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Abstract 

Background:  Mass transfer plays an important role in determining the efficiency of the biofuel conversion. However, 
adverse effect of shear stress from traditional agitation inhibits the cell growth and production of biofuels. How to 
enhance the mass transfer with less adverse effect is considered as one of the important bioengineering issues.

Results:  In this study, a novel agitation type, named periodic-peristole was applied to butanol fermentation with 
Clostridium acetobutylicum ATCC 824. Meanwhile, the enhancement mechanism was studied. Initially, the fermenta‑
tion performance of periodic-peristole agitation was compared with the traditional Rushton impeller and station‑
ary cultivation. Result showed that the biomass, butanol and total solvent in periodic-peristole group (PPG) was 
enhanced to 1.92-, 2.06-, and 2.4-fold of those in the traditional Rushton impeller group (TIG), as well as 1.64-, 1.19- 
and 1.41-fold of those in the stationary group (SG). Subsequently, to get in-depth insight into enhancement mecha‑
nism, hydromechanics analysis and metabolic flux analysis (MFA) were carried out. The periodic-peristole agitation 
exhibits significant difference on velocity distribution, shear force, and mixing efficiency from the traditional Rushton 
impeller agitation. And the shear force in PPG is only 74 % of that in TIG. According to MFA result, fructose 6-phos‑
phate, pyruvate, acetyl-CoA, oxaloacetate and α-ketoglutarate were determined the key nodes of cells in response 
to hydrodynamic mechanical stress. Based on such key information, rational enhancement strategies were proposed 
and butanol production was further improved.

Conclusion:  The agitation associated with three issues which resulted in significant changes in cell metabolic 
behaviors: first, a rebalanced redox status; second, the energy (ATP) acquirement and consumption; third, the toler‑
ance mechanism of the cell for survival of solvent. Periodic-peristole agitation provides an answer to address a long-
standing problem of biofuel engineering. Key information derived from current study deepens the understanding 
of agitation, which can guide the designment of new bioreactors and development of enhancement strategies for 
biofuel refinery.

Keywords:  Periodic-peristoleagitation, Butanol, Hydrodynamic analysis, Metabolic flux analysis, Enhancement 
mechanism of agitation, Rational enhancement strategy
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Background
Biobutanol is one of the bioalcohols that have gained 
considerable attention in recent years. However, regard-
ing the industrial production of biobutanol, much effort 
is still needed to improve the production titer, especially 
from the view point of lowering the production cost 

[1]. The higher butanol titer inevitably requires suitable 
process conditions [1, 2], among which agitation plays a 
critical role mainly for maintaining the solid–liquid sus-
pension homogeneous to ensure good mass transfer in 
(nutrients) and out (metabolites) of the microbial cell [3]. 
It directly affects the substrate consumption and yield 
of fermentation end products, thus affecting the overall 
process economics.

Over the past few years, how to enhance butanol fer-
mentation by agitation has been the subject of several 
studies. Doremus et  al. [4] found that the agitation rate 
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plays an important role in controlling the metabolism of 
C. acetobutylicum. Agitation favors butyric acid produc-
tivity during the acid phase and hinders the butanol bio-
synthesis in the solvent phase. Lamed et  al. [5] showed 
that agitation can dramatically affect the level of dis-
solved hydrogen gas and solvent ratio in fermentations by 
Clostridium thermocellum. In most of the cases, the total 
effect of agitation on butanol is inhibition rather than 
promotion due to the adverse effect of agitation [4, 6]. 
Thus, new agitation type with less shear force is urgently 
required for the biofuel engineering [7], which can be 
achieved only through a full understanding of the under-
going agitation-associated mechanism.

Nowadays advantages in fluid mechanics enable us to 
gain a more in-depth insight into the complex effects 
of agitation processes. Models have been successfully 
exploited in determining the correlationship between 
agitation and fermentation process, such as maximum 
stable (equilibrium) drop size in intermittent turbulence 
[8, 9], hydrodynamic stress [10], eddy length [11], and 
energy dissipation [12]. At the same time, developments 
on metabolic flux analysis (MFA) also allows for the sys-
tematical elucidation of cellular behaviors [13–16]. MFA 
is a powerful tool that allows addressing the study of pro-
duction systems in a comprehensive manner, considering 
their specific metabolic capabilities, requirements and 
culture conditions [17]. Results obtained from MFA can 
help to interpret current results and guide future experi-
ments leading to an enhanced yield of the targeted prod-
uct. Therefore, the combination of fluid mechanics and 
MFA provides the possibility for understanding the asso-
ciation mechanism between cell metabolism and agita-
tion at the extracellular and intracellular levels.

In this study, a novel agitation model named periodic 
peristalsis was developed for butanol fermentation. 
Firstly, the fermentation performances of periodic peri-
stalsis were compared with existing methods. Then, the 
agitation effect and cellular physiology states were inves-
tigated using fluid mechanics analysis and MFA. Finally, 
the association mechanism between cell metabolism and 
agitation was discussed and the rational enhancement 
strategy was performed.

