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Extracellular electron transfer
from cathode to microbes: application
for biofuel production
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Abstract

Extracellular electron transfer in microorganisms has been applied for bioelectrochemical synthesis utilizing microbes
to catalyze anodic and/or cathodic biochemical reactions. Anodic reactions (electron transfer from microbe to anode)
are used for current production and cathodic reactions (electron transfer from cathode to microbe) have recently
been applied for current consumption for valuable biochemical production. The extensively studied exoelectro-
genic bacteria Shewanella and Geobacter showed that both directions for electron transfer would be possible. It was
proposed that gram-positive bacteria, in the absence of cytochrome C, would accept electrons using a cascade of
membrane-bound complexes such as membrane-bound Fe-S proteins, oxidoreductase, and periplasmic enzymes.
Modification of the cathode with the addition of positive charged species such as chitosan or with an increase of

the interfacial area using a porous three-dimensional scaffold electrode led to increased current consumption. The
extracellular electron transfer from the cathode to the microbe could catalyze various bioelectrochemical reductions.
Electrofermentation used electrons from the cathode as reducing power to produce more reduced compounds such
as alcohols than acids, shifting the metabolic pathway. Electrofuel could be generated through artificial photosynthe-

sis using electrical energy instead of solar energy in the process of carbon fixation.

Keywords: Bioelectrochemical synthesis, Extracellular electron transfer, Cathodic electron, Electrofuel

Background
An eventual replacement of fossil energy source with
sustainable energy system is unavoidable. Biofuels have
emerged as one of the sustainable fuels sources and it is
considered as alternatives to petroleum. Biomass cap-
tured the energy from sunlight and stored it as high-
energy chemical bonds, which is used for biofuels. More
recently, electrofuels have been studied for liquid fuels as
a means for intermittent electricity storage [1] using the
energy of low-potential electrons such as hydrogen gas,
reduced metal, or electricity [2]. It usually uses the inter-
action between microbes and electrode, through extra-
cellular electron transfer.

Bioelectrochemical synthesis (BES) uses extracellular
electron transfer of microorganisms catalyzing anodic
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and/or cathodic reactions. BES has two categories
according to the direction of electron flow, microbial fuel
cells (MFC, electricity production), and microbial elec-
trosynthesis (MES, electricity consumption). A microbial
fuel cell uses extracellular electron transfer to an elec-
trode originating from organic compounds consumed by
microorganisms. Microbial electrosynthesis uses elec-
tron transfer from an electrode to microorganisms pro-
ducing reduced biochemical compounds. An electrode is
thus used as an electron acceptor (MFC) or an electron
donor (MES).

Extracellular electron transfer has been gaining wide
interest in relation to microbial electrochemical synthesis
[1, 3], interspecies electron transfer [4, 5], and microbial
immobilization of heavy metals for bioremediation [6,
7] (Table 1). In particular, biofuels or biochemicals are
reduced compounds and the reducing power is needed in
microbial fermentation processes [8, 9]. An external sup-
ply of electrons using electricity enhances the reducing
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process in microbial metabolism. Direct electron transfer
is ideal in extracellular electron transfer from a cathode
to microbes.

The two mostly extensively studied microorgan-
isms for extracellular electron transfer are Geobacter
and Shewanella species. Geobacter and Shewanella are
metal-reducing and gram-negative bacteria. Extracel-
lular electron transfer in microorganisms is used in the
metal reduction process by the microorganism and,
in this case, the metal is used as an electron accep-
tor. When metal (hydr)oxides that are poorly soluble
in water are present as electron acceptors, extracel-
lular electron transfer occurs using multihaem c-type
cytochromes in Geobacter and Shewanella [10]. Based
on this phenomenon, the microorganisms are able to
extracellularly transfer electrons and this can be applied
for BES.

The mode of extracellular electron transfer is broadly
divided into the following: (1) direct electron transfer:
nanowire [11] or direct contact [12]; (2) mediators-shut-
tled: endogenous, exogenous as a redox compound or a
by-product [13-15]; and (3) extracellular polymeric sub-
stances (EPS) of biofilms [16] (Fig. 1).
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Electron transfer from a cathode to microbes
Multihame c-type cytochrome is a key component of the
electron transfer channel in gram-negative bacteria [10].
Filamentous conductive pili are also involved in electron
transfer in Shewanella [17] and Geobacter [11]. BES uses
two directions, i.e., microbe — electrode (anode) in MFC
and electrode (cathode) — microbe in MES, with the
same or different mode. Electrons flow from an electron
donor with a relatively lower redox potential to an elec-
tron acceptor with higher redox potential. In this light, in
the present study we address the question that of whether
it is possible to use the same electron transport chain for
the opposite direction.

