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Abstract 

Background:  Lignocellulosic materials provide an attractive replacement for food-based crops used to produce 
ethanol. Understanding the interactions within the cell wall is vital to overcome the highly recalcitrant nature of 
biomass. One factor imparting plant cell wall recalcitrance is lignin, which can be manipulated by making changes in 
the lignin biosynthetic pathway. In this study, eucalyptus down-regulated in expression of cinnamate 4-hydroxylase 
(C4H, EC 1.14.13.11) or p-coumaroyl quinate/shikimate 3′-hydroxylase (C3′H, EC 1.14.13.36) were evaluated for cell wall 
composition and reduced recalcitrance.

Results:  Eucalyptus trees with down-regulated C4H or C3′H expression displayed lowered overall lignin content. The 
control samples had an average of 29.6 %, the C3′H reduced lines had an average of 21.7 %, and the C4H reduced 
lines had an average of 18.9 % lignin from wet chemical analysis. The C3′H and C4H down-regulated lines had differ-
ent lignin compositions with average S/G/H ratios of 48.5/33.2/18.3 for the C3′H reduced lines and 59.0/39.8/1.2 for 
the C4H reduced lines, compared to the control with 65.9/33.2/1.0. Both the C4H and C3′H down-regulated lines had 
reduced recalcitrance as indicated by increased sugar release as determined using enzymatic conversion assays utiliz-
ing both no pretreatment and a hot water pretreatment.

Conclusions:  Lowering lignin content rather than altering sinapyl alcohol/coniferyl alcohol/4-coumaryl alcohol 
ratios was found to have the largest impact on reducing recalcitrance of the transgenic eucalyptus variants. The devel-
opment of lower recalcitrance trees opens up the possibility of using alternative pretreatment strategies in biomass 
conversion processes that can reduce processing costs.
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Background
Commercial feedstocks for conversion to ethanol have 
traditionally been limited to corn starch and sugarcane, 

but the use of food crop feedstocks has generated con-
cern due to their important role in the world food sup-
ply [1]. Cellulosic ethanol, produced from trees, biomass 
residues, and herbaceous and other non-food-source 
biomass is a sustainable alternative that does not use 
feedstocks that would otherwise compete with existing 
food supplies. However, using lignocellulosic feedstocks 

Open Access

*Correspondence:  robert.sykes@nrel.gov 
1 National Bioenergy Center, National Renewable Energy Laboratory, 
15013 Denver West Parkway, Golden, CO 80401‑3393, USA
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13068-015-0316-x&domain=pdf


Page 2 of 10Sykes et al. Biotechnol Biofuels  (2015) 8:128 

is hampered by the higher recalcitrance to ethanol bio-
conversion caused by the inaccessibility of the carbohy-
drate substrate due to the complex nature of the plant 
cell wall [2, 3] that contributes to its natural ability to 
resist decomposition by enzymes [2, 4, 5]. Transgenic 
plants with modified cell walls may provide a source of 
alternative lignocellulosic feedstock. Developing chemi-
cal processes to overcome recalcitrance and improve 
ethanol yields from lignocellulosic materials by improv-
ing conversion efficiencies is an ongoing area of research 
[6]. Recently, understanding the recalcitrant nature of 
biomass by exploring genetically modified feedstocks 
that can be more easily converted to biofuels has been 
explored [7–11].

One of the major contributors to biomass recalcitrance 
is believed to be the lignin present within the cell wall [2]. 
Lignin is essential to the plant as it provides the struc-
ture to cell walls and provides a barrier to natural plant 
pathogens. Lignin is formed by the polymerization of a 
combination of sinapyl alcohol (S), coniferyl alcohol (G), 
and 4-coumaryl alcohol (H) subunits (Fig.  1) [12]. The 
relative levels of S, G, and H lignin subunits are expressed 
as the S/G/H ratio. However, since H subunits are not 
found in significant amounts in woody species, the 
ratio of lignin subunits is typically expressed as the S/G 
ratio. H lignin is only present in very low levels in most 
plants, such as alfalfa (Medicavo sativa) = 4.9 % [7], Nor-
way spruce (Picea abies) = 0.8 % [13], and hybrid poplar 
(Populus alba ×  P. grandidentata) =  0.2  % [14]. Lignin 
content, structure, and the ratio of the lignin precursors 
may impact the ability of enzymes to access the carbohy-
drates contained in the cell wall in biochemical process-
ing using pretreatment to increase accessibility [3, 7, 10, 
15]. Understanding the role of lignin content, structure, 
and molecular weight can identify ways to reduce the 
recalcitrant nature of biomass, minimize or eliminate 

pretreatment, and facilitate the development of cost-
effective biochemical conversion processes for producing 
biofuels.

