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Abstract 

Background:  During conversion of bamboo into biofuels and chemicals, it is necessary to efficiently predict the 
chemical composition and digestibility of biomass. However, traditional methods for determination of lignocellulosic 
biomass composition are expensive and time consuming. In this work, a novel and fast method for quantitative and 
qualitative analysis of chemical composition and enzymatic digestibilities of juvenile bamboo and mature bamboo 
fractions (bamboo green, bamboo timber, bamboo yellow, bamboo node, and bamboo branch) using visible–near 
infrared spectra was evaluated.

Results:  The developed partial least squares models yielded coefficients of determination in calibration of 0.88, 0.94, 
and 0.96, for cellulose, xylan, and lignin of bamboo fractions in raw spectra, respectively. After visible–near infrared 
spectra being pretreated, the corresponding coefficients of determination in calibration yielded by the developed 
partial least squares models are 0.994, 0.990, and 0.996, respectively. The score plots of principal component analysis 
of mature bamboo, juvenile bamboo, and different fractions of mature bamboo were obviously distinguished in raw 
spectra. Based on partial least squares discriminant analysis, the classification accuracies of mature bamboo, juvenile 
bamboo, and different fractions of bamboo (bamboo green, bamboo timber, bamboo yellow, and bamboo branch) 
all reached 100 %. In addition, high accuracies of evaluation of the enzymatic digestibilities of bamboo fractions after 
pretreatment with aqueous ammonia were also observed.

Conclusions:  The results showed the potential of visible–near infrared spectroscopy in combination with multivari-
ate analysis in efficiently analyzing the chemical composition and hydrolysabilities of lignocellulosic biomass, such as 
bamboo fractions.
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Background
Bamboo is a major non-wood forest product and wood 
substitute, which is considered as one of the impor-
tant resources in wood industry to replace woody 
resources. Bamboo represents a significant basic material, 

particularly in Asia, where it is used for construction, pulp 
and paper, food, combustion, and furniture [1]. About 300 
different species of bamboo are known to grow in Asia 
[2]. What a pity, it is that the residues of bamboo after 
processing industry are wasted and not fully utilized. In 
recent years, bamboo has been researched for different 
kinds of applications, including its use as a biomass feed-
stock for production of biofuels and chemicals.
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The properties of bamboo directly affect the use of 
bamboo, such as anatomical properties, of which fiber 
length affects the strength properties of paper [3]. Bam-
boo’s physical and mechanical properties are closely 
related to structural application [4]. Therefore, the study 
on the anatomical, physical, and mechanical proper-
ties is important for the selection of suitable bamboo for 
industrial use, construction, and housing [5]. The physi-
cal properties of the bamboo are significantly affected by 
the distribution and contents of cellulose, hemicellulose, 
and lignin. For example, the difference in lignin contents 
results in a significant difference in physical and mechan-
ical properties between mature bamboo and juvenile 
bamboo [6]. In addition, juvenile bamboo belongs to 
immature bamboo shoot becoming inedible owing to 
the increase of rough fiber [7] and not being used as 
raw materials for furniture, construction, and pulp and 
paper due to the weakness in mechanical properties. On 
the other hand, the time for the growth of juvenile bam-
boo to mature bamboo is relatively short. After juvenile 
bamboo emerges in early April or thereabouts, it typi-
cally reaches a mature state in less than two months with 
an average height of 15  m and an aboveground carbon 
mass of 3.95 kg [8], which makes it difficult to distinguish 
between juvenile bamboo and mature bamboo. So it is 
significant to discriminate them quickly and accurately.

Recently, many attentions have been focused on the 
utilization of bamboo material for production of biofu-
els, such as bioethanol [9–11]. However, it was found that 
the structural properties significantly affect the efficiency 
of cellulose conversion. Bamboo fractions after pretreat-
ment with aqueous ammonia (with low lignin content) 
showed better enzymatic digestibility than those after 
pretreatment with dilute acid (with high lignin content), 
indicating that bamboo with low content of lignin was 
more susceptible to cellulases [10]. Additionally, higher 
hydrolysis yields obtained from bamboo shoots than 
mature bamboo also confirmed the fact that cellulases 
are prone to hydrolysis of bamboo with low content of 
lignin. [11]. Therefore, it is feasible in theory to generally 
evaluate the enzymatic digestibility of lignocellulosic bio-
mass based on the chemical composition of the material. 
As bioethanol and biomass power are gradually valued 
highly, a rapid composition analysis method that evalu-
ates the hydrolysis yield of sugar is desired for bioethanol 
manufacturers and bio-power producers [12]. Traditional 
methods for chemical characterization of biomass feed-
stock, such as wet chemical analysis, are expensive (labor 
intensive) and time consuming. Additionally, the disposal 
of waste chemicals resulted from wet chemical analysis is 
also a concern. Quantitative spectroscopy provides a fast 
and reliable alternative for traditional analytical methods 
to determine the chemical composition of a sample. Near 