Result and discussion
Periodic‑peristole agitation for enhancement of butanol 
fermentation
The periodic-peristole agitation came from the illumi-
nation of stomach and intestine. By expanding and con-
tracting periodically, stomach and intestine can mix the 
food and digestive juices (mostly digestive enzymes) 
efficiently. This process is usually called “periodic peri-
stalsis”. In this study, we applied this agitation type into 
the butanol fermentation process. At the same time, the 

traditional Rushton impeller agitation and stationary cul-
tivation were set as references for comparison (The con-
figuration comparison between the periodic peristalsis 
agitation and the traditional Rushton impeller agitation 
is given in Additional file 1: Figure S1). The fermentation 
profiles of the three groups are given in Fig.  2. Results 
showed that cell growth, substrate utilization and prod-
uct biosynthesis exhibited significant differences among 
the three groups (the student’s t test result is given in 
Additional file  2: Table S1). Time course profiles of key 
fermentation parameters of H2 and CO2 from the peri-
odic-peristole group (PPG), the traditional Rushton 
impeller group (TIG) and the stationary group (SG) are 
given in Additional file 3: Figure S2.

The fermentation process of ABE can be divided into 
two phases: the acid-producing (or acidogenic) phase and 
the solvent-producing (or solventogenic) phase [15]: the 
acidogenic phase was observed during the first 60 h when 
cell biomass was rapidly produced. During this period, 
biomass in PPG and TIG was 2.75- and 1.47- fold of that 
in SG, suggesting agitation could promote cell growth 
in this phase. During 96–120 h (the solvent—producing 
phase), however, biomass in the TIG decreased sharply, 
and obvious cell autolysis was observed. It should be 
noted that butanol concentration in TIG was only 6.4 g/L 
(2.1  g/g biomass), which is much below the threshold 
(16.2 g/L) of cell tolerance [2]. Therefore, the cell autol-
ysis in TIG was probably mainly the result of hydrody-
namic mechanical stress. Strain in PPG consumed the 
most glucose in the media at 110 h. However, there were 
9.4  g/L and 15.3  g/L glucose remained in TIG and SG 
until the end of the fermentation (120 h), indicating peri-
odic peristalsis could promote glucose utilization. At the 
same time, production profiles under different agitation 
types were quite different: just as Fig. 1 shown, PPG pro-
duced more butanol and acetone while TIG had higher 
concentration of butanol, lactate, butyrate, and acetate.

Hydrodynamic analysis of periodic‑peristole agitation
Hydrodynamic characteristic of the fermentation system 
is one of the external factors responsible for the metabo-
lism rate of cells [3, 4, 9]. It has been discussed for a long 
time to have large influence on biological process [18], 
cell viability, and product titers [19]. Therefore, hydro-
dynamic characteristic analysis was applied to PPG, with 
TIG as the reference for comparison. The results are 
given in Fig. 2 and Table 1.

Mixing characteristics
Figure 2 shows the computational fluid dynamics (CFD) 
simulation results of the two agitation types. Figure  2a 
indicates that the velocity distribution in PPG formed a 
large circulation in the bioreactor, which flowed from the 
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bottom to the top (When the shrinking wall extended, 
the circulation ran reversely). The velocity values dis-
tributed uniformly both in axial and radius directions 
inside the whole bioreactor without showing a large dif-
ference, except the small ranges near the shrinking wall. 
The velocity distribution within TIG (shown in Fig.  2b) 
was quite differentiated: the velocity near the impeller 
was very high, which was almost 4.5-fold of the max-
ium velocity in PPG. This range is where cell suffered the 
most severe force damages [20]; The whole volume of the 
bioreactor was divided into different circulation fields, 
which decreases the mixing efficiency [21].

Figure 2c, d compare the turbulence intensity between 
the two biorectors. It can be found that most part in PPG 

had high turbulence intensity, which was almost tenfold 
of that in TIG. The turbulence intensity is a scale char-
acterizing turbulence expressed as a percent. It has been 
reported that the turbulence intensity is related closely 
to the mixing effect. The larger the turbulence intensity 
is, the better the mixing effect is and the faster the mix-
ing process is [22]. Mixing time experiment showed that 
the mixing of PPG was 95 s and that of TIG was 120 s, 
which proved that PPG was better in mixing efficiency 
than TIG.

