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Abstract 

Background:  Oleaginous microalgae contain a high level of lipids, which can be extracted and converted to biofuel. 
The lipid-extracted residue can then be further utilized through anaerobic digestion to produce biogas. However, 
long-chain fatty acids (LCFAs) have been identified as the main inhibitory factor on microbial activity of anaerobic 
consortium. In this study, the mechanism of LCFA inhibition on anaerobic digestion of whole and lipid-extracted algal 
biomass was investigated with a range of calcium concentrations against various inoculum to substrate ratios as a 
means to alleviate the LCFA inhibition.

Results:  Whole algal biomass of Nannochloropsis salina represents high lipid content algal biomass while lipid-
extracted residue represents its low lipid counterpart. The anaerobic digestion experiments were conducted in a 
series of serum bottles at 35 °C for 20 days. A kinetic model, considering LCFA inhibition on hydrolysis, acidogenesis 
as well as methanogenesis steps, was developed from the observed phenomenon of inhibition factors as a function 
of the LCFA concentration and specific biomass content or calcium concentration. The results showed that inoculum 
to substrate ratio had a stronger effect on biogas production than calcium, and calcium had no effect on biogas 
production when inoculum concentration was extremely low. The microbial community analysis by high-throughput 
Illumina Miseq sequencing indicated that diversity of both bacterial and methanogenic communities decreased with 
elevation of lipid concentration. Hydrolytic bacteria and aceticlastic methanogens dominated bacterial and archaea 
communities, respectively, in both high and low LCFA concentration digesters.

Conclusions:  This study demonstrated that inoculum concentration has a more significant effect on alleviating LCFA 
inhibition than calcium concentration, while calcium only played a role when inoculum concentration met a thresh‑
old level. The model revealed that each functional microbial group was subject to different levels of LCFA inhibition. 
Although methanogens were the most susceptible microbes to LCFA inhibition, the inhibition factor for hydrolytic bac‑
teria was more highly affected by inoculum concentration. The microbial community analysis indicated that the bacterial 
community was affected more than the methanogenic community by high LCFAs concentration. Syntrophic acetogens 
were sensitive to high LCFA concentrations and thus showed a decreased abundance in such an environment.
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Background
Oleaginous microalgae offer a promising option for sus-
tainable production of renewable transportation fuels 

while reducing lifecycle greenhouse gas emissions rela-
tive to fossil fuels [1]. Several studies point to both the 
expense and inefficiencies of algae lipid-extraction tech-
niques, demonstrating that the importance anaerobic 
digestion (AD) could have on either whole-algae or resi-
due-algae utilization, respectively, with regard to biofuel/
bioenergy production [2, 3].
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During the AD process, lipids are initially hydrolyzed 
to long-chain fatty acids (LCFAs) and glycerol in a fast 
step by extracellular lipases excreted by hydrolytic bac-
teria. LCFAs then adsorb to and are transported within 
microbial cell membranes. Once inside, LCFAs are fur-
ther degraded to acetic acid and hydrogen through 
β-oxidation by syntrophic acetogenic bacteria. In 
lipid-containing substrates, degradation of LCFAs via 
β-oxidation is the slowest conversion step and controls 
the overall kinetics of the digestion process [4, 5]. The 
difference between the rates of hydrolysis of lipids and 
β-oxidation of LCFAs could result in a reactant–product 
imbalance and LCFA accumulation over time, resulting 
in inhibition on microbial activity.

The inhibitory effect of LCFAs on microbial activity of 
hydrolytic bacteria, acidogens, acetogens, and methano-
gens within anaerobic consortium has been well docu-
mented [6–11]. Methanogens were reported to be more 
susceptible to LCFA inhibition compared to acidogens [9, 
11], while acetotrophic methanogens are reported to be 
more severely affected than hydrogenotrophic methano-
gens [8, 10]. If the microbial population is disrupted by 
LCFAs, inhibited digestion will occur, leading to volatile 
fatty acids (VFA) accumulation and depressed methane 
production [12].