infrared spectroscopy (NIR) has the advantages of fast 
analysis, no damage to the sample, and good repeatability 
and accuracy [13].

Early, NIR spectroscopy was applied to agriculture and 
food factory [14, 15]. It has been generally used in the 
research of wood science. For example, NIR spectroscopy 
was used to investigate wood properties, such as chemi-
cal [16–18], physical [19, 20], and mechanical proper-
ties [21, 22]. In recent years, NIR spectroscopy has been 
applied in bamboo. Huang et al. [23] evaluated the klason 
lignin content of Moso bamboo based on the visible and 
near infrared spectroscopy. Xu et  al. [24] rapidly deter-
mined bamboo shoot lignification associated with crude 
fiber content and firmness using Fourier transform near 
infrared spectroscopy. Lu et  al. [25] determined flavo-
noids and phenolic acids in the extract of bamboo leaves 
using near infrared spectroscopy and multivariate cali-
bration. Wu et al. [26] applied near infrared spectroscopy 
for the rapid determination of antioxidant activity of 
bamboo leaf extract. However, there are hardly any stud-
ies demonstrating quantitative prediction of main chemi-
cal composition of bamboo, enzymatic digestibility of the 
material, and qualitative classification of bamboo frac-
tions based on NIR spectroscopy.

In this work, the bamboo samples have been manu-
ally separated into five bamboo fractions, namely bam-
boo green, bamboo timber, bamboo yellow, bamboo 
node, and bamboo branch. Their chemical composition 
was determined by conventional wet chemical analyses. 
Based on visible–near infrared spectra acquired on the 
biomass, partial least squares (PLS) regression was used 
for quantitatively analyzing the chemical composition of 
bamboo and determining the general hydrolysabilities of 
the materials, and partial least squares discriminant anal-
ysis (PLS-DA) was used for qualitatively discriminating 
between mature bamboo and juvenile bamboo, classify-
ing separated bamboo fractions and sugar yield level.

Results and discussion
Quantitative prediction of chemical composition
The visible–near infrared mean spectra of bamboo tim-
ber fraction of one-month-old juvenile bamboo and 
2-year-old mature bamboo are shown in Fig.  1. Many 
absorption band peaks occurred in the wavelength 
region of 1100–2500  nm, including prominent peaks at 
around 1473, 1925, 2092, 2267, and 2328  nm. The peak 
at 1473  nm was primarily attributed to the first over-
tone O–H stretching of cellulose. The strong peak at 
approximately 1925  nm was primarily attributed to the 
O–H asymmetric stretching and O–H deformation from 
water [27]. The O–H and C–H deformation and O–H 
stretching vibration of cellulose and xylan were indicated 
by spectral changes at 2092  nm. Further, the overtone 
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of O–H stretching and C–O stretching from lignin at 
2267  nm also showed a change in absorption [28]. The 
C–H deformation and C–H stretching vibration of xylan 
were indicated by spectral changes at 2328 nm.

Thirty six samples are prepared for quantitative anal-
ysis of the three chemical compositions. The predicted 
chemical contents (cellulose, xylan, and lignin) via raw 
visible–near infrared spectra vs. wet chemistry meas-
urements as results generated by the PLS regression 
procedure are presented in Fig. 2a, together with a tar-
get line. The experimental values and estimated values 
for cellulose, xylan, and lignin are presented in Addi-
tional file  1: Table S1. Generally, correlation was high 
between predicted chemical contents via PLS regression 
and wet chemistry measurements, demonstrating the 
feasibility of PLS regression in predicting the chemical 
composition of bamboo fractions. Results of calibration 
and PLS1 and PLS2 prediction models for the quantita-
tive compositional analysis of bamboo using raw spec-
tra (visible light, NIR, and visible–near infrared spectra) 
are presented in Table 1 and Additional file 1: Table S2, 
respectively. As observed in Table 1, when raw spectral 
regions were in NIR range (780–2500 nm) and visible–
near infrared range (400–2500  nm), the ratio of root 
mean square error of prediction (RMSEP) to standard 
deviation (SD) (RPD) values were almost more than 
2.5 in PLS1 model, indicating that the PLS1 models 
provided a good prediction. At the same time, the val-
ues of the range error ratio (RER) in PLS1 models were 
more than 6.1. Besides, the results of the prediction 
models exhibited high coefficient of determination in 