Shear stress
Eddy length is the most commonly used criterion to scale 
shear stress in bioreactor, which is based on the classical 

Fig. 1  Time course profiles of key fermentation parameters (dry cell weight, glucose, butanol, acetone, ethanol, lactate, butyrate, acetate, and 
pH) from PPG, TIG and SG. PPG represents periodic-peristole group, TIG represents traditional Rushton impeller agitation group, and SG represents 
stationary culture group
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Kolmogorov model [11]. Figure 3a shows the relationship 
between eddy length and cell growth. As the Y axis of 
Fig. 3a, the term Bioexperimental

Biocontrol
 represents the ratio between 

biomass under different shear forces (experimental 
group) and without agitation (control group). It scales the 
promotion (Bioexperimental

Biocontrol
 > 1) or inhibition (Bioexperimental

Biocontrol
 < 1) 

Fig. 2  The comparison of agitation characteristics between PPG and TIG. a velocity distribution within PPG; b velocity distribution within TIG; c the 
turbulence intensity distribution within PPG; d the turbulence intensity distribution within TIG. PPG represents periodic-peristole group, TIG repre‑
sents traditional Rushton impeller agitation group, and SG represents stationary culture group

Table 1  Comparison of the geometrical details of the rectors used and the turbulence parameters during the fermenta-
tion process

Traditional Rushton impeller Periodic- peristole reactor

Reactor volume 4 L 4 L

The tank diameter, D 0.14 0.14

The tank height (m), H 0.25 0.25

Mixed mode Rushton impeller Peristole

Main Flow type Axial and radius direction Axial direction

Impeller diameter (m), d 0.03 –

Number of blades 1 –

Power input (Pm) 23 W 18 W

Agitation rate (rpm) 55 –

Shrinking rate (m/s) – 0.005

Eddy length (m) 9.54 × 10−5 1.28 × 10−4

Velocity range (m/s) 0–0.173 0–0.0269

The maximum turbulence intensity (%) 2.3 25.7

Mixing time (s) 120 95
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effect of agitation on cell growth. Figure  3b shows the 
relationship between eddy length with agitation rate in 
TIG and peristole rate in PPG. It can be found that the 
inhibition effect of agitation on cell growth gets more 
severe with the decreasing eddy length. The critical 
point of the eddy length is 120 μm for C. acetobutylicum 
ATCC 824, below which the damage becomes visible. In 
our experiment, the eddy length in PPG is 128 μm and is 
95.4 μm in TIG, indicating that the shear force in PPG is 
only 74 % of that in TIG.

Figure 3c, d show the relationship of eddy length with 
turbulence intensity and velocity. In the case of same 
eddy length, PPG always owns higher turbulence inten-
sity (more than 20-fold of that in TIG in the whole 
range) and lower velocity (less than 60 % of that in TIG 
in the whole range). This characteristic makes periodic-
peristole agitation different from the existing agitation 
methods. It enhances mass transfer by high turbulence 
intensity instead of high velocity, in other words, running 
under a mild condition. Therefore, this novel agitation 
causes less hydrodynamic damage to cells.

Analysis of enhancement mechanism of periodic‑peristole 
agitation using metabolic flux analysis
To understand how cells respond to agitation, MFA was 
performed on the metabolic data from PPG, TIG and SG, 
respectively. TIG and SG were set as references. The reac-
tions and metabolites of the MFA model are provided in 
Additional files 4 and 5. To identify which metabolites 
were closely associated with butanol production, partial 
least squares discriminant analysis (PLS) was performed 
on the metabolic data from the different groups [23, 24] 
(VIP plot for biomass and total solvent are given in Addi-
tional file  6: Figure  S3). The variable importance of the 
projection plot (VIP) score for each metabolite is shown 
in Fig. 4. A higher VIP score implies that the metabolite 
plays a more important role in butanol biosynthesis [23]. 
In the following part, combined with the PLS results, the 
flux distribution at the representative time points (48 and 
96 h) are discussed in details. Representative time points 
were determined as cells showed the highest cell growth 
rate at 48  h and the highest solvent production rate at 
96 h (Fig. 1).

Fig. 3  Hydrodynamics parameters in periodic-peristole agitation group and traditional Rushton impeller group. a shows the relationship between 
eddy length and cell growth enhancement rate. Cell growth enhancement rate was calculated by dividing biomass in the reference group (station‑
ary culture group) by that in the experimental group at 120 h; b shows the relationship between eddy length and agitation velocity; c shows the 
relationship between eddy length and turbulence intensity; d shows the relationship between the eddy length and the maximum velocity
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Embden‑Meyerhof‑Parnas (EMP) pathway
Glucose was firstly converted into G6P and channeled 
into the EMP pathway and the PPP at this branch point. 
Then, 90  % of the glucose was further converted into 
pyruvate through the EMP pathway. At 48  h (Fig.  5), 
the EMP pathway showed a flux towards pyruvate in 
PPG and TIG to 84.2 and 88.5 %, respectively, compared 
with that in SG, suggesting that this flux contributed to 
increased cell growth through the PPP [25]; however, at 
96  h the EMP pathway showed a flux towards pyruvate 
in PPG and TIG to 154.6 and 229.3 %, respectively, com-
pared with that in SG, implying that the EMP pathway 
flux was significantly stimulated by agitation. The EMP 
pathway was the main source of ATP and NADH [25]. 
As shown in Fig. 6, the EMP pathway of cells in PPG and 
TIG generated 1.25-fold and 2.41-fold ATP, respectively, 
compared with that of SG at 96  h. Furthermore, the 
NADH generation rate from the EMP pathway of cells in 
PPG and TIG was 1.22-fold and 1.56-fold of, respectively, 

that of SG. These results indicated that cells produced 
more ATP and NADH through the EMP pathway fol-
lowing both types of agitation in the solvent—producing 
phase.