Plantation-grown trees, especially eucalyptus grown 
in Brazil, are already bioprocessed to produce chemical 
cellulose and pulp. Eucalyptus is considered the most 
productive tree for pulpwood production due to its bio-
mass production rate and the properties of its wood. 
Improving the genetics of eucalyptus to improve pulp-
ing efficiency is a goal of the forest products industry, 
including traditional breeding [16], marker-assisted 
breeding [17], and genetically modified trees to reduce 
lignin content [18] and alter lignin monomer composi-
tion [19]. Advances in biotechnology have lowered the 
costs of gene mutation and genetic modification in trees. 
This has allowed tree improvement researchers to con-
duct functional screening of large numbers of transgenic 
trees a year in order to identify genetic approaches that 
alter cell wall composition and/or biopolymer structure, 
some leading to plants with lower recalcitrance. Reduc-
ing the lignin content of trees can result in lower chemi-
cal bleaching costs during the pulp and paper processing, 
which has provided a major impetus for exploring natural 
populations to identify trees with mutations in the lignin 
biosynthetic pathway. The lignin biosynthetic pathway 
has been extensively studied and there are a variety of 
avenues to explore when attempting to reduce plant cell 
wall recalcitrance [20]. Caffeic acid 3-O-methyltrans-
ferase (COMT) down-regulation has led to increased sac-
charification in sorghum (Sorghum bicolor (L.) Moench) 
[21], switchgrass (Panicum virgatum) [8], and alfalfa (M. 
sativa) [7]. Reduced recalcitrance lines have also demon-
strated increased ethanol production in switchgrass lines 
in which COMT expression has been altered [22] and in 
poplar with down-regulated p-coumarate 3-hydroxylase 
or over-expressed ferulate 5-hydroxylase [10].

Cinnamate 4-hydroxylase (C4H, EC 1.14.13.11) and 
p-coumaroyl quinate/shikimate 3′-hydroxylase (C3′H, 
EC 1.14.13.36) are involved near the beginning of the 
lignin biosynthetic pathway and their down-regulation 
is, therefore, expected to reduce overall lignin content 
and potentially impact the S/G ratio [23, 24]. Many prior 
publications have referred to the latter enzyme as p-cou-
marate 3-hydroxylase; in this paper, C3′H is being used to 
mean either possibility. In alfalfa, down-regulation of the 
C3′H gene decreased lignin content, increased H lignin 
monomers, and decreased molecular weight, but caused 
little change in the S/G ratio [25, 26]. In a second alfalfa 
study, C4H down-regulated plants not only displayed 
lower lignin values, but also demonstrated reduced S/G 
ratios [27]. One notable difference between C3′H and 
C4H down-regulation in alfalfa occurs in the H lignin 
content, where plants with altered C3′H expression 

Fig. 1  Chemical structures of starting alcohols used in the formation 
of lignin
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produced a large increase in H lignin, but plants with 
altered C4H expression displayed no significant change 
from the control. In poplar plants down-regulated in 
C3′H expression, total lignin decreased and H lignin 
increased while S/G ratios increased [14]. Down-regu-
lation of C4H in tobacco (Nicotiana tabacum) displayed 
decreases in total lignin and slight decreases in S/G [28]. 
This paper deals with transgenic lines of hybrid eucalyp-
tus (Eucalyptus urophylla × E. grandis) exhibiting down-
regulated C4H or C3′H expression. Specifically, the trees 
were transformed using RNA interference (RNAi) con-
structs directed against EgrC4H1, the gene encoding the 
most strongly xylem-expressed C4H, or EgrC3′H3, the 
gene encoding the most strongly xylem-expressed C3′H 
[29].

Results and discussion
Selection of lines
After generating and field testing multiple lines of euca-
lyptus transformed using plasmids designed to reduce 
lignin content, wood from the trees was characterized by 
pyrolysis molecular beam mass spectrometry (PyMBMS) 
to identify lines with moderate levels of lignin reduction 
(approximately 30 % reduction). A subset of selected lines 
was established in a greenhouse, grown for 6  months, 
and characterized using quantitative polymerase chain 
reaction (qPCR) to verify that the target genes were 
indeed reduced in expression (Table 1). Four lines trans-
formed using the pARB670 plasmid (EgrC4H1 down-reg-
ulation) had an average EgrC4H1 RNA expression level of 
9.5 ± 1.0 % of that found in control samples, with a mild 
reduction of EgrC3′H3 expression to 75 ± 6 % of control 

levels. Accordingly, three lines transformed using the 
pARB669 plasmid (EgrC3′H3 down-regulation) had an 
average EgrC3′H3 RNA expression level of 10.8 ± 3.6 % 
of that found in control samples, with a nonsignificant 
reduction of EgrC4H1 expression. Although it was not 
possible to perform qPCR analysis on all lines due to 
losses of plants in tissue culture storage, these results 
suggest that the initial PyMBMS characterization allowed 
accurate selection of lines with the target genes reduced 
to similar levels.