calibration (R2c) values ranged between 0.88 and 0.96, 
low root mean square error of calibration (RMSEC) 
values ranged between 1.8 and 3.5, high coefficient of 
determination in prediction (R2p) values ranged between 
0.82 and 0.92, and low root mean square error of predic-
tion (RMSEP) values ranged between 2.5 and 4.3. How-
ever, prediction models developed with raw visible light 
spectra (400–780 nm) had a slight decrease in R2c val-
ues (between 0.82 and 0.87) and R2p values (0.68–0.83). 
RPD values of raw visible light spectra were less than 
2.5, which indicated that the effect of raw visible light 
on the quantitative prediction of chemical composition 
of bamboo was unsatisfactory, although all RER values 
of visible light spectra were more than 5.6. The possible 
reason was that visible light only reflected surface char-
acteristics of the material, such as color, glossiness, and 
light reflection, containing less information about the 
inner chemical composition of the material. The optimal 
number of factors for each model was suggested by the 
software Unscrambler v9.2. Based on the raw NIR spec-
tra (780–2500 nm), regression coefficient plots of cellu-
lose, xylan, and lignin are separately presented in Fig. 3. 
As shown in Fig. 3a illustrated as an example, there were 
distinct bands in the 1440–1480  nm region attributed 
to the first overtone O–H stretching vibration [29] and 
a remarkable peak at around 2080  nm where the C–H 
deformation and O–H stretching vibration of cellulose 
were located in the NIR spectra [28]. These wavelength 
regions greatly contributed to the prediction of cellulose 
in the suggested factor 4. Compared with PLS1 model, 
the results from three dependent variables modeled and 
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Fig. 1  Visible–near infrared mean spectra from original data of bamboo timber fractions. Data of one spectrum were collected from 2-year-old 
mature bamboo and those of another spectrum were collected from one-month-old juvenile bamboo
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predicted simultaneously (PLS2 model) were almost 
close to those predicted by PLS1 model in raw NIR spec-
tra and raw visible–near infrared spectra. However, two 
random dependent variables modeled and predicted 
simultaneously presented higher coefficient of deter-
mination and lower root mean square error than three 

dependent variables (Additional file  1: Table S2). Con-
sidering the operating mode and efficiency, PLS2 model 
was better in quantitative prediction of chemical compo-
sition of bamboo.

Several data pretreatment methods, including mul-
tiplicative scattering correction (MSC), extensive 
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Fig. 2  Chemical contents predicted by visible–near infrared spectra vs. those measured by wet chemistry: a non-pretreatment (cellulose, xylan, 
and lignin); b first derivative pretreatment (cellulose, xylan, and lignin); c non-pretreatment (glucose and xylose); and d first derivative pretreatment 
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Page 5 of 18Yang et al. Biotechnol Biofuels  (2016) 9:35 

multiplicative scattering correction (EMSC), standard 
normalized variate (SNV), first derivative, and second 
derivative pretreatment, were tested on raw visible–near 
infrared spectra. The first derivative visible–near infra-
red spectra of bamboo timber fraction of one-month-
old juvenile bamboo and 2-year-old mature bamboo are 
presented in Fig.  4. The pretreated spectra were mainly 
dominated by the peaks at around 1440, 1900, 2057, and 
2255 nm. The peak at around 1440 nm corresponded to 
the first overtone O–H stretching in cellulose [30]. The 
absorbance at approximately 1907  nm was assigned to 
the second overtone of C =  O stretching in xylan. The 
bands near 2057 nm were associated with C–H deforma-
tion and O–H stretching vibration. The peak at 2255 nm 
was attributed to the overtone of O–H stretching and 
C-O stretching vibration [28].

