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Predicting compositions of microbial
communities from stoichiometric models
with applications for the biogas process

Sabine Koch', Dirk Benndorf?, Karen Fronk®, Udo Reichl'? and Steffen Klamt'”

Abstract

Background: Microbial communities are ubiquitous in nature and play a major role in ecology, medicine, and vari-
ous industrial processes. In this study, we used stoichiometric metabolic modeling to investigate a community of
three species, Desulfovibrio vulgaris, Methanococcus maripaludis, and Methanosarcina barkeri, which are involved in
acetogenesis and methanogenesis in anaerobic digestion for biogas production.

Results: We first constructed and validated stoichiometric models of the core metabolism of the three species which
were then assembled to community models. The community was simulated by applying the previously described
concept of balanced growth demanding that all organisms of the community grow with equal specific growth rate.
For predicting community compositions, we propose a novel hierarchical optimization approach: first, similar to other
studies, a maximization of the specific community growth rate is performed which, however, often leads to a wide
range of optimal community compositions. In a secondary optimization, we therefore also demand that all organ-
isms must grow with maximum biomass yield (optimal substrate usage) reducing the range of predicted optimal
community compositions. Simulating two-species as well as three-species communities of the three representative
organisms, we gained several important insights. First, using our new optimization approach we obtained predic-
tions on optimal community compositions for different substrates which agree well with measured data. Second, we
found that the ATP maintenance coefficient influences significantly the predicted community composition, especially
for small growth rates. Third, we observed that maximum methane production rates are reached under high-specific
community growth rates and if at least one of the organisms converts its substrate(s) with suboptimal biomass yield.
On the other hand, the maximum methane yield is obtained at low community growth rates and, again, when one of
the organisms converts its substrates suboptimally and thus wastes energy. Finally, simulations in the three-species
community clarify exchangeability and essentiality of the methanogens in case of alternative substrate usage and
competition scenarios.

Conclusions: In summary, our study presents new methods for stoichiometric modeling of microbial communities
in general and provides valuable insights in interdependencies of bacterial species involved in the biogas process.

Keywords: Microbial communities, Anaerobic digestion, Hierarchical optimization, Prediction of community
composition, Stoichiometric and constraint-based modeling

Background processes. They are involved in biogeochemical cycles
Microbial communities are ubiquitous in nature and play ~ [1-3] and the human microbiome seems to be of high
a major role in ecology, medicine, and some industrial  relevance for human health [4, 5]. An example for a bio-
technological application involving a complex microbial
community is anaerobic digestion for biogas production
which will be the focus of this study.
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In a microbial community, various species inter-
act closely with each other. Each species has different
requirements for growth and several factors like tem-
perature, pH value, and nutrient supply can thus influ-
ence the community structure. Consequently, microbial
communities are very complex systems and mathemati-
cal modeling has been shown to be a valuable tool to
gain better understanding about the relevant interactions
and community behavior [6]. In biogas plants, for exam-
ple, process failures (e.g., acidification) may occur if the
microorganisms involved are not in a stable steady state
[7]. Here, modeling might help to identify reasons for
process failures and to predict optimal conditions for a
stable process.

In recent years, different strategies for modeling have
been developed to investigate factors that shape micro-
bial communities and to predict relevant interactions
under different growth conditions. One of those meth-
ods is stoichiometric and constraint-based metabolic
modeling that has been successfully applied for analyz-
ing genome-scale metabolic networks of single-species
[8-10] and was extended to the community level in
recent years [11-15]. Stolyar et al. [11] were the first to
create a two-species stoichiometric model consisting of
Desulfovibrio vulgaris and Methanococcus maripaludis to
analyze key characteristics of the community including
its composition and metabolite exchange fluxes. Meta-
bolic models have also been used to predict interactions
(cooperation and competition) in different media [16]
and emergent biosynthetic capacities for different pairs
of species [17]. Taffs et al. [18] created a model which
contained three different functional guilds and used ele-
mentary modes to analyze mass and energy fluxes in a
microbial community. Finally, stoichiometric metabolic
models have also been analyzed with dynamic flux bal-
ance analysis (FBA) [15, 19-21].

In this study, we investigate a two-species community
consisting of D. vulgaris and M. maripaludis, and a three-
species community additionally taking into account M.
barkeri (Fig. 1). The organisms chosen are involved in
the last two stages of anaerobic digestion [22], and each
organism represents one functional group in our model
(D. vulgaris: acetogenic organism, M. maripaludis:
hydrogenotrophic methanogenic without cytochrome;
M. barkeri: acetoclastic and hydrogenotrophic methano-
genic with cytochrome). Acetogenic microorganisms and
methanogenic microorganisms live in a mutualistic (syn-
trophic) community [23]. The production of hydrogen or
formate is only energetically favorable for low hydrogen
and formate concentrations [23]. Thus, the acetogens
need the methanogens to keep these concentrations low,
while the methanogens on the other hand need the ace-
togens as they produce hydrogen, formate, and acetate
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utilized as substrates by the methanogens. While some
dynamic models of anaerobic digestion include different
groups of organisms (e.g., Anaerobic Digestion Model
No 1 [24]), they usually neglect the metabolic flexibil-
ity of the involved species. In contrast, constraint-based
modeling may account for all metabolic pathways of the
community members. Stoichiometric two-species com-
munity models of anaerobic digestion were investigated
by Stolyar et al. [11] as well as by Zomorrodi and Mara-
nas [13]. Herein we will extend the scope of these mod-
els by including a third organism allowing also analysis of
competitive interactions between methanogens.

The single-species models are the building blocks and
therefore crucial for a functioning community model.
Therefore, the first part of this study deals with the con-
struction and validation of the single-species models with
data from the literature. For assembling the community
models, we use a compartmented approach and assume
that all organisms grow with equal specific growth rates in a
stable continuous process. This concept of balanced growth
was first introduced by Khandelwal et al. [14] for stoichio-
metric community models and is a requirement for a sta-
ble community composition. We show how the modeling
approach of Khandelwal et al. can be simplified such that
standard simulation tools for constraint-based modeling
can straightforwardly be used with the resulting models.

One central question in stoichiometric modeling of
microbial communities is which objective function might
be suitable to predict the metabolic behavior and com-
position of communities. Examples are maximization of
the community growth rate or of the total biomass yield.
Zomorrodi and Maranas [13] introduced a multi-level
optimization approach with an inner objective (species
level) and an outer objective (community level) functions.
Herein we introduce a novel hierarchical optimization
approach which involves two objectives (maximization
of the community growth rate and of the biomass yield
for each organism) and facilitates refined predictions on
community metabolism and composition.