The redox tower in Fig. 2 shows the broad range of
redox potential for MtrC (located on an extracellular
site of the outer membrane), MrtA (a periplasmic c-type
cytochrome), CymA (a link point between the inner
membrane and the periplasm), and OmcA (anchored in
the inner membrane), which were reported to play roles
in electron transfer. It is proposed that reversible electron
transfer within cytochrome ¢ complex channels is feasi-
ble and the same electron transport chain can be used for
the opposite direction.

direct contact

i)a nanowire

e

H,, format

substances (EPS)

mediator; or indirectly, through an artificial mediator, by-product, or EPS

endogenous mediator shuttled

red artificial mediator shuttled

* by-product shuttled
€

extracellular polymeric

Fig. 1 Cathodic electron transfer mode. Electrons from a cathode flow into a microbe directly, through direct contact, nanowire, and endogenous

— Direct electron transfer

— Indirect electron transfer
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400 mV —— MtrC hemes (Hartshorne et al., 2007, [111])
200 mV |
MtrA hemes (Pitts et al., 2003, [109])
0mV —|—
200 mV —

OmcA hemes (Shi et al., 2012, [13])

CymA hemes (Gorby et al., 2008, [110])

Fig. 2 The broad range of redox potential in c-type cytochromes. Considering the possibility of bidirectional electron flow (cathodic, anodic), the
broad redox potential suggests the direction of electron flow would be flexible in an electron transfer channel consisting of cytochrome C. The
number in a square bracket represents the citation number in the reference list

Extensively studied in MFC as iron-reducing bacteria,
Shewanella oneidensis MR-1 [18] and Geobacter spp.
[19] were reported to reduce the highly toxic hexavalent
chromium (Cr(VI)) using a cathode. This indicates that
both directions for electron transfer would be possible in
current-producing bacteria, i.e., microbe — anode and
cathode — microbe. However, it was reported that She-
wanella showed a reversed Mtr pathway [20] but Geo-
bacter used a different mode in the opposite direction
[21].

Direct electron transfer from a cathode to microbes
has been observed in a biocathode for microbial com-
munities including betaproteobacteria [22, 23] and fir-
micutes [22], in addition to Shewanella and Geobacter.
The presence of other electroactive, electron endergonic
strains thus should be possible. Clostridium pasteuri-
anum increased butanol production using cathode elec-
tron transfer without any mediator [24]. Nevertheless,
the precise electron transfer channel for acceptance of
extracellular electrons has not been verified; the redox
enzyme in the membrane, however, may be involved in
electrochemical reduction. Ferredoxin extracted from C.
pasteurianum previously showed direct electrochemi-
cal reduction [25], but there is still no evidence of direct
electron transfer through ferredoxin in whole cells. Also,
several other redox proteins could be candidates for
extracellular electron transfer.

Predicted electron transfer proteins involved

in extracellular electron transfer

For direct electron transfer, a membrane-bound redox
protein is needed. However, there has been no study
of redox proteins involved in direct electron transfer
except periplasmic c-type cytochrome. Several stud-
ies have reported the possibility of direct electron
transfer by microorganisms in the absence of c-type
cytochrome, and here we present some possible redox
proteins involved in electron transfer channels including
cytochromes (Table 2).

Cytochrome

The heme in cytochrome participates in electron trans-
fer processes. Cell surface-localized cytochromes (OmcE
and OmcS in Geobacter sulfurreducens, MtrC and OmcA
in Shewanella oneidensis MR-1) are important compo-
nents for electron transfer [26]. A microarray analysis
of G. sulfurreducens gene transcript abundance showed
the c-type cytochrome was highly expressed in current-
producing biofilms [21]. However, it was suggested
that the mechanism of two opposite directions, i.e.,
microbe — electrode and electrode — microbe, would
be significantly different in G. sulfurreducens. Recently,
cytochrome PccH with a unusually low redox potential
for cytochrome (—24 mV at pH 7) located in the peri-
plasm was proposed as a candidate to provide electron
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transfer in G. sulfurreducens, even though PccH could
not be involved in the first step of accepting electrons [27,
28]. It is meanwhile known that S. oneidensis has a similar
mechanism in both directions mainly using flavins (flavin
mononucleotide and riboflavin) with cytochrome C [29].