The predicted chemical contents (cellulose, xylan, and 
lignin) via first derivative pretreated visible–near infrared 
spectra vs. wet chemistry measurements as results gen-
erated by the PLS regression procedure are presented in 
Fig.  2b. Compared with raw visible–near infrared spec-
tra, the correlation was higher between the predicted 
and actual values. Results of PLS1 and PLS2 calibration 
and prediction models for the quantitative composi-
tional analysis of bamboo using pretreated visible–near 
infrared spectra are presented in Table 2 and Additional 
file 1: Table S3. In Table 2, compared with other methods, 
first and second derivative pretreatments mainly showed 
higher R2c and R2p (ranged from 0.990 to 0.996 and 
0.976 to 0.994, respectively), lower RMSEC and RMSEP 

(ranged from 0.5 to 1.1 and 0.7 to 1.5, respectively), and 
higher RPD and RER (ranged from 8.3 to 10.2 and 20.3 
to 35.2, respectively). Additional file  1: Table S3 dem-
onstrates the same trend of results of PLS2 models with 
PLS1 models. The results showed that first derivative and 
second derivative pretreatments were relatively better 
pretreatment methods to clearly improve the accuracies 
of the prediction performance of both PLS1 and PLS2 
models in this study.

Similarly, the general enzymatic digestibilities of the 
bamboo fractions were forecasted by means of glucose 
and xylose yields. The plots comparing the predicted and 
actual values were generated to show visually the pre-
diction performance of the model in raw visible–near 
infrared spectra (Fig.  2c). The experimental values and 
estimated values for glucose and xylose are presented 
in Additional file  1: Table S4. The result indicated that 
the prediction performance of the model was not very 
well. Results of PLS1 and PLS2 calibration and predic-
tion models for the quantitative sugars of enzymatic 
hydrolysis analysis of bamboo using raw spectra (visible 
light, NIR and visible–near infrared) are presented in 
Table 1 and Additional file 1: Table S2, respectively. Low 
RMSEC values (ranged between 4.3 and 8.4), RMSEP val-
ues (ranged between 8.6 and 11.8), RPD values (low to 
1.8), and RER values (low to 5.4) were observed, indicat-
ing that the performance of PLS1 and PLS2 models was 
not well in quantitatively analyzing glucose and xylose 
yields of bamboo using raw spectra. The possible rea-
sons for the phenomenon were that the original spectra 

Table 1  Results of PLS1 calibration and prediction models for the quantitative compositional analysis of bamboo using 
raw spectra

R2c square of the correlation coefficient for calibration, RMSEC root mean square error of calibration, R2p square of the correlation coefficient for prediction, RMSEP root 
mean square error of prediction, SD standard deviation, RPD ratio of root mean square error of prediction to standard deviation, RER range error ratio. The number of 
samples used for quantitative analysis of cellulose, xylan, and lignin is 36. The number of samples used for quantitative analysis of glucose and xylose is 26

Wavelength (nm) Chemical composition Factors R2c RMSEC R2p RMSEP SD RPD RER

400–780 (n = 36) Cellulose 8 0.82 4.3 0.68 6.0 10.3 1.7 5.6

Xylan 3 0.87 3.0 0.83 3.5 8.4 2.4 8.0

Lignin 3 0.83 3.7 0.78 4.2 8.9 2.1 7.1

Glucose 3 0.79 8.2 0.70 9.7 18.2 1.9 5.4

Xylose 10 0.97 4.3 0.86 9.0 23.7 2.6 8.7

780–2500 (n = 36) Cellulose 4 0.88 3.5 0.82 4.3 10.3 2.4 6.5

Xylan 6 0.93 2.1 0.88 2.9 8.4 2.9 10.0

Lignin 7 0.96 1.8 0.92 2.5 8.9 3.6 11.9

Glucose 7 0.92 5.1 0.77 8.6 18.2 2.1 7.6

Xylose 4 0.90 7.5 0.79 11.1 23.7 2.1 6.0

400–2500 (n = 36) Cellulose 4 0.88 3.5 0.82 4.3 10.3 2.4 6.1

Xylan 4 0.94 2.1 0.91 2.5 8.4 3.3 10.0

Lignin 7 0.94 2.2 0.86 3.3 8.9 2.7 8.7

Glucose 4 0.84 7.1 0.73 9.4 18.2 1.9 5.9

Xylose 5 0.87 8.4 0.75 11.7 23.7 2.0 7.0
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Fig. 3  Regression coefficient plots of chemical composition of bamboo based on raw NIR spectra (780–2500 nm): a regression coefficient plot of 
cellulose; b regression coefficient plot of xylan; and c regression coefficient plot of lignin
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contained more noise, the number of samples was small, 
the changes of sugar content in samples were slight, 
and the representation of the sample for modeling was 
slightly worse. Possibly, increasing the number of samples 
and the representation of the sample could improve the 
results in the further study.