With a two-species and a three-species community
model of the three representative organisms, we investi-
gate syntrophic relationships as well as the influence of
different substrates and of the ATP maintenance coeffi-
cients (ATPmaint) on the predicted community compo-
sition. We will also study which compositions are optimal
in terms of methane yield and methane production rate.
Finally, competition scenarios between the methano-
genic organisms will be analyzed in the three-species
community.

Results and discussion
We constructed the single-species and community mod-
els as described in the “Methods” section. The size of the
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Fig. 1 Outline of the community model for the last two steps of the biogas process (acetogenesis and methanogenesis) consisting of D. vulgaris, M.
maripaludis, and M. barkeri. Production of hydrogen or formate by D. vulgaris is energetically favorable only for low hydrogen and formate concen-
trations and it is thus assumed that no net production of hydrogen and formate takes place in the community

Table 1 Model sizes of the single-species and community models

Model

Number of reactions Number of metabolites

D. vulgaris (single-species)

M. maripaludis (single-species)

M. barkeri (single-species)

Two-species model (D. vulgaris + M. maripaludis)
Three-species model (D. vulgaris + M. maripaludis + M. barkeri)

114 99
102 95
104 96
220 202
328 301

A documentation and a separate SBML file for each model are given in the Additional files 2, 3, 4, 5, 6, and 7

reconstructed networks is given in Table 1. Note that the
number of metabolites and reactions in the community
models is higher than the sum of reactions and the sum
of metabolites of the single-species models because of
the additional metabolite exchange pools and the reac-
tion for the total biomass production (Eq. 5). In the fol-
lowing, we first describe and validate the single-species
models before analyzing the community models.

Single-species models

M. maripaludis and M. barkeri

M. maripaludis belongs to the group of cytochrome-free
methanogens, while M. barkeri expresses cytochrome.
The main differences between both groups are differ-
ent ATP yields, a different affinity to hydrogen during

hydrogenotrophic growth [25], and the use of different
substrates for methanogenesis. Cytochrome-free metha-
nogens have a higher affinity to hydrogen but a lower ATP
yield. Thauer et al. [25] reviewed the differences in energy
conservation in detail and we incorporated the pathways
in the models accordingly. M. barkeri can use the aceto-
trophic, hydrogenotrophic, and methylotrophic pathway
for methanogenesis, while M. maripaludis uses the hydrog-
enotrophic pathway only. Acetate has not been shown to
support growth or methanogenesis in M. maripaludis [26].
M. maripaludis can also use formate as a substrate [26]
which cannot be utilized by M. barkeri (Fig. 1). The two
products released by both organisms are methane and CO,,.

The models account for differences in the central
metabolism of the two methanogens. Both use the
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acetyl-CoA pathway to produce acetyl-CoA from formate
or CO, and H, [27]. M. barkeri possesses the oxidative
and M. maripaludis the reductive branch of the tricarbo-
xylic acid cycle (TCA) [27]. Furthermore, M. maripaludis
uses the non-oxidative and M. barkeri the oxidative pen-
tose phosphate pathway [27]. M. barkeri also uses a ribu-
lose monophosphate pathway [27].

D. vulgaris

D. vulgaris is a sulfate-reducing organism that cannot
oxidize acetate under anaerobic conditions. It can use
lactate, ethanol, and pyruvate as sole carbon and energy
source [28] as well as acetate as carbon source with
hydrogen and sulfate as electron donor and acceptor
[29]. D. vulgaris can also use alternative electron accep-
tors like thiosulfate, sulfite, nitrate and nitrite [29] (not
considered herein). In the absence of electron acceptors,
the organism can grow syntrophically with methanogens.
Furthermore, D. vulgaris has an incomplete TCA and no
non-oxidative pentose phosphate pathway [30].

Stolyar et al. [11] established a core model for D. vul-
garis which was later extended by Zomorrodi and Mara-
nas [13]. Both models do not support growth on ethanol
without sulfate but different Desulfovibrio species can
grow on ethanol without sulfate in syntrophic co-cul-
ture [31, 32]. We therefore included electron transport
processes allowing growth of D. vulgaris under these
conditions. There are several oxidation steps involved
in utilization of ethanol, lactate, and pyruvate including
various electron acceptors (e.g., ferredoxin and NADH).
Oxidation of the electron acceptors may yield hydro-
gen or formate. Depending on the redox potentials of
the reactions, the oxidation steps may be coupled with
translocation of protons, either energetically uphill (pro-
tons are pumped outside) or downhill (protons flow back
from the periplasm). We included three different electron
acceptors in the model: Ferredoxin, NAD™, and a hetero-
disulfide (RS). Ferredoxin oxidation can be coupled with
proton-pumping via EcH hydrogenase [Eq. (R1)] or RnF-
complex [Egs. (R1, R2)] [33-35], the oxidation of the het-
erodisulfide is coupled to the influx of protons (Eq. R4),
and for NADH we considered a bifurcation mechanism
that transfers electrons to ferredoxin and heterodisulfide
(Eq. R3) [33, 36, 37]. During lactate oxidation, elec-
trons are transferred to heterodisulfide. Furthermore,
we assume that the electron acceptor NAD™ is used for
the oxidation of ethanol to acetaldehyde, while electrons
from acetaldehyde are transferred to a ferredoxin (acetal-
dehyde oxidoreductase):

1 Fdyeq <> 1 Fdox + 1 Ha+? H (ex) (R1)

1Fdyeq + 1COy <> 1 Fdoy + 1 formate +? H' (ex) (R2)
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1 NADH + 0.5 Fdoy + 0.5RS <> 1 NAD™

+ 0.5 Fdyeq + 0.5 RSH) (R3)

1RSH, +?HT(ex) <> 1RS + Hy (R4)

The involved proton translocation processes and
their stoichiometries are still not fully elucidated
(question marks in Egs. R1, R2, and R4). Therefore,
we run simulations with different stoichiometries for
translocated protons for the reactions R1, R2, and R4.
We found that a stoichiometry of one translocated
proton per ferredoxin oxidation and two translocated
protons per heterodisulfide oxidation represented the
experimental observation best. A detailed description
with the simulation results and reasons for the deci-
sions on the chosen stoichiometries are given in Addi-
tional file 1.

Model validation of single-species models

Table 2 summarizes the calculated maximum yields for
ATP, biomass, and methane for the single-species mod-
els for growth on different substrates. The estimated
maximum ATP and product yields reflect the expected
values (according to biological knowledge). Calculated
maximum biomass yields were close to experimentally
determined biomass yields reported in the literature for
the growth of M. barkeri on methanol and for M. mari-
paludis on formate. Validation for autotrophic growth
on hydrogen plus CO, was not possible. The maximum
biomass yields are typically assumed for substrate-limit-
ing conditions. In the reviewed literature, there were no
substrate-limiting conditions (typically growth condi-
tions were under gassing with 80 % H, and 20 % CO,).
Under these conditions yield suboptimal growth has
been described [38]. For the growth of D. vulgaris on
acetate with hydrogen and sulfate, the maximum biomass
yield from the model agreed well with the experimental
data from Badziong, Thauer [29] as well as from Nethe-
Jaenchen, Thauer [39].