Microbial cell membranes, where various essential pro-
cesses occur, are a primary target of LCFAs. Although the 
inhibition mechanism of LCFAs on microbial cell mem-
branes is not completely clear, it can be categorized as 
biochemical and physical in nature. Biochemical inhibi-
tion of LCFAs is correlated with its amphipathic struc-
ture. Due to detergent properties, LCFAs act as detergent 
and solubilize the lipid bilayer or membrane proteins, 
leading to cell lysis [13], enzyme activity inhibition [14], 
and electron transport chain disruption [15]. The inhi-
bition activity of LCFAs is affected by its structure as 
well. LCFAs with longer carbon chains tend to be more 
problematic to microbes than LCFAs with shorter car-
bon chain [15]. LCFAs with more carbon double bonds 
can be more problematic than same length LCFAs with 
saturated carbon bonds [14, 16], and the inhibition effect 
of LCFAs is positively related to the number of double 
bonds in the LCFAs [15].

The physical absorption of LCFAs to the surface of 
microbial cell membranes can lead to mass transfer limi-
tation [7, 17, 18]. Product diffusion and nutrient uptake 
are affected by LCFA concentration [6] as well as the 
LCFA:biomass ratio [19], although Rinzema et  al. [4] 
found that the LCFA:biomass ratio is less important than 
LCFA concentration. Mass transfer limitation could also 
be a result of LCFAs undermining of transporter proteins 
located on the membrane or reduction of the proton 
motive force for active transport [15].

Efforts to reduce the inhibitory effect of LCFAs are 
needed to maintain an efficient and stable digestion pro-
cess. Various strategies, including co-digestion [20], addi-
tion of adsorbents [8, 21], or discontinuous feeding [22], 
have been used for overcoming LCFA inhibition. Con-
tinuous or pulse exposure of LCFAs has been suggested 
to acclimate microorganisms for an elevated tolerance 
to LCFAs [7, 22]. Calcium has been used to reduce the 
inhibitory effect of LCFAs [8, 23–25], which could be 
attributed to LCFAs’ precipitation in the form of fatty 
acid calcium salts [8].

The purpose of this research is to investigate LCFA deg-
radation during AD, focusing in particular on the effect of 
the calcium:LCFA ratio against the LCFA:biomass ratio. 
A kinetic model was developed with the consideration of 
an inhibition factor as a function of LCFA concentration 
and specific biomass content or calcium ion concentra-
tion. Individual inhibition factors for each function group 
were considered rather than a lumped parameter. Both 
hydrolytic bacteria and methanogen community struc-
ture were characterized by high-throughput sequencing 
technology Illumina Miseq to evaluate the community 
structure shift under LCFA inhibition.

Results and discussion
Effect of calcium concentration against inoculum 
to substrate ratio
Inoculum to substrate ratio (I/S) had a significant effect 
on biogas production (Fig. 1). When I/S ratio was lower 
than 1, the AD process was severely inhibited in the 
high lipid concentration (NS1) digester. The calcium 
dosed digester showed enhanced biogas production by 
10 % as well as accelerated reaction rate at I/S ratio of 
1 in both the NS1 and low lipid concentration (NS2) 
digesters. At I/S ratio of 1, calcium dosing with calcium 
to LCFAs ratio of 0.5 noticeably increased methane 
production while further increase of calcium to LCFAs 
ratio had barely any effect on biogas production. Actu-
ally, a single calcium ion could bond with two LCFA 
molecules, so that the calcium to LCFA ratio of 0.5 
would be ideal if calcium and LCFAs were completely 
mixed. Further increase in calcium concentration could 
not bond more LCFAs, leading to no effect on free 
LCFA concentration.

Calcium had no effect on biogas production when the 
I/S ratio was extremely low, even with high concentration 
of calcium. A possible explanation was at such a low inoc-
ulum concentration, although calcium was added, the 
slow methanogenesis step controlled the whole process, 
which led to VFA accumulation other than LCFAs as the 
main inhibitor. The same explanation could be applied 
when the I/S ratio was 0.4: the released and free algal 
cells with use of high concentration of calcium raised the 
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hydrolytic rate, but with an unmatched increase in meth-
anogenic rate, the system generated accumulated VFA, 
prolonging the lag phase and low gas production due to 
VFA inhibition. The high VFA concentration and low pH 
were also observed by Zhao et al. [2] when digesting algal 
biomass at low inoculum concentration. It was noticed 
that LCFA concentration was higher in digesters with 
calcium addition compared with control, which led to a 
delay in the degradation of LCFAs for all digesters with 
calcium dosage (Figs. 2, 3).