Raw visible–near infrared spectra were pretreated 
by the five pretreatment methods. The plots compar-
ing the predicted and actual values were generated to 
show visually the prediction performance of the model 
in first derivative pretreated visible–near infrared spec-
tra (Fig.  2d). Compared with raw spectra, first deriva-
tive pretreatment significantly improved the correlation 
between the predicted and actual values. Results of cali-
bration and prediction in PLS1 and PLS2 models for the 
quantitative sugars of enzymatic hydrolysis of bamboo 
using pretreated visible–near infrared spectra are pre-
sented in Table 2 and Additional file 1: Table S3, respec-
tively. Compared with raw visible–near infrared spectra, 
both R2c values (ranged from 0.988 to 0.998) and R2p 
values (ranged from 0.968 to 0.996) were significantly 
improved, and both RPD values (more than three) and 
RER values (more than 15) also greatly verified the bet-
ter performance of PLS1 and PLS2 models. The results 
showed that the pretreatment could greatly reduce the 
noise and improve the signal-to-noise ratio, so that the 
performance of the PLS1 and PLS2 models was greatly 
improved. Hence, pretreated visible–near infrared spec-
tra coupled with PLS regression was able to quantitatively 

predict general hydrolysabilities of bamboo fractions 
after pretreatment with aqueous ammonia.

Qualitative classification of bamboo fractions
There existed differences in processing residues between 
mature bamboo and juvenile bamboo. If mature bamboo 
and juvenile bamboo could be quickly and accurately 
discriminated, these materials would reasonably opti-
mize utilization. The mean spectra from original data 
for mature bamboo fractions and juvenile bamboo frac-
tions between 400 and 2500 nm are presented in Fig. 5. 
A notable peak occurred in the wavelength region of 
600–700 nm, which was generated by samples of bamboo 
branch and bamboo green. The reason may be that chlo-
rophyll a provided by bamboo branch and bamboo green 
caused the peak formation. As shown in Fig. 5, the spec-
tra of mature bamboo basically had higher absorbance 
value because of different contents of chemical composi-
tion in mature bamboo and juvenile bamboo. For exam-
ple, the content of lignin in mature bamboo was higher 
than that in juvenile bamboo.

The results of principal component analysis (PCA) of 
mature bamboo and juvenile bamboo using raw spec-
tra (visible light, NIR, and visible–near infrared spectra) 
were obtained (Fig.  6). It was evident from these three 
PCA score plots that mature bamboo could be separated 
from juvenile bamboo with 95  % confidence. As shown 
in Fig.  6a, c, the distribution of most mature bamboo 
samples was higher than that of juvenile bamboo samples 

Fig. 4  First derivative visible–near infrared spectra of bamboo timber fraction. Data of one spectrum were collected from 2-year-old mature bam-
boo and those of another spectrum were collected from one-month-old juvenile bamboo
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in the coordinate axis. And the distribution of the most 
mature bamboo samples preferred the offside in Fig. 6b. 
Loading plots of the first three factors of the raw near 
infrared spectra are shown in Fig. 7. The first three factors 
had a greater contribution to principal component analy-
sis in the large wavelength range (1100–2500  nm) than 
in the short wavelength range (780–1100 nm), especially 
spectral bands in the 1420–1470 nm and 1870–2300 nm 
regions were more remarkable. From the point of view of 
factor 1, there existed significant peaks at around 1448, 
1930, and 2110  nm, which were separately associated 
with the first overtone O–H stretching, the O–H asym-
metric stretching, and O–H deformation from water, 
and the C–H deformation and O–H stretching in cellu-
lose. For factor 2, the main absorptions at 1440 nm and 
2267 nm were related to the first overtone O–H stretch-
ing and O–H and C-O stretching in lignin, respectively. 
For factor 3, the peak at around 1907 nm was attributed 
to the second overtone of C = O stretching in xylan. The 