Ferredoxin: membrane-bound complex
Rnf complexes (a membrane-bound NADH:ferredoxin
oxidoreductase) are redox-driven ion pumps and have
a membrane-bound, proton-translocating ferredoxin:
NAD™ oxidoreductase contributing to ATP synthesis
(energy conservation) in acetogens such as Clostridium
ljungdahlii. RnF is a multifunctional device with nitro-
gen fixation, proton translocation, and electron transport
capabilities [30]. It is four flavin-containing cytoplasmatic
multienzyme complexes from clostridia, acetogens, and
methanogens [31] and so involved in flavin-based elec-
tron bifurcation (FBEB), which is regarded as a third
mode of energy conservation in addition to substrate-
level phosphorylation (SLP) and electron transport phos-
phorylation (ETP) [32]. Not all acetogens have rnf genes.
An energy-conserving hydrogenase (Ech) also plays
a role in reducing ferredoxin with proton motive force
[33]. It involves a coupling mechanism: an exergonic pro-
cess attributes to coupled endergonic process; ferredoxin
reduction with low potential as an exergonic reaction is
coupled with H, or NADH, a high-potential acceptor
as endergonic reduction [34]. In methanogens, in the
absence of cytochromes, methyltransferase is involved in
a exergonic reaction to drive the extrusion of ions (Na™
or H') across the membrane [35]. In the context energy
conservation in a bioelectrochemical system, electron
supplementation from cathode would lead to FBEB.
Electron bifurcating ferredoxin reduction HT gradient
(for C. ljungdahlii) or Na™ (for Acetobacterium woodii)
via membrane-bound Rnf complex was supposed as key
components in electron transport chain [36].

Rubredoxin

Rubredoxin (Rub) is also an electron transfer protein hav-
ing a Fe-S cluster with relatively small molecules (about
55 amino acids) [37, 38]. It is one of the electron trans-
fer components of sulfate-reducing bacteria (SRB) [39]
and is also detected in Clostridium pasteurianum [37)].
In Desulfovibrio vulgaris, Rub reduces hydrogen perox-
ide and superoxide [40]. Rub showed an electrochemical
response with electrodes [41, 42]. Detailed roles of Rub in
microorganisms have not been found but it is expected to
be involved in an electron transfer channel.

Hydrogenase and formate dehydrogenase
It was recently reported that a hydrogenase and for-
mate dehydrogenase, which are released from cells, are
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adsorbed onto electrodes to accept electrons in biocor-
rosion and bioelectrosynthesis [43]. Methyl viologen-
mediated electron transfer to hydrogenase from cathodes
and mediatorless H, production using cathodic electron
transfer were previously suggested as electron transfer
modes [44]. Formate dehydrogenase also showed direct
electron transfer from cathodes [43, 45]. The periplasmic
formate dehydrogenase transfers electrons to cytochrome
C in D. desulfuricans [46]. The combination of periplas-
mic enzyme and c-type cytochrome likely provides the
electrical wiring [44]. Several membrane-bound enzymes
such as fumarate reductase [47, 48] and a denitrification
enzyme [49-51] led to bioelectrochemical reduction.
Therefore, a periplasmic enzyme could be involved in an
electron transfer channel in bioelectrochemical systems.

Electroactive microorganisms

Methanogens and acetogens

The conversion of CO, to CH, was reported in a bio-
cathode consisting of a methanogen via direct or indirect
(H, mediator) channels [52—54]. The electron donor for
methanogenesis is H, for autotrophic methanogens or
acetate for acetoclastic methanogens. It is supposed that,
as in metal-reducing bacteria, the specific electron trans-
fer channel in methanogens plays a role in extracellular
electron transfer. Abiotically produced hydrogen is also
used by methanogens in indirect electromethanogenesis,
instead of direct cathodic electrons [55]. While no elec-
tron transfer channel involved in electron transfer from a
cathode in methanogens has been identified, energy con-
servation by bifurcated electron transfer in methanogens
could still potentially be found [56].