The modeled relationship of specific methane produc-
tion (SMP) with inoculum:LCFA ratio and calcium:LCFA 
ratio is illustrated in Fig.  4. It can be seen that inocu-
lum concentration had greater effect on SMP than cal-
cium concentration. Sufficient inoculum was extremely 
important for healthy digestion without inhibition. With 
high inoculum:LCFA ratio of 1.0, SMP could reach the 
value reported by [2] (0.56 and 0.38 L CH4/g VS for NS1 
and NS2, respectively). Palatsi et  al. [21] confirm this 

observation, detailing that increases in inoculum concen-
tration are the most efficient and fast recovery strategy 
for an LCFA-inhibited digestion process.

In this research, the LCFA concentration in NS1 and 
NS2 digesters was 9.9 g COD/L and 3.1 g COD/L, respec-
tively, noticeably higher than the approximate inhibi-
tory threshold range (~0.5–1.5  g  COD/L) mentioned 
in literature [6, 8, 26, 27]. Severe inhibition occurred in 
digesters with low inoculum concentration, as noticed by 
extremely low methane production. However, no inhibi-
tion was observed for digesters with appropriate I/S ratio 
and proper calcium dosing. It seems that high inoculum 
concentration could be used as a mean of alleviating the 
inhibition mediated by LCFAs. Calcium ion could also be 
an effective way to bond LCFAs and thus keep microbial 
cells from being tightly wrapped by LCFAs. The impact of 
calcium ion, however, is dependent on the concentration 
of inoculum, in which a minimum inoculum concentra-
tion is required.

Fig. 1  Effect of inoculum to substrate ratio on methane production from anaerobic digestion of NS1 and NS2 with different concentrations of 
calcium. IS is inoculum to substrate ratio, and Ca is calcium to LCFA ratio
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Kinetic analysis of inhibition on anaerobic digestion 
of algal biomass
The accumulated methane production curves for NS1 
and NS2 at various I/S ratio and calcium concentration 
were simulated with the developed kinetic model (Figs. 2, 
3). The LCFA degradation profiles were then predicted 
with the developed model.

The inhibition of LCFAs on anaerobic microbial con-
sortia has been kinetically investigated as KI with a range 
of 1.3–3.4  kg COD/m3 [28, 29]. However, the extent 
of inhibition varies among hydrolytic bacteria, acido-
gens and methanogens. Thus, a lumped inhibition fac-
tor KI for whole anaerobic microbial consortium is not 
sufficient to kinetically describe the different inhibi-
tion effect of LCFAs on each microbial group. In this 
research, the inhibition of LCFAs was evaluated based 
on individual microbial groups for a more accurate esti-
mation. The results show that inhibition factors for 
hydrolytic bacteria (Kh), acidogenic bacteria (Kv), and 
methanogens (Km) were in the range of 2.6–9.4, 2.1–7.9, 

and 1.0–2.9  kg  COD/m3, respectively (Fig.  4). The data 
suggested a more severe LCFA inhibition on methano-
gens than on hydrolytic bacteria and acidogens. As a first 
time kinetic evidence of LCFA inhibition on different 
functional groups, methanogenesis could be the rate-lim-
iting step in an LCFA-inhibited digestion process, which 
is consistent with previous research [9, 11].

The I/S ratio had a remarkable effect on each inhibition 
factor, with regard to its role in affecting SMP. However, 
kinetic behavior of each microbial group varies against 
the change of I/S ratio. As the I/S ratio increased from 0.1 
to 1.0, Kh, Kv and Km boosted from 2.6, 2.1 and 1.0 to 8.5, 
5.8 and 2.3 kg COD/m3, respectively, when calcium was 
not added. Apparently, the inhibition factor of hydrolytic 
bacteria was most affected by inoculum concentration 
while that of methanogen was less affected.

Calcium ion concentration showed a limited effect on 
inhibition factors and the effects on each inhibition fac-
tor were similar. However, these effects were dependent 
on I/S ratio. The value of inhibition factors doubled with 

Fig. 2  Methane production and LCFA degradation during anaerobic digestion of NS1 with different concentrations of calcium. IS is inoculum to 
substrate ratio, and Ca is calcium to LCFA ratio
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calcium dosing at low I/S ratio while the impacts of cal-
cium ion concentration were less significant at high I/S 
ratio.