Extractives content
Eucalyptus trees can have high levels of natural oils in the 
wood that could impact the methods used to determine 
sugar release. To remove these natural oils, a water and 
ethanol extraction was performed. After extraction, there 
was a reduction in the error associated with the sugar-
release results. Average standard deviation for the unex-
tracted wood was ±0.025  g/g, compared to ±0.011  g/g 
biomass for the extractives-free wood. Sugar-release 
results from the extractives-free wood were compara-
ble to the unextracted wood with a R2 =  0.91 (data not 
shown).

Starch removal
Starch content can artificially inflate sugar release results, 
falsely indicating lower recalcitrant samples [30]. To pre-
vent starch content from effecting sugar release results, 
it can be removed. However, the starch content for all 
samples used in this study was determined to be lower 
than 1.2 %, with a measurement error of 1 %. Due to the 
low starch values measured, samples were run without a 
starch removal treatment.

Cell wall composition
The results of the cell wall compositional analysis are 
shown in Table 2. The down-regulation of the C3′H and 
C4H genes in the lignin pathway is expected to result in 
a reduction of the lignin precursors necessary for normal 
lignin biosynthesis, potentially lowering the lignin con-
tent as well as altering the S/G/H ratio. Both the C3′H 
and C4H RNAi lines were observed to have significantly 
reduced lignin content compared to the untransformed 
control (Table  2). The C3′H down-regulated plants 
resulted in an average 26.7 % reduction of lignin content, 
while the C4H down-regulated plants had an average 
36.1 % lignin content reduction. The reduction in lignin 
content for C3′H and C4H down-regulated lines was con-
sistent with the findings of Chen and Dixon [7] in alfalfa 
where similar genetic transformations displayed a 37  % 
reduction for C3′H antisense lines and a 29 % reduction 
for C4H antisense lines. In eucalyptus, the reduction in 
lignin content in both C3′H and C4H down-regulated 

Table 1  RT-PCR quantification of gene expression

* Indicates significant difference from the control average at the p value <0.05 
level

Sample Relative expression of  
C4H (Eucgr.H01844)

Relative expression of 
C3H (Eucgr.A02190)

Control 014 0.95 0.85

Control 018 0.98 1.08

Control 023 1.06 1.03

Control avg 1.00 ± 0.06 0.99 ± 0.12

C3′H 105 0.79 0.15

C3′H 113 0.68 0.093

C3′H 114 0.79 0.082

C3′H avg 0.75 ± 0.06* 0.108 ± 0.036*

C4H 091 0.11 0.76

C4H 092 0.092 1.22

C4H 093 0.091 0.69

C4H 098 0.087 0.62

C4H avg 0.095 ± 0.010* 0.82 ± 0.27
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lines was offset by increases in the measured extrac-
tives, xylose, and acetyl contents (Table 2). Average glu-
cose content of the C4H down-regulated lines (43.0  %) 
was increased compared to the control (40.2  %), while 
the glucose content for the C3′H down-regulated lines 
was relatively unchanged (39.7  %) (Table  2). Galactose 
contents for both C3′H and C4H down-regulated lines 
remained relatively unchanged compared to the control. 
The increase in xylose and acetyl content for both C3′H 
and C4H RNAi lines is consistent with O-acetyl-(4-O-
methylglucurono)xylan, the primary hardwood hemicel-
lulose, comprising a larger fraction of the cell wall. There 
was a decrease in arabinose content for the C4H down-
regulated lines, although the arabinose levels measured 
were close to the detection level of the analytical meth-
ods used in the analysis.