Pentose phosphate pathway (PPP)
PLS showed that metabolites in the PPP were important 
for butanol fermentation. At 48 h, the carbon flux of the 
PPP for cells in PPG and TIG was 2.75- and 1.34-fold of 
that in SG, respectively. This explains the high growth 
rate in PPG and TIG at 48  h, since cells in these groups 
produced more d-ribose-5-phosphate (R5P, the sugar 
backbone of nucleotides) to support rapid growth [25, 26] 
(The PLS analysis for cell growth is given in Additional 
file  6: Figure  S3). At 96  h, the flux towards the PPP dif-
fered between the three groups: with PPG and TIG being 
2.96- and 0.34-fold of, respectively, that of SG. The non-
oxidative PPP flux generates the nucleotides required for 
DNA repair [27, 28], helping cells to tolerate butanol and 
solvent stress. Furthermore, on the metabolic network 
map (Figs. 5, 6), xylulose-5-phosphate (X5P), d-erythrose-
4-phosphate (E4P), and d-sedoheptulose 7-phosphate 
(S7P) form a small loop that directs flux of the PPP flux 
back into the EMP pathway, potentially enhancing butanol 
synthesis by increasing the intercellular pyruvate pool.

Pyruvate metabolic pathway
After the EMP pathway, the flux enters the pyruvate met-
abolic pathway. Pyruvate is a key intermediate in cellu-
lar metabolic pathways. The glycolysis flux is converted 
to lactate or acetyl-CoA and CO2 through the pyruvate 
node. Acetyl-CoA is further converted to other end-
products such as butyrate, butanol, and acetate. It is clear 
that phosphoenolpyruvate (PEP), pyruvate, and acetyl-
CoA form three main key nodes in the flux distribution. 
PLS analysis showed that butyrate, lactate and acetate 
inhibited butanol production (Fig. 4).

The inhibition effect of butyrate might be due to the 
competition for the precursor, butyryl-CoA. As shown in 
Fig. 5, there are no significant differences (all P > 0.076) 
in the levels of butyrate among PPG, TIG and SG at 48 h. 
However, at 96 h, the flux towards butyrate biosynthesis 
(2 AcCoA +  2NADH → BA) in PPG and SG was −6.5 
and −2.2  %, respectively, suggesting that butyrate was 
being absorbed for butanol synthesis [29]. By contrast, 
butyrate in TIG continued to be produced at a flux rate of 
13.3 % (Fig. 6), competing for butyryl-CoA with butanol 
biosynthesis [30].

The difference in the flux distribution of acids (acetate, 
butyrate, and lactate) among the three groups may be 
strongly associated with the intercellular energy state. 
Acids producing pathways (acetate, butyrate, and lac-
tate) and substrate-level phosphorylation form the main 

Fig. 4  The VIP plots of the PLS model for butanol biosynthesis. 
AKG α-ketoglutarate, OAA oxaloacetate, BA butyrate, Eth ethanol, LA 
lactate, AA acetate, AcCoA acetyl-CoA, X5P xylulose-5-phosphate, 
S7P d-sedoheptulose-7-phosphate, E4P d-erythrose-4-phosphate, 
FDP d-fructose 1, 6-bisphosphate, G6P glucose 6-phosphate, ICIT 
isocitrate, CIT citrate, PYR pyruvate, PEP phosphoenolpyruvate, 2GP 
2-phospho-d-glycerate, 1,3GP 3-phospho-d-glyceroyl phosphate, 
3GP 3-phospho-d-glycerate, GAP glyceraldehyde-3-phosphate, R5P 
d-ribose-5-phosphate, ACE acetone, D6PAH3U d-arabino-6-phospho-
hex-3-ulose, Ru5P d-ribulose 5-phosphate
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sources of ATP generation [15, 31, 32]. In the solvent—
producing phase, the accumulation of butanol inhibits 
glucose uptake, thus inhibiting energy generation, which 
is compounded by an independent drop in intracellular 
ATP levels [2, 32]. To compensate for the ATP shortage, 
cells usually increase the flux towards acids synthesis.