This is the first research that kinetically investigated 
individual inhibition factors for hydrolytic bacteria, aci-
dogens and methanogens, respectively, rather than a 
lumped inhibition factor for whole microbial consortium 
by LCFAs. In previous research, one inhibition factor was 
used for all biological process including hydrolysis, aci-
dogenesis and methanogenesis [17, 19, 29, 30]. The LCFA 
model developed in this study provided new insights 
regarding dynamics of the LCFA inhibition process and 
showed a different inhibition level on each function 
group. Methanogens were the most fastidious group and 
were severely impacted by LCFAs; thus, methanogen-
esis could be the rate-limiting step during AD. Although 
hydrolytic bacteria were inhibited by LCFAs, and were 
most impacted by I/S ratio, hydrolysis could be consid-
ered the fastest step. Acidogens were also inhibited by 
LCFAs, one of its products, which led to acidogenesis 

being a self-limiting step. However, under the condition 
without LCFA inhibition, hydrolysis is still the rate-lim-
iting step in anaerobic digestion of microalgae, in which 
pretreatment could play a role.

Microbial community structure analysis with Illumina 
Miseq sequencing
Two samples from digesters fed with NS1 and NS2, 
respectively, at I/S ratio of 1 without calcium addition 
as well as original inoculum were subject to microbial 
community structure analysis. In total, 36,825 bacteria 
sequences for 3 samples were classified into 591  gen-
era. The difference of phylum distribution was observed 
between the two digesters. NS1 digester was dominated 
by Proteobacteria, followed by Chloroflexi, and Firmi-
cutes, while Firmicutes, Bacteroidetes, Chloroflexi, and 
Proteobacteria were dominant in NS2 digester with bal-
anced abundance. Moreover, Gammaproteobacteria 
belonging to Phylum Proteobacteria was enriched in both 
digesters. The genus level identification of the bacteria 

Fig. 3  Methane production and LCFA degradation during anaerobic digestion of NS2 with different concentrations of calcium. IS is inoculum to 
substrate ratio, and Ca is calcium to LCFA ratio
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communities is illustrated in Fig. 5. Bacteria community 
in original inoculum showed a balanced population with 
high diversity. Bacteria community in the NS1 digester 
showed a distinct pattern with domination of Acinetobac-
ter (blue, 39.6 %), Levilinea (red, 7.0 %), Proteiniclasticum 
(green, 7.7  %), and Stenotrophomonas (purple, 13.9  %). 
Acinetobacter was reported to be the main strain among 
several pure cultures degrading lipid-containing waste-
water with efficient lipase secretion capability [31, 32]. 
This correlates well with the domination of Acinetobacter 
in the NS1 digester. The bacterial community in the NS2 
digester was dominated by Levilinea (red, 7.6 %), Tissiere-
lla (light blue, 11.9  %), Proteiniclasticum (green, 6.4  %), 

Clostridium (orange, 7.6  %), and Parabacteroides (dark 
blue, 11.0 %). The population analysis demonstrates that 
a clearly different microbial community structure was 
formed in the two digesters due to different lipids load-
ing, although hydrolytic/acidogenic bacteria dominated 
both NS1 and NS2 digesters.
Stenotrophomonas is responsible for the hydrolysis 

and fermentation of carbohydrate and amino acids [33]. 
Syntrophic acetogens, including Clostridium, Smith-
ella, Tissierella, Syntrophorhabdus, Sedimentibacter and 
Sporacetigenium, also presented in the two digesters, 
although the concentrations were low. Interestingly, the 
abundance of syntrophic acetogens in the NS1 digester 

Fig. 4  Effect of biomass to LCFA ratio and Ca to LCFA ratio on SMP and inhibition factors
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(10.8  %) was significantly lower than that in the NS2 
digester (28.2  %), suggesting that syntrophic acetogens 
were more sensitive to high lipid concentration.

Methanogenic archaea communities were analyzed 
in the three samples, with a total of 14,220 reads affili-
ated to 15 genera and 3 orders. The genus level identifi-
cation of the archaea communities is illustrated in Fig. 6. 
Methanogenic archaea community in the original inocu-
lum was dominated by Methanolinea (purple, 47.0 %), a 

strict hydrogenotrophic genus, and Methanosaeta (blue, 
44.1  %), a strict aceticlastic methanogen genus. How-
ever, Methanosaeta (blue) prevailed in both of the com-
munities of the NS1 and NS2 digesters (77.6 and 74.4 %, 
respectively), followed by two hydrogenotrophic gen-
era, Methanobacterium (red, around 8 %) and Methano-
methylovorans (light blue, around 11 %) in both digesters, 
indicating that aceticlastic methanogenesis was the main 
pathway for methane formation in the two digesters, 

Fig. 5  Bacteria communities of inoculum, NS1 and NS2 digester. Relative abundance was defined as the number of sequences affiliated with that 
taxon divided by the total number of sequences per sample. Legends were only shown for genus making up more than 2 % of total composition

Fig. 6  Archaea communities of inoculum, NS1 and NS2 digester. Relative abundance was defined as the number of sequences affiliated with that 
taxon divided by the total number of sequences per sample



Page 8 of 12Ma et al. Biotechnol Biofuels  (2015) 8:141 

regardless of the different lipids content. Dominance of 
Methanosaeta was also found in the anaerobic reactors 
treating microalgal biomass which was attributed to the 
low levels of acetate [34].