Thioacidolysis and PyMBMS were used to characterize 
changes in lignin structure and to measure the relative 
amounts of subunits in the lignin polymer. Thioacidoly-
sis determined average S/G ratios of 1.5, 1.5, and 2.0 for 
the C3′H reduced, C4H reduced, and control samples, 
respectively (Table 3). Thioacidolysis measured a signifi-
cant increase in the H monomers released in the C3′H 
down-regulated lines, indicating that a larger fraction of 
lignin is the 4-coumaryl alcohol (H) subunit. The increase 

in H monomers is consistent with impeding the conver-
sion of p-coumaroyl quinate/shikimate to caffeoyl qui-
nate/shikimate by down-regulation of the C3′H gene, 
reducing the formation of the monolignols necessary 
for G lignin and S lignin, while increasing the monol-
ignols necessary for H lignin (see Bonawitz and Chapple 
[20] for a schematic of the lignin biosynthetic pathway). 
These results follow the same trend that was previously 
observed in alfalfa [27], where control and C4H down-
regulated plants displayed similar H lignin levels of 3–4 % 
and the C3′H down-regulated lines displayed 48  % H 
lignin. PyMBMS confirmed that there was a reduction 
in the ratio of the syringyl to guaiacyl monomers from 
2.1 in the control samples to 1.2 in both the C3′H and 
C4H RNAi lines (Table  3). PyMBMS did not detect an 
increase in molecular fragments that are associated with 
H lignin in the C3′H RNAi lines. It was determined that 
the non-pyrolyzed char content was highly correlated to 
the amount of H lignin as determined by thioacidolysis, 
indicating that the H lignin fraction was not fragmenting 
to smaller molecules during pyrolysis and, therefore, was 
not detected (data not shown). Previous 13C nuclear mag-
netic resonance (13C-NMR) analyses of lignin isolated 
from C3′H down-regulated lines in alfalfa have deter-
mined that there is a greater prevalence of C–C bonds in 

Table 2  Traditional wet chemical composition for eucalyptus plants with lignin pathway modifications

* Indicates significant difference from the control average at the p value <0.05 level

Sample % Ash % Water 
extractives

% Ethanol 
extractives

% Lignin % Glucose % Xylose % Galactose % Arabinose % Acetyl % Mass 
closure

Control a 0.5 4.4 0.9 29.3 39.4 13.0 1.7 0.5 3.9 93.5

Control b 0.7 3.9 0.9 30.0 40.9 13.1 1.5 0.6 3.9 95.3

Control avg 0.6 4.2 0.9 29.6 40.2 13.0 1.6 0.5 3.9 94.4

C3′H 105 0.7 7.3 1.2 22.3 38.8 16.0 1.4 0.0 4.7 92.4

C3′H 106a 0.5 5.7 1.0 21.3 41.9 16.3 1.8 0.6 4.9 94.0

C3′H 106b 0.5 6.7 1.2 21.4 41.0 16.1 1.3 0.6 4.9 93.7

C3′H 113a 0.5 7.0 1.1 21.5 39.5 17.1 1.3 0.3 5.1 93.3

C3′H 113b 0.5 6.9 1.3 22.1 38.5 17.3 1.3 0.7 4.9 93.5

C3′H 114 0.9 4.6 1.7 21.6 38.5 18.4 1.3 3.1 4.9 95.1

C3′H avg 0.6 6.4* 1.3 21.7* 39.7 16.9* 1.4 0.9 4.9* 93.7

C4H 73a 0.9 3.7 0.8 17.8 46.3 16.6 2.5 0.3 4.7 93.6

C4H 73b 0.9 5.8 0.9 18.9 42.3 17.3 1.7 0.3 4.9 92.8

C4H 91 0.8 3.8 0.9 20.9 43.5 16.6 1.8 2.5 4.2 95.0

C4H 92 0.8 3.8 1.0 19.5 44.0 17.7 1.4 2.7 4.5 95.4

C4H 93 0.7 4.7 0.8 18.5 42.7 18.5 1.9 2.6 4.7 95.2

C4H 96 0.7 5.8 0.8 17.5 41.3 19.0 1.4 0.1 5.2 91.9

C4H 98 0.8 3.9 1.0 20.1 43.5 17.5 1.7 2.2 4.3 95.0

C4H 99a 0.8 4.4 1.3 18.5 41.6 18.3 1.6 0.4 4.9 91.9

C4H 99b 0.9 5.3 1.0 18.4 42.0 17.6 1.6 0.3 4.7 91.9

C4H avg 0.8* 4.6 0.9 18.9* 43.0 17.7* 1.7 1.3 4.7* 93.6



Page 5 of 10Sykes et al. Biotechnol Biofuels  (2015) 8:128 

H lignin that would remain intact at the pyrolysis tem-
peratures used in this study [31].