The study of enzyme purification and protein iden-
tification using mass spectroscopy in an acetotrophic
methanogen, Methanosarcina acetivorans, showed that
ferredoxin reduced membrane-associated multi-heme
cytochrome ¢ in Rnf [57, 58]. Methanogens have mem-
brane-associated hydrogenases using ferredoxin or meth-
anophenazine as redox partners [59]. It was reported that
hydrogenase and formate dehydrogenase released out of
cells mediate electron transfer between a cathode and
Methanococcus maripaludis [43]. Also, interspecies elec-
tron transfer was shown through flagellum-like append-
ages between Pelotomaculum thermopropionicum and
Methanothermobacter thermoautotrophicus in the form
of aggregates [5].

Several acetogenic bacteria (acetate production from
CO, and H,) including Sporomusa ovata, Sporomusa
silvacetica, Sporomusa sphaeroides, Clostridium ljun-
gdahlii, Clostridium aceticum, and Moorella thermoacet-
ica consumed electrons from a cathode to reduce CO,
to acetate [60]. Recently, an acetogen closely related
with Sporomusa sphaeroides was isolated and showed
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acetogenic growth using Fe(O) as a sole electron donor
[61]. The acetogens Moorella thermoacetica and C. for-
micoaceticum reduced CO, to formate, consuming elec-
tricity at the cathode compartment [62]. Although the
mode of electron transfer to an electroactive acetogen
from a cathode is still not known, the membrane-bound
cytochromes and cobalt-containing corrinoids were sug-
gested as candidates for an electron transfer channels
[63]. Also, cytochrome-b enzymes (membrane-integral
b-type cytochromes, —0.215 V vs. SHE) were suggested
to be involved in the electron transfer process of aceto-
gens [64].

Metal-oxidizing bacteria and sulfur-utilizing bacteria

The ability of iron-reducing bacteria to give electrons
anodes gave rise to the hypothesis that iron-oxidizing
bacteria (FeOB) could accept electrons from cathodes
in two FeOB, Mariprofundus ferrooxydans and Rhodop-
seudomonas palustris, in recent studies [65-67] (Fig. 3).
The marine isolate Mariprofundus ferrooxydans PV-1
used a cathode as a sole electron donor, generated ATD,
and fixed CO, [67]. Rhodopseudomonas palustris TIE-1
accepted electrons from a cathode, independent of pho-
tosynthesis. The dark current indicated extracellular
electron uptake uncoupled from the cyclic photosyn-
thetic apparatus and the pioABC operon influenced elec-
tron uptake [65]. Rhodopseudomonas palustris TIE-1
increased electron uptake rate 56-fold with unlimited
Fe(II) supplementation in a photobioelectrochemical sys-
tem [67].

It was reported that isolated marine corrosive delta
proteobacterial SRB used elemental iron as the sole elec-
tron donor and reduced sulfate, showing the possibility
of extracellular electron transfer [68]. Recently, a sulfide-
oxidizing bacteria, Desulfobulbaceae, was reported to
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reduce oxygen in the upper layers of marine sediments
using centimeter-long filaments [69]. For removal of
H,S, the product of sulfate reduction and a toxic gas to
oxygen-consuming organisms, sulfide-oxidizing bacteria
used oxygen as an electron acceptor using filaments as
electrical cables for H,S oxidation to S [69].

The SRB reduced acetate, butyrate to ethanol, butanol,
respectively, using electrons through direct electron
transfer from a cathode [70]. It was suggested that the
direct electron transfer could take place via a redox
enzyme such as cytochrome-b in SRB [70]. The SRB
Desulfopila corrodens strain 1S4 showed direct elec-
tron transfer affecting iron corrosion. Electrochemical
and infrared spectroelectrochemical analyses indicated
c-type cytochromes were involved in electron transfer
[71]. Acidithiobacillus ferrooxidans, Desulfosporosinus
orientis, Thiobacillus denitrificans, Sulfurimonas denitri-
ficans, and Desulfovibrio piger also showed electroactivity
to accept electrons from a cathode in pure cultures [72].