We also used the experimental literature data to calculate
the respective ATP maintenance coefficients (ATPmaint;
Table 2; see also “Methods”). By averaging the ATPmaint
coefficients for the different substrates and for each organ-
ism, we obtained the following values which will later be
used in the community simulations:

+ D. vulgaris: 4.3 mmol/(gDW h);
o M. maripaludis: 0.9 mmol/(gDW h);
o M. barkeri: 2.5 mmol/(gDW h).

Furthermore, from the maximum growth rates
observed in the experiments, we estimated the maxi-
mum product formation rates which were also integrated
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Table 2 Maximum (calculated from model) and experimentally determined yields for the growth of M. maripaludis,

M. barkeri, and D. vulgaris on different substrates

Organism Substrate Max. methane Max. ATP Max. biomass Max. biomass Max. biomass ATPmaint References
yield (model) yield (model) vyield (model) yield per meth- yield (literature
(mol/mol) (mol/mol) (gDW/mol) ane produced (literature data)
(model) data) [mmol/

(gDW/mol) (gDW/mol) (gDW h)]

M. barkeri Acetate 1 1.25 11.71
Methanol 0.75 0.625 5.14
CO, +H, 1 15 973
M. maripaludis Formate 0.25 0.125 1.32
CO, +H, 1 05 478
D. vulgaris Acetate + H, - 1 121
+ sulfate

17.5 9.15 36 [50-52]
16.3 595 14 [50-53]
8.2 - -
6.0 145 0.9 [54]
6.0 - -
12.2 55 [29,39]
12.7 1.8,5.6

In addition, the ATPmaint coefficient calculated from the respective experiment is shown. The yields refer to the used substrate (in case of CO, + H,, the yield refers to
CO,). Note that the maximum biomass yields (model and experimental) refer to the (true) biomass yields, i.e., substrate consumption required for ATP maintenance is

excluded when calculating the yield

as upper bounds in the single-species (and community)
models:

+ D. vulgaris: 50 mmol acetate/(gDW h);
o M. maripaludis: 15 mmol methane/(gDW h); and
o M. barkeri: 15 mmol methane/(gDW h).

Simulation results of the two-species community model

In a first FBA simulation (see “Methods”), we calculated
the maximum community growth rate of the two-species
community composed of one acetogen (D. vulgaris) and
one methanogen (M. maripaludis) for different com-
munity compositions for growth on lactate. D. vulgaris
consumes lactate and produces acetate as well as carbon
dioxide and hydrogen or/and formate in this community.
M. maripaludis consumes the produced hydrogen, carbon
dioxide, and formate, while producing methane. The ace-
tate produced by D. vulgaris is not consumed by M. mari-
paludis and thus accumulates in the medium. Initially, for
illustration purposes, we set the ATPmaint coefficient to
zero for both species. The results are shown in Fig. 2a for
growth on lactate. There is a broad range from 40 to 63 %
of relative biomass abundance of D. vulgaris in which the
community reaches its maximum growth rate of 0.089 h™*.
At this point, growth becomes limited by the maximum
methane production rate of M. maripaludis.

In order to understand how the two species must
behave under the different biomass compositions to
facilitate balanced growth of the community, we analyzed
the maximum biomass yields for both organisms that
are possible under maximum growth for the respective
biomass compositions (Fig. 2b). The biomass yield of D.
vulgaris refers to the substrate lactate. In contrast, for the
biomass yield of M. maripaludis, we relate the biomass

synthesized to the methane produced as M. maripaludis
can use two substrates (hydrogen plus CO, or formate).
Relating the biomass yield, for instance, to the hydrogen
consumption rate could result in infinite biomass yields
if formate instead of hydrogen is used as substrate. How-
ever, both substrates can be converted to methane and
the biomass yield per methane produced is equal for both
substrates (see Table 2).

As long as the biomass fraction of D. vulgaris (Fpy)
is lower than 0.63, this organism grows with subopti-
mal biomass yield because it converts larger amounts
of lactate to fermentation products (acetate as well as
hydrogen and carbon dioxide or formate) instead of own
biomass to support the substrate requirements of M.
maripaludis present in high abundance (Fy, > 0.37).
This even holds for the case where the community grows
with maximum community growth rate (4 = 0.089 h™%;
0.40 < Fpy < 0.63). Hence, for Fiy, < 0.63, D. vulgaris
would behave “altruistically” and grow with suboptimal
biomass yield to keep the community in a balanced state
(see red line in Fig. 2b). In contrast, M. maripaludis can
grow with maximal biomass yield under these conditions
and thus behave “selfish” (blue line in Fig. 2b). There is
only one point at Fp,, = 0.63 (Fy = 0.37), where both
organisms reach their respective maximum biomass
yields. For Fpy, > 0.63, the opposite behavior can be seen:
now, the smaller population of M. maripaludis must
behave “altruistically” and grow with suboptimal bio-
mass yield to allow the large population of D. vulgaris to
grow. More precisely, M. maripaludis would need to con-
sume large amounts of hydrogen or formate produced
by D. vulgaris and waste the thereby generated ATP in
order to balance the whole community at the respective
composition.
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Fig. 2 Maximum community growth rate, biomass yields, and
optimality degree in the two-species model for growth on lactate.
a Maximum community growth rate . as function of the com-
munity composition (Fpy: biomass fraction of D. vulgaris; the fraction
of M. maripaludis is 1-F,) in the two-species model with lactate as
substrate for D. vulgaris. b Maximum biomass yields for D. vulgaris
(per lactate consumed; red dashed line) and for M. maripaludis (per
methane produced, blue solid line). € Optimality degree (OptDeg) of
the community versus fractional biomass abundance. The maximum
OptDeg gives the predicted operation point. The biomass yields
(b) and OptDeg (c) were calculated for the maximum community
growth rate at the respective community composition

Even though a plateau of maximum community growth
rates for different biomass fractions exists, we argue that
the single point (Fp, = 0.63, Fyyy = 0.37) where both
organisms grow with maximum biomass yield and can
thus behave “selfish” will be the final attractor of this sys-
tem. As long as Fpyy < 0.63, the community will not stay in
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steady state as D. vulgaris will instead increase its growth
rate by a more efficient use of the substrate resulting in
a higher relative biomass abundance of this species.
Likewise, for Fpy, > 0.63 (Fypy < 0.37), we expect that M.
maripaludis would increase its growth rate and there-
fore its biomass fraction in the community. We therefore
propose a hierarchical optimization approach to predict
community compositions by using “maximization of
community growth rate” as primary and “maximization
of biomass yield” as secondary objective (see “Methods”).
To quantify the optimality of a community with respect
to the overall biomass yield (secondary objective), we
introduce the optimality degree (OptDeg) as described
in the “Methods” section [Egs. (7) and (8)]. OptDeg inte-
grates terms of the biomass yields of each species popula-
tion and relates it to the theoretically feasible maximum.
Therefore, in the considered two-species model, OptDeg
reaches its maximum one if both populations operate
with maximum biomass yields, hence where Fp,, = 0.63
(Fig. 2¢).