Reduced recalcitrance
Wood samples were analyzed using a high-throughput 
pretreatment and enzymatic saccharification process to 
determine if the C3′H and C4H gene expression modi-
fications lowered recalcitrance [32, 33]. Reduced recal-
citrance is defined as an increase in glucose and xylose 
release after enzymatic saccharification compared to the 
control samples under a defined pretreatment condition. 
The cell wall chemistry data of the sugar content in the 
biomass allowed the sugar release data to be converted 
to a percent release for both non-pretreated and pre-
treated samples. For samples not subjected to pretreat-
ment, the C4H reduced lines released an average 21  % 
of the total sugar, which was a significant improvement 
over the control samples that displayed an average of only 
2 % of the total sugars released, while the C3′H reduced 
lines averaged a 16 % release (Table 4). Chen and Dixon 
[7] also found decreased recalcitrance in alfalfa lines 
with down-regulated C3′H expression, with enzymatic 
hydrolysis efficiency approximately twice that of the con-
trols for the C3′H antisense lines and 1.5 times the con-
trol for the C4H antisense lines. In the present study on 

eucalyptus, hot water pretreated samples displayed an 
average percent total sugar release for the control of 80 %, 
while the C3′H down-regulated lines released 94 % of the 
total sugars and the C4H lines 97 %. By providing a near 
100  % release upon pretreatment, these lines have high 
potential for bioconversion. Plants requiring decreased 
or no pretreatment are of interest for the biofuel indus-
try because pretreatment is often one of the most costly 
aspects of fuel production due to chemical costs, sugar 
degradation products that can inhibit fermentations, and 
capital costs [6].

However, genetically modified plants with strong lignin 
reduction typically result in reduced growth, which 
decreases per-acre crop yields [20], and the mechanisms 
behind this are still being investigated [34]. While the 
C3′H down-regulated lines exhibited severely reduced 
growth (average height 2.0 m compared to 6.0 m for the 
control), the C4H down-regulated lines showed a milder 
effect (average height 3.4 m); and there were no obvious 
pest problems observed for the reduced-lignin lines. It 
may be possible to mitigate the negative growth effect 
through cultural treatments such as irrigation or cop-
picing. In addition, more refined lignin modification 
constructs that protect the integrity of vessel walls could 
to be other pathways toward the protection of yield. A 

Table 3  Thioacidolysis results compared with lignin and S/G estimates using pyrolysis molecular beam mass spectrom-
etry (PyMBMS)

* Indicates significant difference from the control average at the p value <0.05 level

Sample Thioacidolysis PyMBMS

% S % G % H S/G Ratio S/G Ratio Lignin

Control a 66.0 32.6 1.5 2.0 2.1 30.0

Control b 65.8 33.7 0.5 1.9 2.1 30.9

Control avg 65.9 33.2 1.0 2.0 2.1 30.4

C3′H 105 51.7 34.0 14.2 1.5 1.4 22.9

C3′H 106a 48.3 34.2 17.6 1.4 1.2 20.5

C3′H 106b 46.9 34.2 19.0 1.4 1.1 21.2

C3′H 113a 49.1 32.4 18.5 1.5 1.2 21.5

C3′H 113b 48.8 31.2 19.9 1.6 1.2 20.6

C3′H 114 46.1 33.5 20.4 1.4 1.1 19.6

C3′H avg 48.5* 33.2 18.3* 1.5* 1.2* 21.0*

C4H 73a 58.6 38.2 3.1 1.5 1.2 21.9

C4H 73b 59.0 40.2 0.9 1.5 1.2 21.9

C4H 91 57.7 41.4 0.9 1.4 1.3 23.1

C4H 92 58.2 41.2 0.7 1.4 1.3 22.5

C4H 93 59.2 39.7 1.1 1.5 1.2 21.1

C4H 96 58.4 40.8 0.8 1.4 1.2 21.8

C4H 98 61.5 37.6 0.9 1.6 1.3 22.9

C4H 99a 60.4 38.5 1.2 1.6 1.1 19.0

C4H 99b 58.0 40.9 1.0 1.4 1.1 21.2

C4H avg 59.0* 39.8* 1.2 1.5* 1.2* 21.7*
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promoter with expression restricted to fibers might be 
used in down-regulation constructs. Another alterna-
tive might be introduction of a C4H gene under control 
of a vessel-specific promoter in combination with down-
regulation or mutation of the more generally expressed 
endogenous C4H gene [35]. Despite the slower growth, 
the C4H down-regulated wood responded well to a mild 
hot water pretreatment; therefore, the reduced lignin 
trees may still provide economic benefit. Hot water pre-
treatment has the potential to significantly lower the cost 
associated with biomass pretreatment due to a reduction 
in chemical usage, lower amounts of sugar degradation 
products that can inhibit fermentation, and capital costs 
compared to other pretreatment technologies, such as 
dilute acid, alkali, and steam explosion [32, 33].