TCA metabolism
In our MFA model, Oxaloacetate (OAA) and 
α-ketoglutarate (AKG) are the key metabolites that con-
tribute to biomass production [13, 25]. Strikingly, they 
are listed as the most unfavorable metabolites for butanol 
synthesis (VIP of AKG and OAA were −9.3 and −3.8, 
respectively). In the solvent—producing phase, the flux 
towards AKG in PPG and TIG was 0.85- and 1.62-fold, 
respectively, that of SG at 96  h. The inhibition effect 
of these two metabolites is likely probably due to the 

consumption of acetyl-CoA competing with butanol bio-
synthesis. Based on previous studies [29], cells should 
cease to grow in the solvent—producing phase and dis-
tribute the flux towards butanol synthesis, just as seen 
with SG. Therefore, understanding this abnormality 
required further investigation into the metabolic net-
work. It is known that the TCA cycle can provide the low 
redox potential of the internal anaerobic environment of 
C. acetobutylicum, as well as generating ATP [33]. Lee 
et  al. [30] found that C. acetobutylicum M5 facilitates 
the biosynthesis of amino acids by altering the flux in the 
TCA cycle. Hence, the increased TCA flux in cells likely 
compensated the energy and amino acid pool.

Amino acid metabolism
Amino acids are key metabolites that reflect the intercel-
lular energy status [23, 34, 35]. Studying on amino acids 

Fig. 5  Flux distributions at flux distribution at 48 h from three cultivation models. The fluxes shown here have been normalized to make glucose 
uptake equal to 100 mM. The three numbers represent the carbon fluxes in PPG (in red), SG (in black) and TIG (in blue), respectively
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may aid our understanding of cell behavior. Therefore, 
intracellular amino acids from the three agitation modes 
were dynamically detected, as shown in Fig. 7.

Figure 7a shows the synthetic pathway for amino acids. 
From Fig.  7c, d, it was evident that in TIG the avail-
ability of some amino acids was exhausted during the 
solvent-producing phase, including isoleucine, trypto-
phan, and histidine. Given the energetic costs for amino 
acid biosynthesis (shown in Fig.  7b), these amino acids 
are the most energetically expensive ones. This further 
indicates that a reduced availability of metabolic energy 
might be involved in the reduced supply of the ‘expen-
sive’ amino acids [35]. To validate our hypothesis, intra-
cellular NADPH/NADP+, NADH/NAD+, and ATP were 
detected (as shown in Table 2). The intracellular concen-
trations of NADPH/NADP+, NADH/NAD+, and ATP 
at 96 h in TIG were 48.4, 19.5, and 37.6 %, respectively, 
of those in TIG at 48 h, and were 48.3, 40.0, and 57.6 %, 

respectively, of those in PPG at 96 h. These findings con-
firmed the ‘energy starvation’ status [23, 35] of cells in 
TIG during the solvent-producing phase.

The ‘energy starvation’ status may strongly correlate 
with the solvent-resistance mechanism and agitation. In 
the presence of solvents, Clostridia increase branched 
chain amino acids and branched chain fatty acids to 
improve membrane structure stability, a process known 
as ‘homeoviscous adaptation’ [31, 36, 37]. Simultaneously, 
the hydrodynamic damage of the cell membrane caused 
by agitation also triggers the synthesis of tolerance pro-
tein [7, 38]. This process requires high quantities of ATP 
because amino acid synthesis is energetically expensive. 
[35]. To maintain a high-energy status, which is also one 
of the central requirements for cellular metabolism [39], 
cells have to rearrange their metabolism (acid biosynthe-
sis in our study) towards enhanced ATP synthesis [23, 35, 
40].

Fig. 6  Flux distributions at flux distribution at 96 h from three cultivation models. The fluxes shown here have been normalized to make glucose 
uptake equal to 100 mM. The three numbers represent the carbon fluxes in PPG (in red), SG (in black) and TIG (in blue), respectively
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Fatty acid metabolism
Fatty acids have long been recognized as signaling molecules 
that have the capacity to trigger profound physiological 
responses [23, 38, 41]. Table 2 shows the dynamic profiling of 
fatty acids during the fermentation process. TIG possessed 
a high level of total unsaturated fatty acids, 0.15-, 0.3-, and 
0.6-fold higher than that of PPG at 48, 96, and 108 h, respec-
tively. However, the total amount of saturated fatty acids in 
TIG was lower than that of the other groups, being 106.3, 
66.1, and 41.3 % of that in the PPG and 101, 72.1, and 39.1 % 
of that in the SG at 48, 96, and 108 h, respectively.