results of the prediction models were good, exhibiting 
high R2c values (ranged between 0.96 and 0.98) and R2p 
values (ranged between 0.94 and 0.97), and low square 
error of calibration (SEC) values (ranged between 0.07 
and 0.10) and square error of validation (SEV) values 
(ranged between 0.09 and 0.12) (Table 3). Then PLS-DA 
identification models based on three different wavelength 
regions were established, aiming to test the ability and 
accuracy of NIR models. Based on PLS-DA, results of the 
unknown samples of mature bamboo and juvenile bam-
boo predicted by identification models are presented in 
Table 4. The classification accuracies of mature bamboo 
and juvenile bamboo from the prediction set using the 
model based on samples from the corresponding cali-
bration set all reached 100 %. It indicated that the PLS-
DA models had the ability to quickly predict and classify 
mature bamboo and juvenile bamboo.

Similarly, different bamboo fractions were qualita-
tively classified using PLS-DA models. The visible–near 

Table 2  Results of PLS1 calibration and prediction models for the quantitative compositional analysis of bamboo using 
pretreated visible–near infrared spectra

R2c square of the correlation coefficient for calibration, RMSEC root mean square error of calibration, R2p square of the correlation coefficient for prediction, RMSEP 
root mean square error of prediction, SD standard deviation, RPD ratio of root mean square error of prediction to standard deviation, RER range error ratio. MSC 
multiplicative scattering correction, EMSC extensive multiplicative scattering correction, SNV standard normalized variate. The number of samples used for 
quantitative analysis of cellulose, xylan, and lignin is 36. The number of samples used for quantitative analysis of glucose and xylose is 26

Pretreatment Chemical composition Factors R2c RMSEC R2p RMSEP SD RPD RER

MSC Cellulose 10 0.958 2.1 0.925 2.8 10.0 3.6 11.8

Xylan 3 0.947 1.9 0.931 2.2 8.1 3.7 12.2

Lignin 8 0.972 1.5 0.939 2.2 8.8 4.1 13.3

Glucose 16 0.998 0.7 0.986 2.2 18.2 8.4 26.4

Xylose 14 0.998 1.3 0.974 3.8 23.7 6.3 17.5

EMSC Cellulose 10 0.964 1.9 0.935 2.6 10.1 3.9 12.5

Xylan 3 0.953 1.8 0.937 2.1 8.2 3.9 13.0

Lignin 7 0.964 1.7 0.943 2.1 8.7 4.2 13.3

Glucose 16 0.998 0.4 0.992 1.6 18.2 11.2 37.7

Xylose 14 0.998 1.1 0.980 3.3 23.7 7.3 20.5

SNV Cellulose 5 0.910 3.0 0.874 3.6 9.8 2.7 7.9

Xylan 4 0.955 1.8 0.935 2.1 8.2 3.9 13.3

Lignin 8 0.974 1.4 0.949 2.0 8.8 4.3 13.8

Glucose 15 0.996 1.1 0.974 2.9 18.2 6.3 21.0

Xylose 15 0.998 1.0 0.980 3.3 23.7 7.2 20.0

First derivative Cellulose 8 0.994 0.8 0.990 1.0 10.2 10.1 35.2

Xylan 7 0.990 0.8 0.982 1.1 8.3 7.7 25.2

Lignin 7 0.988 1.0 0.980 1.2 8.8 7.2 22.7

Glucose 9 0.998 0.6 0.996 1.1 18.2 16.1 52.6

Xylose 7 0.998 1.1 0.994 1.8 23.7 13.0 34.3

Second derivative Cellulose 7 0.988 1.1 0.976 1.5 10.2 6.6 20.3

Xylan 7 0.990 0.8 0.984 1.0 8.3 8.1 29.0

Lignin 10 0.996 0.5 0.994 0.7 8.9 13.7 36.6

Glucose 8 0.998 0.7 0.996 1.1 18.2 16.8 51.8

Xylose 7 0.996 1.4 0.992 2.0 23.7 11.7 32.5
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infrared spectra of different fractions of 2-year-old bam-
boo samples are shown in Fig. 8. Spectral lines of bamboo 
yellow and bamboo timber were almost overlapped in 
2000–2500 nm range. Probably because the three peaks 
(2092, 2267, and 2238  nm) in the wavelength region 
mainly reflected the information on xylan and lignin, the 
contents of which in bamboo yellow and bamboo timber 
were very close. The gaps of spectral lines in other frac-
tions were obvious.