The results of this study determined that lignin content 
has a large impact on lowering recalcitrance, as shown 
by the correlation between Klason lignin content and the 
percentage of glucose released after pretreatment and 
enzymatic hydrolysis (Fig.  2). The down-regulation of 
the C4H gene produced trees that had an average Klason 
lignin content of 17.8  % and released 91  % of the avail-
able glucose compared to 73  % for the control under 
identical pretreatment conditions. The low lignin lines 
also released significantly more sugar without pretreat-
ment, although pretreatment is still necessary to release 

enough sugar to make these transgenic lines candidates 
for biofuel production. These results agree well with pub-
lished data on alfalfa where lignin levels were observed 
to correlate with sugar release [7]. Reducing recalcitrance 
by reducing lignin content was also reported by Fu et al. 
[8] via an ethanol assay with COMT down-regulated 
switchgrass, where a 12–15 % reduction in lignin content 

Table 4  Percentage of sugar released by enzymatic saccharification

* Indicates significant difference from the control average at the p value <0.05 level

Sample No pretreatment Hydrothermal pretreatment

% Glucose % Xylose % Total % Glucose % Xylose % Total

Control a 3 1 3 72 97 78

Control b 1 2 1 73 108 82

Control avg 2 1 2 73 102 80

C3′H 105 11 9 11 89 111 95

C3′H 106a 17 11 15 86 106 92

C3′H 106b 16 13 15 86 110 92

C3′H 113a 16 11 14 87 109 93

C3′H 113b 16 13 15 90 110 96

C3′H 114 29 25 28 82 97 87

C3′H avg 18* 14* 16* 87* 107 93*

C4H 73a 30 21 28 82 103 88

C4H 73b 18 14 17 94 113 99

C4H 91 12 9 11 88 107 93

C4H 92 15 11 14 89 103 93

C4H 93 26 17 23 94 105 97

C4H 96 23 16 21 96 103 98

C4H 98 22 12 19 84 96 87

C4H 99a 30 22 28 98 111 102

C4H 99b 28 23 26 93 109 98

C4H avg 23* 16* 21* 91* 106 95*

Fig. 2  Glucose release versus Klason lignin content for samples that 
were not subjected to pretreatment (gray diamonds) and pretreated 
samples (black squares)
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resulted in an increased ethanol yield of up to 38 % over 
the control.

With the strong correlation between lignin content 
and glucose release, the question is raised as to whether 
the reduction in recalcitrance is also associated with the 
lignin structure. The wood samples produced by down-
regulation of either the C4H or C3′H genes have similar 
S/G ratios, 1.2 as determined by PyMBMS and 1.4 from 
thioacidolysis. However, the C4H RNAi lines released 
greater amounts of glucose than the C3′H RNAi lines 
utilizing no pretreatment and hot water pretreatment. 
In addition, these sugar release results indicate that H 
lignin content is not, in and of itself, a primary factor in 
recalcitrance since the C3′H down-regulated lines, con-
taining 18.3 % H lignin (Table 3), were more recalcitrant 
than the C4H down-regulated lines with only 1.2  % H 
lignin. Therefore, in this study, lowering lignin content 
appears to have had a much larger effect on reducing 
recalcitrance than changing the H lignin subunit ratio. 
Our results are consistent with the findings of Chen and 
Dixon [7], finding no real correlation between S/G ratio 
and sugar release for antisense C3′H and antisense shi-
kimate hydroxycinnamoyl transferase (HCT) low lignin 
transgenic lines in alfalfa. However, these eucalyp-
tus results are not in agreement with data from natural 
poplar variants that were found to be less dependent on 
lignin content and more dependent on the S/G ratio of 
the wood samples [32, 36].

Conclusions
Down-regulating C3′H and C4H genes in the lignin bio-
synthetic pathway results in eucalyptus trees with lower 
lignin content and altered S/G/H ratios. Thioacidolysis 
results indicate that the C3′H RNAi lines contain an aver-
age 18.3  % H lignin, while the C4H RNAi lines contain 
only 1.2 %, similar to the control samples at 1 % H lignin. 
Down-regulation of each gene led to lines with signifi-
cantly reduced recalcitrance, releasing a greater amount 
of glucose with lower severity pretreatments. The C4H 
down-regulated lines had particularly high sugar release, 
with more than half the lines achieving 90  % glucose 
release using hot water pretreatment, with two lines hav-
ing glucose release of more than 95 %. This study iden-
tified lowering lignin content rather than altering the 
S/G/H ratios had the largest impact on reducing recalci-
trance of the transgenic lines. The less recalcitrant nature 
of the C3′H and C4H RNAi lines make these plants excel-
lent candidates for biofuel feedstocks.