The cell membrane is a flexible structure composed of 
a lipid bilayer and proteins, and its fluidity is determined 

by the fatty acid composition. When under agitation, 
cells adjust their fatty acid metabolism to resist the 
adverse effects of shear force by improving cell mem-
brane fluidity. Bhagyalakshmi et al. found that endothe-
lial cells activate phospholipid turnover and enhance 
the biosynthesis of arachidonate under fluid shear stress 
[42]. Han, Yuan [38] demonstrated that Axus Cuspidata 
cells increase phosphatidic acid and phospholipase C to 
limit shear force damage. In our study, the high levels 
of unsaturated fatty acid in TIG may arise for a similar 
reason: during the acid—producing phase, shear forces 
may upregulate the synthesis of unsaturated fatty acids to 
increase cell membrane fluidity. Because suffering more 

Fig. 7  The comparison of the intracellular amino acids in periodic-peristole agitation group and traditional Rushton impeller group. a the synthesis 
pathways of the amino acids; b the energetic costs for amino acid biosynthesis; c, d the heat map visualizing the intracellular amino acids contents 
during fermentation from normal—and traditional groups. The color code indicates an increased (green) or a decreased (red) availability under the 
two conditions as compared to the reference process as indicated by the color legend as aside the graph. The full amino acid data set is given in 
Additional file 7. Availability for each amino acid was calculated as ratio of the concentration to that at reference group. Glu glutamate, Ala alanine, 
Asp aspartate, Pro proline, His histidine, Gly glycine, Ser serine, Leu leucine, Ile isoleucine, Val valine, Trp tryptophan, Phe phenylalanine, Met, methio‑
nine
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serious shear force than the other two groups, cells in 
TIG own the highest content of unsaturated fatty acids. 
However, in the solvent—producing phase, the accumu-
lation of solvents, especially n-butanol, began to disrupt 
the phospholipid bilayer of the cell [43–46], a phenom-
enon enhanced by shear stress. To exacerbate this, cells 
in TIG were unable to synthesize saturated fatty acids 
rapidly enough to inhibit the flow of organic solvent into 
the cell because of ‘energy starvation’, leading to autolysis. 
By contrast, in PPG, the hydrodynamic damage was not 
as pronounced as in TIG because the relatively higher 
energy status enabled cells to redistribute their flux and 
initiate the tolerance mechanism efficiently.

Association mechanism between agitation and cell 
metabolism
The effects of agitation on metabolic distribution in C. 
acetobutylicum are summarized in Fig. 8a. Based on our 
findings, we propose a possible mechanism by which C. 
acetobutylicum cells respond to agitation.

The high mixing efficiency in PPG enhances the PPP 
flux, providing more precursors for nucleotide synthesis 
and promoting both cell growth and butanol tolerance. 
Furthermore, the high reducing power and increased car-
bon flux promote butanol biosynthesis. By contrast, tra-
ditional agitation leads to higher levels of hydrodynamic 
damage on cells. To resist shear forces, cells increase 
the levels of unsaturated fatty acids and amino acids to 
modulate membrane fluidity. To achieve this, cells rear-
range their metabolism towards enhanced ATP synthesis, 
which results in enhancing the flux through glycolysis 
and acid synthesis at the expense of the pentose phos-
phate pathway. This effect of hydrodynamic damage is 
intensified by the chemotropic effects of solvents on the 
cell membrane.

In conclusion, the enormous differences impacted by 
agitation obviously associated with three issues which 
result in significant changes in cell metabolic behaviors: 
first, a rebalanced redox status; second, the energy (ATP) 
acquirement and consumption; third, the tolerance 

Table 2  The dynamic changes of the important metabolites

** Stands for the special concentration at the corresponding time point (μmol/g); which is calculated by the concentration/biomass
a  Stands for the periodic-peristole agitation group
b  Stands for the Stationary culture group
c  Stands for the traditional Rushton impeller