The results of PCA analysis of juvenile bamboo frac-
tions using raw spectra (visible light, NIR, and visible–
near infrared spectra) were obtained (Fig. 9). There were 
some score plots of samples in three different spectral 
regions assigned the wrong groups basically. For exam-
ple, some samples of bamboo yellow were confused with 
samples of bamboo node in visible light spectra (Fig. 9a), 
and samples of bamboo green, bamboo yellow, and bam-
boo timber were confused together in NIR spectra and 
visible–near infrared spectra (Fig.  9b, c). The possible 
reason was that the contents of chemical composition in 
juvenile bamboo fractions were close. Therefore, it was 
not reasonable to identify different fractions using sam-
ples of juvenile bamboo.

The results of PCA analysis of mature bamboo frac-
tions using raw spectra (visible light, NIR, and visible–
near infrared spectra) were obtained (Fig. 10). The score 
plots of different fraction samples in the three spectral 

regions were obviously distinguished, except for some 
samples of bamboo green confused with samples of bam-
boo node and branch in visible light spectra (Fig. 7a). The 
results of the prediction models were good, exhibiting 
high R2c values ranged between 0.81 and 0.98, low SEC 
values ranged between 0.05 and 0.17, high R2p values 
ranged between 0.69 and 0.95, and low SEV values ranged 
between 0.09 and 0.23 (Table  5). Based on PLS-DA, 
results of the unknown sample of mature bamboo frac-
tions predicted by identification models are presented 
in Table 6. The classification accuracies of different frac-
tions of mature bamboo from the prediction set using the 
model based on samples from the corresponding calibra-
tion set all reached 100 %, except for visible light spectral 
range where one sample of the bamboo knot was misclas-
sified into other bamboo fractions. However, the predic-
tive performance of this model still presented a high total 
prediction accuracy of 87.5 %.

Qualitative analysis of the sugar yield level
4- and 6-meter-height juvenile bamboos were hydrolyzed 
with cellulases and xylanase to evaluate the enzymatic 
digestibilities of the materials. In the study, dividing line 
between high and low levels of the glucose content was 
artificially set to 70, and dividing line between high and 
low levels of the xylose content was artificially set to 40 
in order to qualitatively analyze the sugar content level. 

Fig. 5  Visible–near infrared mean spectra from original data of bamboos. Ten spectra were collected from 2- and 10-year-old mature bamboo and 
other 10 spectra were collected from 2-, 4- and 6-meter-height juvenile bamboo
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Three-fifth of the samples were randomly selected from 
high and low sugar content samples to establish calibra-
tion models, and the remaining two-fifth of the samples 

were used for predictions. The results of the prediction 
models were good, exhibiting high R2c values ranged 
between 0.939 and 0.998, low SEC values ranged between 

Fig. 6  PCA analysis of mature bamboo and juvenile bamboo based on different raw spectral regions: a raw visible light spectral region; b raw NIR 
spectral region; and c raw visible–near infrared spectral region. (M—mature bamboo; J—juvenile bamboo)
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0.01 and 0.13, high R2p values ranged between 0.491 and 
0.891, and low SEV values ranged between 0.17 and 0.38 
(Table 7). Based on PLS-DA, the results of unknown sam-
ples of glucose and xylose content level in 4-meter-height 
and 6-meter-height juvenile bamboo dealt with cellulases 
and hemicellulases before alkaline pretreatment are pre-
sented in Table  8. The classification accuracies of high 
and low levels of glucose and xylose content of unknown 
samples were all 100 %.

2- and 10-year-old mature bamboo and 4- and 6-meter-
height juvenile bamboo after pretreatment with aqueous 
ammonia were hydrolyzed with cellulases and xylanase, 
and the amounts of glucose and xylose released were 
evaluated. In the study, dividing lines between high and 
low levels of the glucose content and xylose content were 
both set to 80. Three-fifth of the samples were randomly 
selected from high and low sugar content samples to 
establish calibration models, and the remaining two-fifth 

Fig. 7  Loading plots of the first three factors of the raw near infrared spectra. Factor 1 has a proportion of variance of 64 %; factor 2 has a propor-
tion of variance of 28 %; and factor 3 has a proportion of variance of 6 %

Table 3  Results of calibration and prediction models for discriminating mature bamboo and juvenile bamboo