Proposed mechanism of calcium mitigated LCFA inhibition
Inhibition of LCFAs could be mainly attributed to physi-
cal attachment on the surface of microbial cells. As 
microbes are coated by LCFAs, limitations on transpor-
tation hinder substrate access and subsequent biogas 
release [17]. Calcium ions could bond free LCFAs, thus 
reducing the amount of LCFAs available for microbial 
cells to half of original LCFA concentration (Graphic 
abstract). This reduction delayed LCFA degradation, 
compared with the control. Moreover, the steric hin-
drance effect of calcium bonded LCFAs could further 
mitigate LCFA inhibition by loosening the LCFA coat. 
However, calcium ions could not exclusively compete the 
LCFAs from the surface of microbial cells. As a result, 
calcium ion addition could not help mitigate LCFA inhi-
bition for those LCFAs already attached on the surface of 
microbial cells. Moreover, the effect of calcium ion was 
limited, and it only played a role when the microbial con-
centration reached a minimal requirement.

It is foreseeable that multivalent ions, ferric ion for 
example, could bond more LCFAs according to its charge 
and give rise to a more sophisticated steric hindrance 
effect, leading to a stronger effect on alleviating LCFA 
inhibition while using a reduced amount. The optimal 
multivalent ion to LCFA ratio would be reciprocal to the 
value of its charge. However, the same rule as calcium 
still applies, in that it could not relieve LCFAs inhibition 
after LCFAs attached to the surface of microbial cells.

Conclusion
High inoculum concentration is the key for a healthy 
process when digesting high concentration of LCFAs. 
Inoculum concentration had a more pronounced effect 
on overcoming the inhibition of LCFAs than that of 
calcium ion, while calcium ion plays a role only when 
inoculum concentration met a threshold level. Calcium 
ion could bond with free LCFAs available to the surface 
of microbial cells and reduce half of the original LCFAs 
concentration. Kinetic modeling revealed a remarkable 
difference among the inhibition factors for each function 
group of microorganisms. Although methanogens were 
the most susceptible microbes to LCFA inhibition, the 
inhibition factor for hydrolytic bacteria was more highly 
affected by inoculum concentration. The bacterial com-
munity was affected more than the methanogenic com-
munity by high concentration of LCFAs. Diversity of 
both bacterial and methanogenic communities decreased 
with elevation of lipid concentration in the digester. 

Hydrolytic bacteria and aceticlastic methanogens domi-
nated bacterial and archaea communities, respectively, 
in both high and low LCFA concentration digesters. Syn-
trophic acetogens were sensitive to high LCFA concen-
trations and thus showed a decreased abundance in such 
environment.

Methods
Microalgae and inoculum
Nannochloropsis salina (Solix BioSystems) was selected 
as it was the algal biomass with greatest availability and 
had lipid content emblematic of industrial strains. Whole 
algal biomass of Nannochloropsis salina (NS1) represents 
high lipid content algal biomass while lipid-extracted res-
idue (NS2) represents its low lipid content counterpart. 
Freeze-dried solid biomass of both NS1 and NS2 was 
provided by Solix BioSystems, Inc. (CO, USA). Lipid in 
NS1 was extracted with a 3:2 mixture of hexane/isopro-
panol at 70  °C and 1500 psi [2]. Detailed characteristics 
of NS1 and NS2 are listed in Table  1. Anaerobic sludge 
was sampled from an anaerobic digester at the Pullman 
Wastewater Treatment Facility with TS of 17.1  g/L and 
VS of 11.7 g/L.