Following the argumentation above, we thus predict
that the biomass composition where all species grow with
maximum specific growth rate and with maximum bio-
mass yields (i.e., where OptDeg = 1) will be the stable
point of operation of the community. Hence, in the two-
species example, this criterion reduces the possible range
of optimal community compositions to a single point. As
we will see later on, this may change in the case of com-
petition in a three-species model.

Similar simulations were also performed for growth
on pyruvate and ethanol. The results are shown in Fig. 3
indicating that the maximum community growth rate is
the same for all substrates, whereas the predicted com-
munity composition (OptDeg = 1) is governed by the
substrate. For growth on pyruvate, the predicted relative
abundance of D. vulgaris is 92 %, whereas for growth on
ethanol it reduces to 42 %. This can be explained as fol-
lows: in the model, D. vulgaris has different maximum
biomass yields [gp/mmol substrate] for the various sub-
strates (YX/pyruvate > YX/lactate > YX/ethanoP see Additional
file 1: Table S1). Additionally, the yield of cross-feeding
metabolites (hydrogen and formate) is twice as high for
ethanol and lactate compared to pyruvate, which explains
the shifts in the predicted community composition. Also,
the width of the range of community compositions with
maximum community growth rate differs for the sub-
strates (smallest for ethanol and broadest for pyruvate).
For substrates with high biomass yields (e.g., pyruvate),
the organism has more room to waste energy while still
being able to reach the maximum growth rate which is
limited by M. maripaludis (see above).

To investigate the influence of the ATPmaint coeffi-
cients on the community composition, we next simulated
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scenarios with different maintenance coefficients (growth
on lactate):

» 0 mmol,rp/gpw/h (neglecting the demand of ATP for
maintenance metabolism as in the simulations shown
in Figs. 2 and 3).

+ Equal maintenance coefficient for both organisms
(3 mmolyrp/gpw/h).

« Different maintenance coefficients as derived from
the literature data (see above; ATPmaint = 0.9
mmol,rp/gnw/h for M. maripaludis and ATP-
maint = 4.3 mmol,1p/gpyw/h for D. vuigaris).

In these simulations, we calculated OptDeg for all pos-
sible (not only the maximum) community growth rates
for a given biomass composition to consider also cases
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Fig. 3 Maximum community growth rate and optimality degree in
the two-species model for growth on ethanol, lactate, and pyruvate.
a Maximum community growth rate as function of the commu-
nity composition (Fp,: biomass fraction of D. vulgaris; the fraction
of M. maripaludis is 1-Fp,) in the two-species model for growth on
ethanol (red, dashed), lactate (blue, dotted), and pyruvate (black,
solid) versus relative biomass abundance of D. vulgaris. b Optimality
degree (OptDeg) for the two-species model for growth on ethanol
(red, dashed), lactate (blue, dotted), and pyruvate (black, solid) versus
relative biomass abundance of D. vulgaris. The maximum OptDeg
gives the predicted operation point. The OptDegs were calculated for
the respective maximum community growth rates for the different
biomass compositions (see also Fig. 2)
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where the maximum community growth rate cannot be
reached, for example, due to substrate or nutrient limita-
tions in a chemostat. The results are shown in Fig. 4.

We first observed that the optimal community compo-
sition is independent of the growth rate in simulations
that do not take the maintenance coefficient into account.
In contrast, simulations with non-zero ATPmaint coef-
ficients show not only smaller maximum community
growth rates but also a pronounced dependency of the
community composition with respect to the growth rate.
Changes in the relative species abundances depend on the
ratio of the maintenance coefficients of the organisms.
For equal ATPmaint coefficients, optimal community
compositions with maximal biomass yields (OptDeg = 1)
can again be seen at approximately F,, = 0.63 for all
growth rates, while different maintenance coefficients
(reflecting the values estimated from the literature data)
result in a significant shift of the community composi-
tion. With the maintenance coefficients estimated from
the literature data, the predicted relative biomass abun-
dance for D. vulgaris is only 30 % for smaller growth
rates and increases up to 50 % at the maximum growth
rate (approx. 0.09 h™?!). Generally, the maintenance coef-
ficients affect the specific biomass yields (increases with
increasing growth rate) and thus the community compo-
sition, especially under low growth rates. Therefore, the
maintenance coefficient plays a pivotal role for microbial
communities especially for the typically low growth rates
that are found in anaerobic processes. ATPmaint is not
a constant parameter but depends on environmental fac-
tors including weak acid stress, temperature [40], nitro-
gen source [41], electron acceptors, and substrates [38,
39, 42, 43]. Accordingly, ATPmaint needs to be carefully
determined to quantitatively describe metabolic depend-
encies between the species of the community.

For the scenario, where we used the estimated values
for ATPmaint coefficients (Fig. 4b), we also calculated
the minimum methane production rates (Fig. 4d) and the
minimum methane yields referred to lactate (Fig. 4e). In
general, the specific methane production rate increases
with the growth rate because more substrate needs to be
converted to produce higher amounts of biomass. For a
fixed growth rate, we see that the specific methane pro-
duction rate is the lowest where OptDeg is maximal and
increases with decreasing OptDeg (Fig. 4d). This can be
explained by the fact that, for lower values of OptDeg,
one of the organisms grows with suboptimal biomass
yield and thus consumes more substrate per biomass
produced. In the model, a larger fraction of the substrate
taken up is used to produce extra amounts of ATP (which
is then wasted in futile cycles of the metabolism of the
respective species). Consequently, this results in the pro-
duction of more methane (if M. maripaludis grows with
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Fig. 4 Optimality degree OptDeg for different growth rates and community compositions of the two-species model (with lactate as substrate for
D. vulgaris) for different maintenance coefficients. a 0 mmol ;;p/gDW/h for both organisms, b 4.3 mmol x;,/gDW/h for D. vulgaris and 0.9 mmol e/
gDW/h for M. maripaludis, and € 3 mmol ,;n/gDW/h for both organisms. For case b, the minimum methane production rates (d) and the minimum

suboptimal biomass yield) or more byproducts (D. vul-
garis) which in turn must be metabolized by M. mari-
paludis and, again, increases the methane production
rate per consumed lactate. Similarly, minimal methane
yields are (for constant growth rates) lower in areas with
a high OptDeg and higher where the OptDeg is low.
However, in contrast to the methane production rate, the
simulations show high-methane yields for low growth
rates because the fraction of substrate used for producing
ATP for maintenance processes is then higher compared
to high growth rates.