Time (h) 36 h 48 h 96 h 108 h

NADH/NAD+ 0.16 ± 0.056a 0.24 ± 0.079a 0.1 ± 0.026a 0.07 ± 0.012a

0.12 ± 0.017b 0.17 ± 0.069b 0.06 ± 0.01b 0.05 ± 0.020b

0.15 ± 0.037c 0.21 ± 0.092c 0.04 ± 0.02c 0.02 ± 0.011c

NADPH/NADP+ 4.2 + 1.5a 10.32 + 1.8a 5.67 + 1.6a 2.21 + 1.83a

3.45 + 0.98b 7.64 + 2.91b 3.46 + 1.79b 1.14 + 0.31b

3.98 + 1.7c 5.65 + 1.79c 2.74 + 1.49c 0.67 + 0.38c

AcCoA** 1.37 ± 0.68a 2.10 ± 0.14a 1.90 ± 0.26a 0.07 ± 0.02a

1.06 ± 0.42b 1.65 ± 0.11b 2.33 ± 0.17b 0.11 ± 0.03b

1.34 ± 0.69c 2.17 ± 0.19c 1.84 ± 0.43c 0.03 ± 0.02c

ATP** 3.54 ± 0.82a 3.86 ± 0.23a 2.34 ± 0.14a 1.45 ± 0.15a

4.27 ± 0.17b 2.88 ± 0.47b 1.93 ± 0.13b 1.11 ± 0.10b

3.31 ± 0.21c 3.59 ± 0.56c 1.35 ± 0.09c 0.863 ± 0.16c

27.2 ± 1.9a 28.5 ± 2a 39.8 ± 2.8a 25.3 ± 1.3a

Oleic acid** 25.7 ± 1.8b 25.7 ± 0.8b 32.4 ± 2.6b 27.2 ± 2.1b

34 ± 2.4c 35.2 ± 1.4c 49.9 ± 2.5c 46.2 ± 3.6c

23.6 ± 0.9a 35.1 ± 2a 31.8 ± 2.2a 28.3 ± 1.4a

Stearic acid** 25.5 ± 1.3b 36.7 ± 1.9b 29.4 ± 1.2b 29.9 ± 2.1b

26.1 ± 0.8c 37.2 ± 1.6c 21.2 ± 1.9c 11.7 ± 1.6c

Linoleic acid** 35.9 ± 0.6a 15.7 ± 0.9a 18.3 ± 1.1a 19.4 ± 1.4a

32.9 ± 1.0b 13.4 ± 0.4b 15.5 ± 0.5b 15.9 ± 0.8b

32.8 ± 0.9c 13.8 ± 1.1c 21.6 ± 1.5c 23.5 ± 1.2c

Arachidonic acid** 42.1 ± 1.5a 38.5 ± 1.5a 30.1 ± 1.2a 23.3 ± 1.3a

34.8 ± 2.1b 41.4 ± 2.1b 35.6 ± 1.3b 33.3 ± 1.8b

45.4 ± 3.6c 46.2 ± 2.8c 43.1 ± 4.4c 41.5 ± 4.5c
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Fig. 8  Effects of agitation on metabolic distribution of C. acetobutylicum and the corresponding enhancement strategy for butanol production. a 
summarizes the effects of agitation on cell metabolism. b shows the enhancement effects of rational strategies based on our supposed agitation-
associated mechanism. b1 is for TIG and b2 is for PPG
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mechanism of the cell for survival of solvent (homeovis-
cous adaptation) [31, 36, 37].

Based on such key information, rational enhancement 
strategies were applied: (1) for TIG, we stopped agita-
tion during the solvent—producing phase (60–120 h) and 
supplemented the pool available amino acids including 
5 mM of Ile, Val, Trp, Phe, Met at 60 h; finally, butanol 
and the total solvent (acetone-butanol-ethanol) were 
increased by 65  % and 101  % to 11.65  g/L (2.7  g/g bio-
mass) and 22.21  g/L (4.9  g/L biomass), respectively (as 
shown in Fig.  8b1); (2) for PPG, we supplemented the 
depleted amino acids during the solvent—producing 
phase (60–120 h) in PPG, including 5 mM Asp, Pro and 
Ile. In the end, butanol and the total solvent (acetone-
butanol-ethanol) were increased by 9.7 and 11  % to 
13.92 g/L (2.85 g/g biomass) and 26.32 g/L (5.38 g/g bio-
mass), respectively (as shown in Fig. 8b2). This validation 
experiments provide us with the direct support for our 
supposition on agitation-associated mechanism. In the 
large scale production, we could supplement some raw 
materials (such as soybean products, mycoprotein prod-
ucts, meat, and bone meal et al.) which are cheap but rich 
in amino acids to control the overall cost. Besides, this 
rational conception of enhancing the engineering process 
by analyzing the metabolism bottleneck of the targeted 
product is efficient and inspiring, which would be very 
attractive when applied on some high-value products.

Conclusion
This paper proposed a novel agitation type (periodic-per-
istole) and studied the association mechanism between 
cell metabolism and agitation (traditional and periodic-
peristole agitation) using CFD and MFA technologies. As 
a new agitation type, periodic-peristole showed differ-
ence on the hydrodynamic characteristics from the tra-
dition agitation. Among the characteristics, eddy lengthy 
can well scale the shear force damage of agitation on the 
cells. Furthermore, agitation exerts influence on the cell 
flux distribution, which is highly associated with intercel-
lular redox and energy status. This agitation-associated 
mechanism can guide the way for rational enhancement 
of the biofuel refinery process.

Methods
Microorganism and culture conditions
The working strain Clostridium acetobutylicum ATCC 
824 was purchased from China General Microbiologi-
cal Culture Collection Center and repetitively domesti-
cated using the method of Yu et al. [47]. The fermentation 
method was described in our previous work [48]. There 
are three fermentation groups in this paper: periodic-per-
istole agitation group (PPG), traditional Rushton impeller 
agitation group (TIG), and stationary culture group (SG). 

Fermentation experiments in SG were performed in a 4 L 
BIOTECH-3BH (New Brunswick Scientific, USA) with a 
working volume of 1.8 L at 37  °C. The stirring speed in 
this group was set at 0 rpm; In TIG fermentation was also 
performed in 4  L BIOTECH-3BH (New Brunswick Sci-
entific, USA) with a working volume of 1.8 L, 37 °C and 
the stirring speed was set at 55  rpm in the comparison 
fermentation experiment. The bioreactor configuration 
with periodic-peristole agitation is given in Additional 
file 1: Figure S1. The lower half bioreactor wall can shrink 
and extend periodically (just as stomach and intestine do) 
at set speed. In our research, the working volume of the 
bioreactor was 1.8 L with a total reactor volume of 4.0 L. 
The shrinkage rate was set at 0.5 cm/s in the comparison 
fermentation experiment. All experiments were carried 
out five times to ensure the reproducibility.