Methods
Plant materials
To test the effect of different target genes on reducing 
lignin in hybrid eucalyptus, E. urophylla  ×  E. grandis 

was transformed with two plasmids designed to reduce 
the expression of genes in the lignin biosynthetic path-
way [37]. Gene sequence information for the E. grandis 
genome [38] can be obtained at the Phytozome web-
site [39, 40]. EgrC4H1 [Phytozome:Eucgr.J01844] and 
EgrC3′H3 [Phytozome: Eucgr.A02190] cDNAs were iso-
lated from xylem libraries derived from E. grandis. For 
each gene, a 600-bp fragment from the 3′ portion of the 
cDNA was cloned as an inverted repeat, driven by the 
promoter from a E. grandis arabinogalactan protein gene 
[Phytozome:Eucgr.B02846]. The xylem-preferred pro-
moter comprised 2340 base pairs upstream of the pre-
dicted initiation codon for this gene [37]. The plasmid 
identities were pARB669 for EgrC3′H3 and pARB670 for 
EgrC4H1. The plasmids were introduced into an in vitro 
clonally propagated line of E. urophylla × E. grandis via 
Agrobacterium-mediated transformation of young leaves 
similar to that described by Tournier et  al. [41]. Fifteen 
independent events were generated for pARB669 and 18 
events were produced for pARB670. The nontransformed 
line was used as the control. The plants were grown for 
3  months as containerized cuttings in the greenhouse, 
acclimatized for 1 month outdoors, and then transferred 
into the field in Glades County, Florida, for an additional 
20  months before destructive sampling. Stems were 
debarked, air dried, and milled with a Wiley mill to pass 
through a 20-mesh screen.

Gene expression
Gene expression was measured using real-time qPCR. 
For these analyses, additional plants of a subset of the 
lines were established in a greenhouse and grown for 
6  months. Three lines transformed with a selectable 
marker were used as controls. Lignifying lateral branches 
approximately 2 mm in diameter were collected without 
removing pith or epidermis. Samples were frozen in liq-
uid N2 and stored at −80 °C until RNA extraction.

Total RNA was extracted from 100  mg samples of 
greenhouse-grown stem material, which had been 
ground to a powder with mortar, pestle, and liquid 
nitrogen, using the RNeasy Plant Mini Kit (QIAGEN). 
Potentially contaminating genomic DNA was removed 
from the RNA by treatment with the TURBO DNA-free 
Kit (Ambion). cDNA was synthesized using the Affin-
ity Script qPCR cDNA Synthesis Kit (Stratagene), using 
between 20 and 100 ng of total RNA per sample. All kits 
were used according to their respective manufacturer’s 
instructions.

Quantitative PCR was performed in a 96-well format 
using an Agilent Technologies/Stratagene Mx3000P with 
an elongation factor 1α gene [Phytozome:Eucgr.G02807] 
used as the reference. The qPCR primers and probes were 
designed using Primer3 [42]. Primer oligonucleotides were 



Page 8 of 10Sykes et al. Biotechnol Biofuels  (2015) 8:128 

synthesized by Invitrogen, and probes were synthesized by 
Biosearch Technologies. The primer oligonucleotides were 
C4H-J01844-L1 (5′-ATCTGCAAGGAGGTCAAGGA-3′), 
C4H-J01844-R1 (5′-CGTTGATGTTCTCGACGATG-3′), 
C3H-A02190-L1 (5′-GCACCAACCCTGATAATTCG-3′), 
C3H-A02190-R1 (5′-GACACGATCGCCTTGAACTC-3′), 
EFA-G02807-L2 (5′-GGGCCCCACCCTCCTCGACG 
CT-3′), and EFA-G02807-R1 (5′-GCCGTTGCCAATCTG 
CCCGGGGT-3′). Probes for the lignin genes were C4H-
J01844-P1 (5′-ACTTCGTCGACGAGAGGAAA-3′) 
and C3H-A02190-P1 (5′-TGGTGAAGAAGTACCTGG 
GG-3′), each labeled with 6-carboxyfluorescein. The probe 
for the reference gene, EFA-G02807-P2 (5′-AGGCTCTCCA 
GGAGGCCCTCCCT-3′), was labeled with 
hexachlorofluorescein.

Each 25 μL reaction contained 3  pmol of the appro-
priate probe oligonucleotide and 5  pmol of each cor-
responding primer oligonucleotide, plus 12.5  μL of 
Maxima Probe/ROX qPCR Master Mix (2×) (Thermo 
Fisher Scientific #K0233) and cDNA equivalent to 
1–5  ng of total RNA. Three plants were analyzed from 
each line. A single RNA purification and cDNA synthe-
sis was done for each biological replicate and all qPCR 
reactions were run in duplicate. Changes in expression 
of the genes of interest in the RNAi lines relative to their 
expression in the transformed controls were calculated 
by the ddCt method [41], using the average of the dCt 
of each gene in the control lines as the baseline for that 
gene.

