermo BetaBa-
sic 100 × 2.1 mm C18 column (Thermo Fisher Scientific, 
Waltham, MA, USA) maintained at 40  °C. The binary 
solvent gradient consisted of 0.1 % formic acid in water 
(solvent A) and 100  % methanol (solvent B) in the fol-
lowing gradient: 95 % solvent A for the first 3 min, 50 % 
solvent A over the next 1 min, 30 % solvent A over next 
2 min, and 5 % solvent A over the final 2 min. The column 
was then returned to 95 % solvent A and equilibrated for 
2 min prior to the next injection. A solvent delay of 2 min 
was used to prevent saturation of the detector with the 
sample solvent. The negative-ion mode mass spectrome-
try conditions were constant during all experiments with 
a voltage of −2.25 kV and a desolvation temperature of 
350 °C. MassLynx software (Waters) version 4.1 was used 
for system control and data acquisition. The raw data 
acquired were processed using the TargetLynx applica-
tion. Pure standards for vanillin, vanillic acid, acetovanil-
lone, syringaldehyde, syringic acid, acetosyringone, and 
p-hydroxybenzoate (Sigma-Aldrich, St. Louis, MO, USA) 

were used to validate peak compound identification and 
for quantitation.

For quantitation of p-hydroxybenzoate, samples were 
prepared following the same procedure as that for the 
LC–MS analysis, but the samples were then analyzed via 
high-performance liquid chromatography (Agilent 1260 
LC equipped with an Agilent Poroshell 120 EC-C18 col-
umn (4.6 ×  50  mm) and a diode array detector (DAD). 
Integration of the p-hydroxybenzoate peak at 280 nm and 
comparison to a standard curve was used for quantita-
tion. A binary isocratic solvent system was utilized con-
sisting of 80:20 solvent C to solvent D, where solvent C is 
acetonitrile with 0.1 % water, and solvent D is acetonitrile 
with 0.1 % trifluoroacetic acid.

NMR analysis of whole cell walls 
and pretreatment‑solubilized lignin
Following the pretreatment, the aqueous phase was 
separated from the solid phase (i.e., the insoluble por-
tion of pretreated poplar) via filtration and the filtrate 
was acidified to pH 2.0 with 72 % (w/w) sulfuric acid. The 
precipitate from the acidified filtrate was recovered via 
centrifugation and washed with a large volume of aque-
ous sulfuric acid (pH 2.0) followed by a final washing step 
of resuspending and decanting the lignin sample in pH-
neutral deionized water. The washed lignin precipitate 
was lyophilized prior to NMR analyses. The 2D HSQC 
NMR spectra of three types of samples (untreated hybrid 
poplar, recovered solubilized lignins and the insoluble 
portion of pretreated poplar) were acquired and analyzed 
as previously described by Kim et al. [70].

Untreated and pretreated samples were prepared for 
gel-state NMR as previously described [70]. In brief, 
the dried sample was pre-ground for 1  min in a Retsch 
MM400 mixer mill at 30  Hz, using zirconium diox-
ide (ZrO2) vessels (10  mL) containing ZrO2 ball bear-
ings (2  ×  10  mm). The ground material was extracted 
with distilled water (1  h, 3 times) and 80  % of ethanol 
(1  h, 3 times) with ultrasonication. The cell walls were 
dried and finely ball-milled using a PULVERISETTE 7 
(Fritsch, Idar-Oberstein, Germany) mill at 600 rpm with 
ZrO2 vessels (50 mL) containing with ZrO2 ball bearings 
(10 × 10 mm). Each sample (200 mg) was milled for 1 h 
40  min in 10  min intervals with 5  min interval breaks. 
The ball-milled samples (50 mg of each) were transferred 
into 5 mm NMR tubes and gels formed using DMSO-d6/
pyridine-d5 (4:1, v/v, 0.5 mL) with sonication (30 min).

NMR spectra were acquired on a Bruker BioSpin 
(Billerica, MA, USA) AVANCE 700  MHz spectrom-
eter equipped with a cryogenically cooled 5  mm triple-
resonance 1H/13C/15N TXI gradient probe with inverse 
geometry (1H coils closest to the sample). The central 
DMSO solvent peak was used as internal reference (δC 
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39.5, δH 2.49  ppm). The 1H–13C correlation experiment 
was an adiabatic HSQC experiment (Bruker standard 
pulse sequence ‘hsqcetgpsisp.2’; phase-sensitive gradi-
ent-edited 2D HSQC using adiabatic pulses for inversion 
and refocusing) [71]. HSQC experiments were carried 
out using the following parameters: acquired from 9 
to 1  ppm in F2 (1H) with 1,200 data points (acquisition 
time 200  ms), 160–10  ppm in F1 (13C) with 512 incre-
ments (F1 acquisition time 13.6  ms) of 32 scans with a 
1-s interscan delay; the d24 delay was set to 0.86 ms (1/8 J, 
J =  145  Hz). Volume integration of contours in HSQC 
plots used Bruker’s TopSpin 3.1 (Mac) software. Assign-
ments of peaks from NMR spectra were based on previ-
ous publications [70, 72].
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