Effect of calcium addition and inoculum to substrate ratio 
on methane production
A series of biochemical methane potential (BMP) assays 
were set up to investigate the effect of calcium addition 
and inoculum to substrate ratio (I/S) on methane produc-
tion from NS1 and NS2. The experimental design con-
sidered treatments with calcium (CaCl2·2H2O, Sigma) 
at concentrations of 0.5, 1 and 2 times that of the algal 
lipid concentration (mole/mole) against I/S ratios of 0.1, 
0.4 and 1.0 (gVS/gVS). All BMP assays were conducted 
in serum bottles with working volume of 150  mL and 
headspace of 100  mL. No additional external nutrients/
trace elements were added to the BMP bottles as it was 
assumed that basic nutrient requirements for anaerobic 
microorganisms were provided by the wastewater-based 
inoculum [35]. Algal biomass was added to the serum 
bottles to impose an organic loading rate of 10  gVS/L, 
and mixed with CaCl2·2H2O at designed calcium 

Table 1  Chemical composition of  Nannochloropsis salina 
(NS1) and lipid-extracted residue (NS2)

Composition NS1 NS2

Algal lipid (%) 37.2 11.8

Carbohydrates (%) 11.5 17.0

Protein (%) 17.2 26.7

Unknown (%) 27.2 34.1

VS/TS (%) 93.0 89.7
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concentration, before inoculum was added according to 
the respective I/S ratio. Before experiments were initi-
ated, each bottle was flushed with N2 gas for 15 min to 
induce anaerobic conditions, and then incubated in a 
16-cell automated Challenger AER System (Fayetteville, 
AR, USA) maintained at 35 ±  1  °C and mixed continu-
ously with a magnetic stirrer set to 200 rpm. Daily meth-
ane production was monitored via scrubbing of carbon 
dioxide with sodium hydroxide pellets containing color 
indicator.

Chemical analysis
The analysis for TS, VS and COD was done accord-
ing to the standard methods [36]. The volume of biogas 
from the digester was determined by water displacement 
method. Contents of CH4 and CO2 were determined 
via a Varian gas chromatograph (Palo Alto, CA, USA) 
equipped with a thermal conductivity detector [37].

Lipids were analyzed as fatty acid methyl esters after 
a one-step acid catalyzed in  situ trans-esterification 
reaction using a GC-FID (Agilent 6890N) equipped 
with an HP-5  ms capillary column (30  m  ×  0.25  mm 
id  ×  0.25  µm) according to the procedure of Laurens 
et al. [38]. Protein was calculated from elemental N con-
tent [39]. Carbohydrates were determined by H2SO4 acid 
hydrolysis followed by HPLC measurement of monosac-
charides [40].

DNA extraction
At the end of the digestion experiment, samples of initial 
saved inoculum and mixed liquor from the two digesters 
fed with NS1 and NS2 at I/S ratio of 1 with no calcium 
addition were collected. Genomic DNA was extracted 
and purified using the PowerSoil DNA isolation kit (Mo 
Bio Laboratories, Inc., CA, USA) according to the manu-
facturer’s instructions.

Illumina Miseq sequencing on V4–V5 regions of 16S rRNA 
genes
The V4–V5 hypervariable region of the 16S rRNA gene 
was amplified with region-specific primers designed 
to include Illumina adaptor and barcode sequences 
(518F-926R for bacteria, 518F-958R for archaea) [41, 
42]. Generation of sample amplicons was performed 
using a double round of PCR and dual indexing on 
PTC-200 DNA Engine Peltier Thermal Cycler (Bio-Rad 
Laboratories, Inc., CA, USA). The first round of PCR 
extracts the targeted regions (here 16S V4 to V5) with 
initial denaturation at 95 °C for 2 min, 20 cycles of dena-
turing at 95  °C for 1 min, annealing at 51  °C for 1 min 
and extension at 68  °C for 1 min, plus a final extension 
at 68  °C for 10 min. The second round of PCR attaches 
the sample barcode and sequencing adapters with initial 

denaturation at 95  °C for 10 min, 10 cycles of denatur-
ing at 95 °C for 15 s, annealing at 60 °C for 0.5 min and 
extension at 68  °C for 1  min, plus a final extension at 
68 °C for 3 min.