Comparison with experimental data from the literature

Meyer et al. cultivated D. alaskensis, which is repre-
sented by the closely related organism D. vulgaris in our
model, in co-culture with M. maripaludis or M. hun-
gatei in continuous culture on pyruvate and lactate. With
pyruvate as a substrate D. alaskensis dominated the co-
culture, while the community consisted of almost equal
amounts of both organisms in lactate medium [36].
The estimated specific flux rates and mass ratios of the
organisms for two different growth rates as well as the
simulation results for community composition and the
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corresponding substrate uptake and product formation
fluxes are given in Table 3. Concentrations of carbon
monoxide and succinate were low and thus neglected
for the simulations. The predictions made by the model
reflect the experimental data very well for the lower
growth rate of 0.027 h™!. However, the simulated abso-
lute fluxes are generally lower for the higher growth
rates, while the ratios of the fluxes are similar. This indi-
cates that the theoretical biomass yields predicted by
the model are too optimistic, at least for higher growth
rates. Changing biomass compositions at higher growth
rates might be one possible reason. On the other hand,
due to changes of product concentrations in the medium
that may, for example, lead to weak acid stress, a higher
growth rate could also indirectly lead to an increase in
maintenance coefficients (and thus to a reduced biomass
yield). Regarding the community composition, good
agreements with the model predictions can be observed
for at least three of the four cases. The shift in the com-
munity composition from almost equal amounts of both
organisms in lactate medium to a D. vulgaris-dominated
culture in pyruvate medium is reflected by the simula-
tions and can, as described above, be explained by the
fact that the biomass yield of D. vulgaris is higher, while
the yield of hydrogen and formate is lower for pyruvate.
In the experiments performed by Tatton et al. [31],
methane yields were estimated for a two-species cul-
ture related to the one considered herein. For a dilution
rate (growth rate) of 0.042 h™!, they measured a meth-
ane yield of 0.45 mol methane/mol ethanol. To compare
these results with model predictions, we fixed y in the

Table 3 Estimated flux rates and steady-state biomass
compositions from Meyer et al. [36, 48] for growth of D.
alaskensis with M. maripaludis or M. hungatei on pyruvate
and lactate medium [36]

Substrate Gro1wth rate Specific flux rates (mmol/gpy/h)  Fpy (—)
(h ) I'pyruva':ellactate Tacetate Tmethane
Pyruvate  0.027 6.6-74 59-69 16-1.8 0.79
(5.36) (5.02) (1.09) (0.83)
0.047 114-129 10.5-119 2.7-30 0.77
(6.99) (6.36) (1.36) (0.86)
Lactate 0.027 9.13 8.22 434-579 039
8.17) (8.00) (3.67) (0.42)
0.047 16.47 14.82 749-899 047
(11.60) (11.26) (5.12) (048

Flux rates for hydrogen, carbon monoxide, and succinate were not considered
for the simulations because they had only very small values (<0.2 mmol/g/h for
succinate and <0.005 mmol/g/h for H, and CO). The model predictions are given
in italics in brackets. We used ATPmaint = 4.3 mmol 5,/gDW/h for D. vulgaris and
ATPmaint = 0.9 mmol ,p/gDW/h for M. maripaludis. The predicted community
composition (Fp,) was determined by fixing the growth rate to the value of the
experiment and then taking the composition with OptDeg = 1
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simulations to 0.042 h™! and calculated the methane yield
at the optimal operation point (OptDeg = 1). The result-
ing predicted methane yield was 0.448 mol/mol which
thus agrees almost perfectly with the yield reported by
Tatton et al. [31].

Simulation results of the three-species community model
For the three-species model, we added the M. barkeri
compartment resulting in a community similar to the one
studied in Tatton et al. [31] growing on ethanol in sulfate-
free medium. We investigated three different depend-
ency scenarios for growth on ethanol: (1) competition for
hydrogen, (2) usage of alternative substrates (hydrogen
and acetate), and (3) a combination of both. We used the
ATPmaint coefficients as estimated from the literature
data (see above).

Figure 5a shows the simulation result of the competi-
tion scenario for the maximum community growth rate.
A straight line between 18 % D. vulgaris/82 % M. bark-
eri/0 % M. maripaludis and 30 % D. vulgaris/0 % M.
barkeri/70 % M. maripaludis represents the predicted
community composition (OptDeg = 1). None of the two
methanogens is preferred. This result is to be expected
because both methanogens have the same function in
this scenario (hydrogen utilization) and should thus
be equivalent. Nevertheless, in real settings, it can be
assumed that factors like the hydrogen concentration, the
pH value, or the temperature can lead to the dominance
of one of the methanogens. With an increasing percent-
age of D. vulgaris, the OptDeg decreases. For Fpy, > 40 %,
the maximum community growth rate is not reached
anymore. The fact that the line with OptDeg = 1 is on
the left side of the solution space (low amounts of D.
vulgaris) indicates that the community is limited by D.
vulgaris in this scenario. Obviously, D. vulgaris is essen-
tial in the community and can live with either or both

methanogens.
In the second scenario, M. barkeri uses ace-
tate instead of hydrogen as the only substrate

(Fig. 5b). There is a band of OptDeg = 1 between
Fry =30 %/Fyp = 70 %/Fyig = 0 % and Fpyy, = 10 %/Fypy
= 20 %/Fy;g = 70 %. The OptDeg again decreases with
increasing amounts of D. vulgaris and no solutions (with
maximum community growth rate) exist left to the band
of OptDeg = 1 (lower amounts of D. vulgaris). Also, no
solutions exist for a fraction of M. maripaludis below
20 % or D. vulgaris above 40 %. M. maripaludis becomes
essential for the community in this scenario because it
is the only hydrogen consumer. M. barkeri on the other
hand is optional because accumulation of acetate in the
medium is possible and acetate degradation is therefore
not required. Compared to the competition scenario
(Fig. 5a), the methanogens can reach a higher relative
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Fig. 5 Simulations with the three-species model (D. vulgaris, M. maripaludis, and M. barkeri) for growth on ethanol. a-¢ show optimality degree
OptDeg for the maximum community growth rate (0.0505 h~") calculated for different community compositions. Three scenarios were simulated:
a competition scenario: both methanogens can only use the hydrogenotrophic pathway for methanogenesis. b Use of hydrogenotrophic pathway
for M. maripaludis and acetoclastic pathway for M. barkeri ¢ use of hydrogenotrophic pathway for M. maripaludis and hydrogenotrophic and aceto-
clastic pathway for M. barkeri. Fr,: biomass fraction of D. vulgaris; F\,,: biomass fraction of M. maripaludis. We used ATPmaint = 4.3 mmol ,/gDW/h
for D. vulgaris, ATPmaint = 0.9 mmol 5;/gDW/h for M. maripaludis and ATPmaint = 2.5 mmol x;p/gDW/h for M. barkeri. For scenario € the minimum
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biomass abundance [overall 90 % (Fig. 5b) compared to
80 % in the competition scenario Fig. 5a)] which is to be
expected because acetate can be used as an additional
substrate for methanogenesis.