Cathode modification for enhanced performance
of bioelectrochemical reduction
Efforts to improve the efficiency of electron transfer
between a cathode and microorganisms have focused
on increasing of the interfacial area and interfacial inter-
actions. Nanoparticle attachment on a cathode was
attempted with nano-nickel [73], carbon nanotubes [74,
75], conjugated oligoelectrolytes (COEs) [76], and carbon
nanotubes on reticulated vitreous carbon (NanoWeb-
RVC) [74, 77]. Also, a graphene-modified biocathode
enhanced bioelectrochemical production of hydrogen in
a MES system [78].

Another attempt involved positively charged surface
modification. Extracellular electron transfer from a cath-
ode to a microbe was increased using a positively charged

Exoelectrogen

M

Microbe

Electron flow Microbe — anode

Application Current production

Metal-reducing bacteria (MBB)

Fig. 3 Analogy between metal-utilizing bacteria and direct extracellular electron transfer in a bioelectrochemical system. The left side of the dotted
line shows the electron flow with metals in metal-utilizing bacteria and the right side indicates interaction with the electrode

Endoelectrogen

M+

.

Metal-oxidizing bacteria (MOB)

cathode — microbe

Current consumption
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functional group on the surface of a cathode [74]. Nega-
tively charged S. ovate preferred to attach on a cathode
and enhanced acceptance of electrons from the cathode
for the reduction of CO, to acetate [74]. The positively
charged anode led to an enriched biofilm on an anode
but the negatively charged cathode has a repulsive inter-
action with microorganisms because the cell walls of
most bacteria have an overall net negative charge. There-
fore, attachment with microorganisms on a cathode has
a charge barrier and one study showed that both the zeta
potential and the hydrophobicity of cells increased in a
current-consuming biofilm [24]. Modification should be
tried according to the changes of cell surface characteris-
tics on a cathode, in contrast with on an anode.

Application for valuable biofuel production

A study of the life cycle assessment (LCA) showed MFCs
do not give environmental benefit relative to the conven-
tional anaerobic treatment [79]. The development of the
MEC system connected with valuable product formation
was suggested for positive energy gain [79, 80]. Thus, the
product developments using bioelectrochemical reac-
tion between microbe-cathode are promising research
directions.

Metabolic shift to reduced compound production
(electrofermentation)

Electron transfer via an artificial mediator from a cath-
ode has been applied in several studies and it showed an
increase of reduced compound production [15, 81-85].
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The distribution of final products would be determined
by the electron and carbon flow in the fermentation pro-
cess. Therefore, it is important to control the electron/
carbon flow accordingly for production of the targeted
bioproduct. Recently, an increase of butanol produc-
tion in C. pasteurianum in a bioelectrochemical system
showed the reducing power from a cathode could shift
the metabolic pathway to solvent production [24]. The
supplement of electrons via the cathode into a microbe
led to enhanced reduction reaction directly (working
on surface-associated redox enzymes, such as hydroge-
nases and presumably dehydrogenases [43]) or indirectly
(increasing a reduced cofactor such as NADH, Fig. 4).
The direct reduction process was studied in fumarate
reduction to succinate [47], nitrate reduction to nitrite
[48], nitrobenzene reduction to aniline [86], and hexa-
valent chromium reduction [18]. The indirect reduction
process includes ethanol production from acetate [81],
alcohol formation from glycerol [87], and butyraldehyde
to butanol [88].

Reduction for value-added bioproducts: chain elongation

The interaction between a cathode and microbes led to
reverse [3 oxidation [89] and reduced propionate (C3) to
valerate (C5) in a glycerol-fed bioelectrochemical sys-
tem [87]. Without fermentable substrates, the reduction
of acetate (C2) to caproate (C6) and caprylate (C8) took
place in a Clostridium kluyveri-predominant mixed cul-
ture in a bioelectrochemical system at —0.9 V vs. NHE
cathode potential using in-situ produced hydrogen as

-~

NAD*
H, NADH

NAD*+H* + 2¢ — NADH

-
\ catw

Fig. 4 The microbial metabolic pathway of NADH-consuming compound production. One arrow indicates one step of reaction. The butyrate is
NADH-balanced and generally produced more than butanol. The NADH reduction (inset) by electricity increases the flux of electron for butanol
formation, more NADH-consuming pathway. ANADHet(per one mol of product) = NADH production — NADH consumption, Fe,,, oxidized form

glucose
f 2 NAD*
\ 2 NADH
2NAD* 2 NAD
2 lactate 2 pyruvate
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an electron donor [90]. The reduction of acetate (C2)
and butyrate (C4) into alcohols (C1 ~ C4), acetone (C2)
and caproate (C6) occurred in a mixed culture of SRB
at a potential of —0.85 V vs. Ag/AgCl via direct electron
transfer [70].