The concentrations of amplicons were determined 
using a picogreen assay and a Fluorometer (SpectraMax 
GeminiXPS 96-well plate reader) and then pooled in 
equal amounts (~100  ng) into a single tube. The ampli-
con pool was then cleaned to remove short undesirable 
fragments using the following procedure. First, the pool 
was size selected using AMPure beads (Beckman Coul-
ter), the product was then run on a 1 % gel, gel cut and 
column purified (Qiagen MinElute PCR purification kit), 
and size selected again with AMPure beads. To deter-
mine the final quality, we PCR amplified the resulting 
amplicon pool with Illumina adaptor-specific primers 
and ran the PCR product on a DNA 1000 chip for the 
Agilent 2100 Bioanalyzer. The final amplicon pool was 
deemed acceptable only if no short fragments were iden-
tified after PCR. Otherwise, the procedure was repeated 
again. The cleaned amplicon pool is then quantified using 
the KAPA 454 library quantification kit (KAPA Bio-
sciences) and the Applied Biosystems StepOne plus real-
time PCR system. Finally, sequences were obtained using 
an Illumina MiSeq paired-end 300 bp protocol (Illumina, 
Inc., San Diego, CA, USA) [43].

Bioinformatics
Raw DNA sequence reads from the Illumina MiSeq were 
demultiplexed and identified with the custom python 
application dbcAmplicons (https://github.com/msettles/
dbcAmplicons) by both expected barcode and primer 
sequences. Barcodes were allowed to have at most 1 mis-
match (hamming distance) and primers were allowed 
to have at most 4 mismatches (Levenshtein distance) as 
long as the final 4 bases of the primer matched the tar-
get sequence perfectly. Reads were then trimmed of 
their primer sequence and merged into a single ampli-
con sequence using the application flash [44]. Finally, the 
RDP Bayesian classifier was used to assign sequences to 
phylotypes [45]. Reads were assigned to the first RDP 
taxonomic level with a bootstrap score ≥50. The Illumina 
sequences are available through the National Center 
for Biotechnology Information (NCBI) Sequence Read 
Archive (http://www.ncbi.nlm.nih.gov/sra) under project 
SRP052619.

Development of kinetic model
Hydrolysis, acidogenesis and methanogenesis were con-
sidered for model development in this study. The particu-
late algal biomass (Sp) and dead biomass were hydrolyzed 
into soluble hydrolysate (Sh) by hydrolytic bacteria (Xh), 
then hydrolysate was further degraded into VFA (Sv) by 

https://github.com/msettles/dbcAmplicons
https://github.com/msettles/dbcAmplicons
http://www.ncbi.nlm.nih.gov/sra
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acidogenic bacteria (Xv); finally, methanogens (Xm) con-
vert VFA into methane (Sm).

The Contois kinetic model was adopted for all three 
steps due to improved performance over the first order 
kinetics [46, 47]. Decay of biomass was considered as 
first-order kinetics. Non-competitive inhibition type was 
used as it has been proved to successfully predict inhibi-
tion by LCFAs [48, 49]. In this study, the ratio of active 
biomass plus calcium to LCFAs was adopted by consid-
ering that LCFA inhibition is primarily an absorption 
process onto surface of biomass. According to the above 
discussion, AD of algal biomass can be described as the 
following equations: 

(1)

dSp

dt
= −km,p

Sp

Ks,pXh + Sp
XhKh

+ kd,hXh + kd,vXv + kd,mXm

(2)

dSh

dt
= km,p

Sp

Ks,pXh + Sp
XhKh − km,h

Sh

Ks,hXv + Sh
XvKv

(3)

dSv

dt
= km,h

Sh

Ks,hXv + Sh
XvKv − km,v

Sv

Ks,vXm + Sv
XmKm

(4)

dSfa

dt
= ffakm,p

Sp

Ks,pXh + Sp
XhKh

− km,fa
Sfa

Ks,faXv + Sfa
XvKv

(5)
dSm

dt
= km,v

Sv

Ks,vXm + Sv
XmKm

(6)
dXh

dt
= Yhkm,p

Sp

Ks,pXh + Sp
XhKh − kd,hXh

(7)
dXv

dt
= Yvkm,h

Sh

Ks,hXv + Sh
XvKv − kd,vXv

(8)
dXm

dt
= Ymkm,v

Sv

Ks,vXm + Sv
XmKm − kd,mXm

(9)Kh =

Kh,fa

(

a(Xh+Xv+Xm)+bSCa
Sfa

)

Kh,fa

(

a(Xh+Xv+Xm)+bSCa
Sfa

)

+ Sfa

(10)Kv =

Kv,fa

(

a(Xh+Xv+Xm)+bSCa
Sfa

)

Kv,fa

(

a(Xh+Xv+Xm)+bSCa
Sfa

)

+ Sfa

Sensitivity analysis was applied in this study to deter-
mine the significance of model parameters and iden-
tify the dominant parameters [50]. The relative–relative 
sensitivity function (δ) was used to measure the relative 
change in methane production for a ±  100% change in 
kinetic parameters and stoichiometric parameters by 
Eq. (12) [51].

where y is the given input parameter value, and p is 
the output of corresponding parameter with a relative 
change.