In the last scenario, M. barkeri can use both, acetate
and hydrogen, as substrates (Fig. 5c). Interestingly, there
is a small area with an OptDeg greater than unity (up to
1.066). In this special case (which can only arise in sce-
narios with more than one substrate per species), the

biomass yield of the substrate combination (acetate and
hydrogen) is higher than the sum of the maximum bio-
mass yields for the single substrates for M. barkeri. Here
we can still assume that solutions with OptDeg > 1 are
the optimal and preferred solutions because the organ-
isms convert the substrate(s) taken up to biomass with
maximum vyield (no wasting of energy) in this case. Note
also that the solutions for the predicted community
composition include the solutions from the other two
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scenarios and all combinations of both. This results in a
broader region of potential solutions.

For this scenario (Fig. 5¢) we also calculated the mini-
mum specific methane production rates (Fig. 5d) and the
minimum methane yield for the use of ethanol (Fig. 5e).
Again, areas with a low OptDeg have higher minimal
methane production rates than areas with a high Opt-
Deg. As stated for the two-species model, this can be
explained by the wasting of energy in the areas with low
OptDeg leading to higher methane synthesis rates. The
minimum methane yields are low (0.4—0.5 mol/mol) for
a fractional biomass abundance of 20-40 % of D. vul-
garis. For decreasing amounts of D. vulgaris, the mini-
mum methane yield strongly increases up to 1.2 mol/mol.
Interestingly, in this area of maximum methane yield,
the OptDeg is one (see Fig. 5¢) indicating an optimal
community composition with high-methane yield. The
strong increase of the methane yield per ethanol for low
percentage of D. vulgaris can be explained by the addi-
tional use of acetate for methanogenesis. In the area with
Fpy > 0.2, the fraction of the methanogens is not high
enough to use all available substrates (acetate, hydrogen,
and formate) and since the accumulation of hydrogen
and formate is not allowed, only the hydrogenotrophic
pathway is used. In the region of optimal solutions (Opt-
Deg >1), the right border (Fy = 0.2) shows solutions
were only the hydrogenotrophic way is used and thus the
methane yield is below 0.5 mol/mol (which is the theoret-
ical maximum methane yield if no acetate is consumed).
At Fpy = 0.1, both hydrogen and acetate are completely
used which results in high-methane yields per substrate
(maximum theoretical methane yield is 1.5 mol/mol if all
acetate is used for methane production).

Comparison with experimental data from the literature

In addition to the two-species culture (see above), Tatton
et al. [31] also measured the methane yield for growth on
ethanol in a three-species culture comparable to the one
considered here. The culture consisted of a Desulfovibrio
strain FR17 (acetogen, represented by D. vulgaris in the
model), Methanobacterium strain FR2 (cytochrome-free
methanogen, represented here by M. maripaludis), and
Methanosarcina mazei (represented here by M. bark-
eri), where the latter was adapted to use acetate as the
sole carbon and energy source [31]. The concentrations
of acetate were low in the three-species culture (below
5 mM at steady state compared to 50 mM when the
three-species culture was first initiated) [31]. We there-
fore chose the solutions from our simulations where
all acetate was consumed by M. barkeri. Tatton et al.
were able to obtain steady states up to a dilution rate of
0.033 h™%. In the range of dilution rates of their experi-
ments (between 0.012 and 0.033 h™!), the measured

Page 11 of 16

methane yield was 1.42 mol/mol [31]. In our simulations,
the predicted methane yield for this range of dilution
rates lies between 1.23 and 1.37 mol/mol and is thus only
slightly lower than the experimentally determined values.
Again, this could be related to higher ATP maintenance
costs which would increase the methane yield.

Unfortunately, Tatton et al. did not provide informa-
tion on the community composition. And, in general,
there seems to be only few experimental data for defined
mixed cultures. Accordingly, our model and simulation
approach might help to gain insights in metabolic con-
straints of those cultures also when respective experi-
mental data are not available.

Conclusions

Microbial communities play a major role in anaerobic
digestion and our study demonstrates that the use of stoi-
chiometric models can be a valuable tool to gain insights
about factors influencing the composition and stability of
these communities.

We first established single-species models of three dif-
ferent organisms involved in the last steps of anaerobic
digestion. The single-species models are crucial for a
functioning community model and thus we carefully con-
structed and validated those models with experimental
data from the literature. In some cases (e.g., autotrophic
growth of methanogens), validation was not possible
due to a lack of suitable data and in those cases further
experimental investigations are necessary. Furthermore,
we suggest a mechanism for growth of D. vulgaris on eth-
anol in the absence of sulfate which needs experimental
validation.

In a next step, we connected the single-species models in
a compartmented approach to create a community model
and applied for the first time the approach of balanced
growth proposed by Khandelwal et al. [14] in the context
of biogas production. While we adopted this framework,
we simplified the model representation (see [Egs. (4) and
(5)] in the Methods section) allowing direct implementa-
tion and analysis of the resulting models by standard tools
for stoichiometric modeling and simulation.

In order to predict community compositions, we pro-
posed a hierarchical optimization approach based on
two objectives: maximization of the community growth
rate and, as secondary objective, optimal substrate
usage (biomass yield) for each organism involved. Com-
pared to maximization of the community growth rate
alone, solutions with unrealistic “altruistic” behaviors
of organisms in the community are excluded resulting
in a much smaller range of predicted optimal commu-
nity compositions; in case of the two-species model it
becomes a single point, whereas lines or regions of opti-
mality can arise if multiple organisms with similar (or
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even identical) metabolic functions exist in the commu-
nity. This approach, as well as the whole methodology
applied here, can readily be applied to more complex
communities. Compared to OptCom [13], which
relies on a multi-level optimization framework, our
approach appears simpler because OptDeg, quantify-
ing the degree of optimality with respect to biomass
yield, can be easily calculated for any given growth rate
by a linear optimization with a single objective func-
tion. A comparison of predicted community composi-
tions with measurements from two-species experiments
showed good agreement confirming the validity of our
approach.