The application of a cathode for additional reducing
power can improve low-grade chemicals to valuable
biofuels with energy supplement through the reduc-
tion process of an acid to alcohol or by chain elonga-
tion. In particular, landfill leachate, which contains
acetate, propionate, and butyrate as main components
[91], could be used as feed stocks in bioelectrochemi-
cal systems to upgrade waste to value-added biofuels,
for examples, acetate to butanol [92] (Fig. 5), glycerol to
1,3-propandiol [93], glucose to polyhydroxyalkanoates
(PHA) [92].

Electrofuel production (CO, fixation)

Various electron sources can be used as electron donors
(organic compounds, H,, H,O, etc.) or acceptors (O,,
metal, CO,, etc.) by microbial organisms, whereas
humans only use organic carbon as an electron donor
and O, as an electron acceptor. BES uses an electrode
as an electron donor (cathode) or an electron acceptor
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(anode). In particular, electrofuel is a carbon fixation pro-
cess using a cathode as an electron donor and CO, as a
carbon source, and this process mimics natural photo-
synthesis in plants [95-97].

nCOy + (61+2) (e—1 n H+) — CyHonsa + 2nH,0

Electrofuel has several advantages: (1) the CO, green-
house gas can be used as a substrate, and the efficiency
of the electricity to chemical commodities is relatively
high (80 ~ 90 %), i.e., more efficient than photosynthesis;
(2) the electricity can be from many renewable sources;
and (3) it has good specificity to produce desired chemi-
cal commodities. However, research in this ara is an early
stage and the final titer is low and the CO, reduction rate
is slow [98].

An acetogen used an electrode as an electron source to
produce 2-oxobutyrate as well as acetate [60]. The long-
term operation of a bioelectrochemical system with CO,
produced acetate at a level of 10.5 g/L over 20 days [99].
However, the concentration of other carbon compounds
was still small, such as butyrate 35 mg/L [100], isobutanol
846 mg/L, and 3-methyl-a-butanol 570 mg/L [13].

Crotonyl-CoA
2e- 3-Hydroxybutyryl-CoA
Acetoacetyl-CoA

Acetyl-CoA

Acetate

4e°

2e- Butanoyl-CoA

n-Butanol

dinucleotide, respectively

Fig. 5 The upgrade of waste into value-added biofuels. The acetate from wastes, such as waste activated sludge, food waste, and animal manure,
was feed stocks for biofuel production by electroactive microorganisms. The extracellular electron transfer from cathode to microbe via electron
transfer protein could be used for the reduction of acetate to butanol. NADH the reduced form, NAD™ the oxidized form of nicotinamide adenine
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Co,

Organic compound

Direct reduction by periplasmic
enzyme using electrons from
cathode

Succinate

Fumarate

Indirect reduction in microbial
metabolism enhanced by reducing
power from cathode

Electrofuel

Selected more reduced compounds or
chain elongation

Cathode

Fig. 6 The application of bioelectrochemical reduction for cathodic electron transfer from a cathode to a microbe

In the absence of direct electron transfer, hydrogen led
the reduction process with a hybrid microbial-water-
splitting catalyst system [13, 101]. The hydrogen from
water splitting was used to reduce carbon dioxide to pro-
duce liquid fuels and engineered Ralstonia eutropha pro-
duced isopropanol up to 216 mg/L [101]. Fermentative
hydrogen production enhanced at —0.6 V vs. SHE led to
increased 1,3-propandiol production [93]. Electrochemi-
cal generation of formate also mediated electron supple-
mentation to microbes from a cathode in BES [13].

Conclusions

The cathodic reaction in BES is of increasing concern in
the context of producing alternative fuels. Beginning with
metal-utilizing bacteria, several electroactive bacteria
were found and applied for the conversion of electrical to
chemical energy as biofuels or biotransformation (Fig. 6).
Nonetheless, many technical challenges must still be
addressed and the titer of final product is also low. How-
ever, research is still in an early stage and efforts such as
cell membrane modification and cathode surface modifi-
cation would enhance the efficiency of BES, as shown in
previous studies on MFC.
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