The parameters, km,p, km,h, km,fa, Ks,p, Ks,h, Ks, fa, Ks,v, 
Yh, Yv, kd,h and kd,v with low sensitivity on model output, 
were used directly from references without modification 
in this study [30, 52–54], and their values are presented 
in Table 2. Other parameters, km,v, Ym, kd,m, Kh, fa, Kv, fa, 
Km, fa, a and b showing significant impact on model out-
put, were estimated according to the batch experimental 
data.

(11)
Km =

Km,fa

(

a(Xh+Xv+Xm)+bSCa
Sfa

)

Km,fa

(

a(Xh+Xv+Xm)+bSCa
Sfa

)

+ Sfa

(12)δ =
p/∂p

y/∂y

Table 2  Kinetic parameters for anaerobic digestion of NS1 
and NS2

Symbol Units Initial value

km,p day−1 10

km,h day−1 20

km,fa day−1 6

km,v day−1 20

Ks,p 0.5

Ks,h 0.5

Ks,fa 0.5

Ks,v 0.5

Yh kgCOD/kgCOD 0.05

Yv kgCOD/kgCOD 0.05

Ym kgCOD/kgCOD 0.05

kd,h day−1 0.8

kd,v day−1 0.8

kd,m day−1 0.05

ffa 0.35 (NS1)
0.11 (NS2)

Kh, fa kgCOD/m3 5

Kv, fa kgCOD/m3 5

Km, fa kgCOD/m3 5

a 0.5

b 0.5
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Abbreviations
LCFA: long-chain fatty acids; NS1: whole cell algal biomass of Nannochloropsis 
salina; NS2: lipid-extracted residue of Nannochloropsis salina; AD: anaerobic 
digestion; I/S: inoculum to substrate ratio; TS: total solids content; VS: volatile 
solids content; SMP: specific methane production; COD: chemical oxygen 
demand; Sp: concentration of particulate algal biomass (kg COD/m3); Sh: 
concentration of hydrolysate (kg COD/m3); Sv: concentration of VFA (kg COD/
m3); Sfa: concentration of LCFAs (kg COD/m3); Sm: concentration of methane 
kg COD/m3; SCa: concentration of calcium (kmole/m3); Xh: concentration of 
hydrolytic bacteria (kg COD/m3); Xv: concentration of acidogens (kg COD/
m3); Xm: concentration of methanogens (kg COD/m3); km,p: maximum specific 
hydrolysis rate (day−1); km,h: maximum specific utilization rate of hydrolysate 
(day−1); km,fa: maximum specific utilization rate of LCFAs (day−1); km,v: maxi‑
mum specific methanogenesis rate (day−1); Ks,p: half-saturation coefficient for 
the ratio Sp/Xh; Ks,h: half-saturation coefficient for the ratio Sh/Xv; Ks,fa: half-satu‑
ration coefficient for the ratio Sfa/Xv; Ks,v: half-saturation coefficient for the ratio 
Sv/Xm; Yh: yield coefficient of hydrolytic bacteria (kg COD/kg COD); Yv: yield 
coefficient of acidogenic bacteria (kg COD/kg COD); Ym: yield coefficient of 
methanogens (kg COD/kg COD); kd,h: decay rate of hydrolytic bacteria (day−1); 
kd,v: decay rate of acidogens (day−1); kd,m: decay rate of methanogens (day−1); 
ffa: stoichiometric coefficient for LCFAs from algal biomass; Kh: inhibition factor 
of LCFAs on hydrolysis step; Kv: inhibition factor of LCFAs on acidogenesis step; 
Km: inhibition factor of LCFAs on methanogenesis step; Kh, fa: inhibition coef‑
ficient of LCFAs on hydrolytic bacteria (kg COD/m3); Kv, fa: inhibition coefficient 
of LCFAs on acidogens (kg COD/m3); Km, fa: inhibition coefficient of LCFAs on 
methanogens (kg COD/m3); a: weight coefficient of absorption of LCFAs by 
microbes; b: weight coefficient of absorption of LCFAs by calcium.
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