Our work extended the scope of the theoretical stud-
ies by Stolyar et al. [11] and Zomorrodi and Maranas
[13] by constructing and analyzing for the first time a
three-species model for anaerobic digestion including a
second methanogenic organism (M. barkeri). This three-
species model resulted in different options for the com-
munity (competition, use of different substrates). We
showed that competition (two organisms using the same
substrate, thus having the same function in the commu-
nity) leads to exchangeability of the organisms. The three
scenarios resulted in different predicted patterns of com-
munity compositions for which experimental data are not
yet available for validation.

As one important result of our simulations, we showed
that a different ATPmaint of the species have a major
impact on the community composition, especially for
low growth rates. Hence, maintenance coefficients, which
may depend on environmental conditions, need to be
carefully considered when studying slow metabolic pro-
cesses like anaerobic digestion.

Importantly, our model also enabled us to give pre-
dictions at which community composition maximum
specific methane production rates and yields can be
expected. Apparently, maximum values for these key pro-
cess parameters of biogas plants can only be reached if
some species in the process waste substrate and energy.
However, this would be accompanied by lower biomass
yields, which is contrary to the objective of the involved
species and would also negatively affect the volumetric
productivity.

In the future, the next step will be to investigate more
complex community models of anaerobic digestion by
including more species. These models will help to gain
a deeper understanding of the key characteristics of the
biogas process and, as ultimate goal, might eventually
be used to develop intervention or control strategies to
improve the process in terms of product yields and stabil-
ity. While the considerations made herein focused on the
biogas processes with emphasis on product (methane)
synthesis, our models may also shed light on metabolic
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interactions of these communities in their natural

habitats.

Methods

Stoichiometric and constraint-based modeling
Stoichiometric and constraint-based metabolic modeling
has become a standard tool to analyze key properties
and capabilities of the metabolism of diverse organisms
[8-10]. As a steady-state approach, it relies solely on
the structure of metabolic networks and does not need
kinetic parameters. Hence, this modeling approach is
well suited especially for modeling large-scale systems
including microbial communities. In stoichiometric net-
work analysis, a steady state of metabolite concentrations
is assumed where no net production or consumption
of internal metabolites occurs. This is based on the
observation that intracellular enzyme reactions are fast
compared to changes in gene expression and dynamic
changes in the environment [8]. The steady-state assump-
tion leads to the metabolite balancing equation:

Nr = 0 )

where N is the stoichiometric matrix that contains the
stoichiometric coefficients of all reactions and r is the
vector of net reaction rates. In addition, flux capacity
constraints (lower and upper boundaries) for the reaction
rates can be considered:

lb,’ <r =< Mb,‘. (2)

In particular, for irreversible reactions, r; > 0 must
be fulfilled. An important method frequently applied in
stoichiometric modeling is FBA. FBA maximizes a linear
objective function.

maximize c'r 3)
r
Subject to Egs. (1) and (2), typical objective functions
are the maximization of the biomass yield, growth rate,
or product yield. Here we use FBA to calculate (i) the
maximum community growth rate, (ii) the maximum
biomass yields, and (iii) the OptDeg (see below).

Single-species models

For construction of the single stoichiometric metabolic
models of D. vulgaris, M. maripaludis, and M. barkeri,
we used the KEGG [27] and MetaCyc [44] databases as
well as information from a number of publications. Simi-
lar to Stolyar et al. [11], we constructed the single-spe-
cies models with a focus on the central metabolism. The
models contain the major pathways of energy, redox, and
precursor metabolism, since these pathways govern the
metabolic interdependencies between the organisms of
the communities.
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Stoichiometric metabolic models usually include a bio-
mass synthesis reaction (BSR) specifying the stoichiometries
of precursors, energy (ATP), and reduction equivalents
(NADPH) needed to generate biomass of the organism
investigated. Since detailed information about the specific
biomass composition for the three species was not available
and because moderate variations in the biomass composi-
tions usually have a minor impact on major fluxes in the
central metabolism, we used for all three organisms the BSR
from the Escherichia coli model of Stelling et al. [45].

Maintenance coefficients

Using the experimental literature data and applying the
method of Pirt [46], we calculated the (true) biomass
yields and the substrate consumption rates for mainte-
nance processes. From the latter, we calculated a lower
bound for the non-growth-associated ATP maintenance
(ATPmaint) coefficient by multiplying the substrate
uptake rate at zero growth with the maximum ATP yield
(calculated by the model) for this substrate in the respec-
tive organism.

Community models

The model of each of the three species considered was
included as a compartment in the community model
(Fig. 1). An additional compartment for exchange of
metabolites connects the species compartments: organisms
were allowed to consume metabolites from and to excrete
products into the pool of exchange metabolites via trans-
port reactions. The pool of exchange metabolites was also
connected to the medium to allow uptake of substrates and
accumulation of some products in the environment.

For simulating the community, we decided to use the
concept of balanced growth [14] demanding that all
organisms must grow with the same specific growth rate
to get a stable community composition. Balanced growth
applies to microbial communities that function in a fairly
constant environment and here we consider the biogas
process (e.g., in a (quasi-) continuously operating biogas
plant) as such. The assumption of balanced growth allows
us to use constraint-based methods, where steady state is
a key requirement [see Eq. (1)].

While we adopted the basic concept of Khandelwal
et al. [14], we use a slightly different representation of
the resulting stoichiometric community models simpli-
fying their implementation and analysis in existing soft-
ware tools for stoichiometric modeling. In a community
model with # species, the model contains # species bio-
mass compounds (BM;,..., BM,)) as well as a compound
representing the (total) community biomass (BM,). Each
biomass compound BM,; is produced by the precursors
P 1P (With stoichiometric factors «; ..., a;;) to be
generated by species i:

Page 13 of 16

@i 1pil + %ippip + -+ ajppix — [1 gram] BM;. 4)

The total biomass compound BM. is composed
of the n species biomass compounds, each having a
specific fraction F; (gDW;,/gDW.) at the total bio-
mass. F = (F,F,..F,) thus describes the commu-
nity composition. Obviously, the fractions must fulfill
Fy + Fy+---+ F, = 1. Consequently, formation of total
community biomass can be described by

F,-BM; +F, -BMy +---+ F, - BM;, — [1 gram] BMc.
5

BM_ is considered as external metabolite and may thus
accumulate in the model. The rate of Eq. (5) is the com-
munity growth rate . (h™!), whereas the rates of the
reactions in Eq. (4) are the specific biomass production
rates rpyy; given in (gDW,;/gDW /h). Note that in steady
state it must hold that r;; = F; -4 Hence, although the
effective growth rate of all species is identical (u.), dif-
ferent biomass fractions can exist implying different
amounts of biomass produced by the species. All fluxes
in the model refer to total biomass and all fluxes except
Uc and rpyy; have unit (mmol/gDW -/h). Therefore, spe-
cific constraints (e.g., maximum substrate consumption
or maintenance coefficient of organism i) must be multi-
plied with F; to correctly reflect capacities.