Intracellular amino acid sampling and quantification
Because of the rapid turnover of intracellular metabolites, 
the sampling and quenching processes must be carried 
out in a rapid and reproducible manner to ensure proper 
quenching of intracellular amino acids and little amino 
acid loss related to leakage. The intracellular metabolites 
were extracted and measured as described previously 
[23]. D-sorbitol-13C6 (St. Louis, MO, USA) was added 
to 100  μL extract as internal standard for analysis. Five 
biological replicates were used to perform multivariate 
analysis for each sample.

Analysis of substrate and products
Culture broth samples were taken every 12 h for measure-
ment. The biomass was determined with the method of 
Jiang et al. [14]. Lactate, butyrate, butanol, acetone, ethanol, 
pyruvate, glucose were measured following the method of 
Wang, Chen [49]. NADH, NAD+, NADPH, NADP+, and 
ATP were measured using the method of Amador-Noguez 
et  al. [50]. Hydrogen and carbon dioxide were measured 
with the method of Li, Chen [51]. Fatty acids were meas-
ured using the method of Xia et al. [23]. All the authentic 
standards were purchased from Sigma–Aldrich.

Computational fluid dynamics (CFD) modeling
Force analysis was carried out in ANASYS Fluent (Ver-
sion 14.5, ANASYS, NH, USA). The bioreactor geom-
etry was incorporated into the commercial CFD software 
CFX 11.0 (ANSYS Inc., Canonsburg, PA, USA). The 
bioreactor geometry was given in Table 1. The fluid was 
simplified as the uniform liquid phase with the same 
viscosity value (1.3 × 10−3 Pa s). Mixing time was meas-
ured by the conductivity method using saturated sodium 
chloride solution as the tracer [52]. Eddy length was cal-
culated followed the Kolmogorov’ model, which is fol-
lowing the expression of Eq. 1.
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where, μ is the dynamic viscosity, which is 1.3 × 10−3 Pa s 
in our study; ρ is the density of the fluid, which is 
1010 kg/m3 in our study; and Pm is power input into the 
system per unit mass of fluid (W/kg);

Determination of the relationship between shear force 
and cell growth
The experiment method to determine the shear force and 
cell growth was carried out as following: first, ten reactors 
with periodic-peristole agitation (Group I) and ten reac-
tors with tradition agitation (group II) were set at differ-
ent agitation rates to generate different shear forces (eddy 
length ranges from 60 to 180  μm) within each group; a 
reactor without agitation was set as control (Group III); 
second, Clostridium acetobutylicum strain was cultivated 
in the bioreactors with same cultivation condition, which 
was described in our previous work [45] for 120  h; at 
least, Bioexperimental

Biocontrol
 was calculated using the biomass data. 

The experiment result was shown in Fig. 3a.

Metabolic flux analysis
A detailed network model for C. acetobutylicum metabo-
lism was constructed on the basis of the batch fermenta-
tion data and pathway information collected from other 
studies reported in the literature, which employed species 
of Clostridium [13–16] and the KEGG Pathway Database 
(http://www.kegg.jp/). The network model contains 35 
intracellular metabolites and 33 metabolic reactions in 
the glycolysis, pentose phosphate pathway (PPP), TCA 
cycle, and the biomass synthesis reactions. The cellular 
composition of C. acetobutylicum was assumed to be the 
same value as reported for Clostridia by Cai et  al. [13] 
Biomass formation (growth flux) was included into the 
model to account for the drain of precursors and building 
blocks into biomass. A list of these selected reactions and 
metabolite abbreviations is provided in Additional files 4 
and 5.

In this experiment, the specific rate for glucose uptake 
and the specific formation rates of lactate, acetate, 
butyrate, ethanol, CO2, H2, and acetone were used as the 
constraints in the Metabolic flux analysis (MFA) model. 
All the flux distributions were normalized by the glu-
cose uptake rate on a basis of 100  mmol/(g cell h) and 
expressed as percentage.

Data processing and statistical analysis
PLS-discriminant analysis (PLS) was applied to the 
data after mean-centering [53] on SIMCA package (Ver 
10.0, Umetrics, Umea, Sweden). The generation rate 

(1)Eddy lengh =

[

(
µ
ρ
)3

Pm

]1/4 of metabolites, cell growth rate and glucose utilization 
rate were set as input and butanol production rate was 
set as output. The analyses employed a default sevenfold 
internal cross validation [23]. For comparison the Stu-
dent’s t-test was also carried out and the difference can be 
treated as significant when p < 0.05.
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