Removal of extractives
Dried biomass samples were knife milled to 60-mesh and 
loaded into tea bags and sealed for extraction. The sam-
ples were extracted with a 1:1 water and ethanol mixture 
using a soxhlet and allowed to air dry in a hood for 24 h.

Starch content
Starch content was measured on all samples to ensure 
starch did not artificially contribute to the sugar 
release values. The starch assay was adapted from 
a standard commercial starch test from Megazyme 
International. After loading the biomass into the wells 
of a 96-well Hastelloy plate, each of the samples was 
wetted with 20 µL of 80 % ethanol, and 300 µL of the 
amylase solution was added. The plates were sealed 
with a polypropylene adhesive seal (Titer-Tops, Diver-
sified Biotech) augmented with custom magnetic seal-
ing lids. The sealed plates were incubated overnight at 
55 °C and 125 rpm in a HiGro microtiter plate incuba-
tor. Glucose analysis after amylase digestion was con-
ducted using the glucose oxidase assay described in 
Selig et al. [32].

Recalcitrance measurements
Recalcitrance was determined using a high-throughput 
system developed at the National Renewable Energy 
Laboratory (NREL) for the BioEnergy Science Center 
as described in Selig et  al. [32] and Decker et  al. [33]. 
Briefly, control and experimental biomass samples 
were knife milled to pass a 20-mesh screen and then 
dispensed into a custom-machined, 96-well Hastel-
loy plates in 5.0 ± 0.3 mg/well aliquots using the Symyx 
robotic system. Triplicate samples, as well as standards 
and controls, were distributed across the plates. Water 
was added to each well (250 μL), and the loaded reactor 
plate was sealed using silicone adhesive Teflon tape and 
sandwiched between two empty plates. Glass reinforced 
Teflon gaskets were placed between adjacent plates, and 
then the stack was clamped tightly using a custom clamp-
ing system. The clamped stack was then loaded into a 
Parr reactor electrically preheated to 180  °C. Steam was 
introduced and the reactor assembly was held at 180  °C 
(as determined by a thermocouple in the reactor vessel) 
for 17.5  min. Steam was then vented and cooling water 
was allowed to flow into the reactor. These pretreatment 
conditions were chosen to be suboptimal to enhance dif-
ferences due to changes in the biomass recalcitrance. 
The suboptimal conditions were chosen to release 70  % 
of the glucose of the standard Populus trichocarpa × P. 
deltoides F1 hybrid, clone 53–239 sample harvested near 
Oak Ridge, Tennessee.

Enzymatic saccharification of the samples with no 
pretreatment and pretreated solids including the hydro-
lysate was carried out in the 96-well reactor plates. All 
the saccharification samples were loaded with an excess 
(70 mg/g initial biomass) of a commercial enzyme prepa-
ration CTec2 (Novozyme 188, Novozymes A/S, Bags-
værd, Denmark), buffered with 1  M citrate to maintain 
a pH of 5.0, and incubated at 50 °C for 72 h. Analysis of 
glucose and xylose released into the hydrolysate from the 
enzymatic saccharification process was performed using 
glucose oxidase/peroxidase and xylose dehydrogenase 
assays (Megazyme International, Wicklow, Ireland).

Cell wall compositional analysis
The biomass composition (glucan, xylan, galactan, ara-
binan, lignin, and ash) was determined by following the 
NREL Laboratory Analytical Procedure (LAP): Deter-
mination of Structural Carbohydrates and Lignin in Bio-
mass (NREL/TP-510-42618). NREL LAPs are available 
online [43].

Lignin characterization
A commercially available molecular beam mass spec-
trometer modified for biomass analysis was used for 
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pyrolysis vapor analysis [44–46]. Approximately 4  mg 
of air-dried, 20-mesh biomass was pyrolyzed at 500  °C. 
Mass spectral data from m/z 30–450 were acquired 
using 17 eV electron impact ionization. S/G ratios were 
estimated by summing the syringyl peaks 154, 167, 168, 
182, 194, 208, and 210 and dividing by the sum of guaia-
cyl peaks 124, 137, 138, 150, 164, and 178 [44]. Several 
lignin peaks were omitted in the syringyl or guaiacyl 
summations due to individual peaks having associations 
with both S and G precursors [44]. Thioacidolysis for 
analyzing S, G, and H monomer content was performed 
according to the procedure described in Foster et al. [47]. 
Thioacidolysis is used to determine the H monomer con-
tribution due to the inability of the pyrolysis method to 
efficiently detect this monomer.
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