With this procedure, assembly of a stoichiometric
community model from the single-species models is
straightforward. One basically needs to (i) introduce
the pools of exchange metabolites, (ii) define the bio-
mass composition F, (iii) introduce reaction Eq. (5)
for the total biomass, and (iv) relate specific fluxes (or
flux bounds) to the total biomass. The names of inter-
nal metabolites must differ in the species models, e.g.,
pyruvate,;, pyruvate,, ..., pyruvate,. The resulting stoi-
chiometric model can again be represented by a stoichi-
ometric matrix N, certain flux bounds [Eq. (2)], and the
metabolite balancing Eq. (1).

Note also that the biomass composition F [and thus the
stoichiometries in Eq. (5)] represent a new degree of free-
dom (not contained in single-species models) which we
varied in the simulations in the “Results and discussion”
section.

Objective functions

Metabolic stoichiometric models are usually underde-
termined (infinite many flux vectors exist). To predict
certain metabolic characteristics of an organism, linear
optimizations are carried out (FBA). A frequently applied
objective function in Eq. (3) is the maximization of the
growth rate or biomass yield. It is reasonable to use this
rationale also for community models and thus to maxi-
mize the community growth rate p
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max1rmlze Hc (6)

[subject to Eqgs. (1) and (2) and a given community
composition F]. However, as it turns out, while the maxi-
mum community growth rate (which we denote here
by pfgt) is unique, the corresponding flux distributions
resulting in the optimal community growth rate are often
not unique. Furthermore, many solutions might reflect
unrealistic behaviors where one or more organisms must
behave “altruistically” and waste energy because the
maximum community growth rate is limited by another
organism (see “Results and discussion” section).

We therefore follow a hierarchical optimization
approach and use as a reasonable second optimization
criterion that the cells not only grow with maximum
growth rate but additionally also under optimal utiliza-
tion of substrates, i.e., with maximum biomass yields.
Since the species in the community use different sub-
strates resulting in different maximum biomass yields
(even in case of identical substrates the maximum bio-
mass yields might be different), we need to simultane-
ously consider maximization of biomass yield for each
organism. Our objective function for the secondary
optimization step therefore contains one term for each
organism and substrate, namely the product of the sub-
strate uptake rate rs; of substrate S; in species i with,the
specific maximum theoretical biomass yield Yy ¢ HE of
species i on its substrate S; at the maximum growth rate
u(gt [determined in the first optimization step (6)]:

opt opt

s . max, u/ max, u¢

mlmrmlze z =15 'YX1/51 +rs, ‘YXz/Sz
max, p
+...+rsn. Xn/sn
s.t.
opt

HC = Hc
Nr=0
lbj < 7y < ub]'
F (7)

max, p&* . . . .

Importantly, Yy ¢ is determined in the single-spe-
cies model at the maximum biomass yield of species i on
its substrate S; for the fixed (maximum) community growth
rate ,u(gt. Furthermore, if a species uses multiple substrates,
one summand must be included in Eq. (7) for each sub-
strate used. As also indicated in Eq. (7), the secondary
optimization is subject to (i) the given community compo-
sition F, (ii) the determined maximum community growth
rate ,u(gt, and (iii) the usual steady-state conditions and flux
bounds. Consequently, the optimum z°P* resulting from the
optimization of (7) is the (theoretical) minimal total bio-
mass synthesis rate [gDW /(gDW h)], we could expect for
the specified conditions if all organisms would grow with
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maximum biomass yields. If the value of z°P* equals the
value of the assumed community growth rate u(gt, then we
can conclude that all species grow with maximal biomass
yields, otherwise at least one species must “waste” some
substrate to keep the community in a balanced state. To
quantify “how close” the community is with respect to the
second optimization criterion (optimal substrate utiliza-
tion (biomass yield) of all substrates/organisms involved),
we calculate the OptDeg as the quotient of the maximal
community growth rate /,L(g)t and the minimal expected
growth rate z°P" if the cells use their substrates optimally:

OptDeg = " /2P ®)

OptDeg is smaller than one if at least one organism
“wastes” its substrate. It reaches unity if the commu-
nity grows optimally with respect to both growth rate
and biomass yield which we consider as the most likely
behavior of the species in the community (see “Results
and discussion”). As described above, in several simula-
tions, we will calculate z°?* (and OptDeg) as secondary
objective based on a given optimal community growth
rate ;Locpt (the primary objective). However, in some cal-
culations, we will also study biomass yield optimality for
any fixed community growth rate g . This is relevant, for
example, for a continuous process with a constant dilu-
tion (and thus constant specific community growth) rate.

Simulations

As described in the Introduction section and as indicated
in Fig. 1, we assumed that hydrogen and formate pro-
duced by D. vulgaris must be consumed by the metha-
nogenic organisms (M. maripaludis, M. barkeri). Acetate
accumulation, on the other hand, was allowed in the
simulations. We fixed the community composition F for
single simulations. In community simulation studies, we
scanned the whole range of possible community com-
positions by discretizing the specific fraction F; of each
organism from 0 to 1 in steps of 0.01 (while ensuring that
the sum of all F; must be unity).

We implemented and analyzed all models with
CellNetAnalyzer, a MATLAB package for structural
and functional analysis of metabolic and signaling
networks [47] which itself uses CPLEX as solver for
linear optimizations. All models discussed in this
work are documented (Additional file 2) and available
in SBML format (Additional files 3, 4, 5, 6 and 7).

Biomass estimation from the literature data

For comparison of simulation results with experimen-
tal data from Meyer et al. [36, 48], we needed to derive
the total biomass produced in the experiments. Meyer
et al. measured the cell concentrations, which we used
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to approximate the dry weight concentrations. M. mari-
paludis builds spherical cells with a diameter of approxi-
mately 1 um. For Desulfovibrio species, we assumed a rod
shape (cylinder with half spheres as ends) with a length
of 2 um and a diameter of 0.5 um. The calculated cell vol-
umes were 0.5 pm? and 0.3 um?3, respectively. For approxi-
mating the dry weight per cell, we took the relation of dry
weight to cell volume from Loferer-Krossbacher et al. [49]:
m = 435*V*® (m is the dry weight in fg and V is the vol-
ume in pm?). With the calculated dry weights per cell, we
transformed the cell ratio into a dry weight ratio and calcu-
lated substrate consumption and product formation rates.

Additional files

Additional file 1. Investigation of proton translocation stoichiometries
in D. vulgaris

Additional file 2. Documentation for all stoichiometric models used in
this study.

Additional file 3. Model of D. vulgaris in SBML format.
Additional file 4. Model of M. barkeri in SBML format.
Additional file 5. Model of M. maripaludis in SBML format.
Additional file 6. Two-species model in SBML format.

Additional file 7. Three-species model in SBML format.
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