Three regions of wavelength were selected to establish models, and these spectra came from original data. The number of juvenile bamboo and mature bamboo 
samples were 60 and 100, respectively

Wavelength (nm) Sample sets Factors R2 SEC/SEV Factors R2 SEC/SEV

400–780 (n = 160) Calibration 10 0.96 0.10 10 0.96 0.10

Validation 0.94 0.12 0.94 0.12

780–2500 (n = 160) Calibration 7 0.98 0.08 7 0.98 0.08

Validation 0.96 0.09 0.96 0.09

400–2500 (n = 160) Calibration 9 0.98 0.07 9 0.98 0.07

Validation 0.97 0.09 0.97 0.09

Table 4  Results of juvenile bamboo and mature bamboo predicted by identification models based on PLS-DA

Three regions of wavelength were selected to establish models, and these spectra came from original data. The number of juvenile bamboo and mature bamboo 
samples were 60 and 100, respectively

Wavelength (nm) Type No. of prediction samples Correct no. Accuracy (%)

400–780 (n = 160) Juvenile bamboo 24 24 100

Mature bamboo 40 40 100

780–2500 (n = 160) Juvenile bamboo 24 24 100

Mature bamboo 40 40 100

400–2500 (n = 160) Juvenile bamboo 24 24 100

Mature bamboo 40 40 100
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of the samples were used for predictions. The results of 
the prediction models were good, exhibiting high R2c 
values ranged between 0.810 and 0.994, low SEC values 
ranged between 0.04 and 0.22, high R2p values ranged 
between 0.783 and 0.953, and low SEV values ranged 
between 0.11 and 0.24 (Table  7). Based on PLS-DA, 
the results of unknown samples of glucose and xylose 
content level in 2- and 10-year-old and 4- and 6-meter-
height juvenile bamboo dealt with cellulases and xylanase 
after alkaline pretreatment are presented in Table 8. The 
classification accuracies of high and low levels of glucose 
and xylose contents of unknown samples were all 100 %.

Conclusions
Visible–near infrared spectroscopy coupled with mul-
tivariate analysis was applied to quantitatively ana-
lyze the chemical composition of bamboo and general 
hydrolysabilities of juvenile bamboo and bamboo after 
pretreatment with aqueous ammonia, and qualitatively 
discriminate between mature bamboo and juvenile bam-
boo. The results indicated that PLS regression method 
had the potential to quantitatively analyze the chemical 
composition and the enzymatic digestibilities of bamboo 
fractions. Considering the operating mode and efficiency, 
PLS2 model was better in quantitative prediction of 
chemical composition of bamboo and the PLS-DA mod-
els had the ability to predict and classify mature bam-
boo, juvenile bamboo, and different fractions of mature 
bamboo.

Methods
Sample preparation
Moso bamboo (Phyllostachys heterocycla var. pube-
scens) samples including 2-, 4-, 6-, and 10-year-old 
mature bamboos and 2-, 4-, and 6-meter-height juve-
nile bamboos were collected from a bamboo planta-
tion located in Zhejiang Province, China. The 2-, 4-, 
6-, and 10-year-old mature bamboos are about 11, 15, 
13, and 15 meter in height, respectively. For 2-, 4-, and 
6- meter-height juvenile bamboos, they are about one 
month old. Mature bamboos were fractionated manu-
ally with a knife to five parts: bamboo green, timber, 
yellow, node, and branch (the part where juvenile bam-
boo do not exist). All the bamboo fractions were milled 
and passed through 60-mesh screen sieve, and then air 
dried to less than 10  % moisture content. The materi-
als were pretreated with 26  % (w/v) aqueous ammonia 
with a solid-to-liquid ratio of 1:10 at 70  °C for 72  h. 
The pretreated bamboo fractions were washed to neu-
tral with pure water and then air dried for further use. 
Chemical composition of the materials before and 
after pretreatment with aqueous ammonia was deter-
mined according to the standardized methods estab-
lished by the National Renewable Energy Laboratory 
[31]. The raw juvenile bamboos and aqueous ammonia-
pretreated juvenile and mature bamboo fractions were 
hydrolyzed by cellulases (20  FPU/g dry matter Cellu-
clast 1.5  L and 500  nkat/g dry matter Novozyme 188) 
and xylanase (2 mg/g dry matter) for 48 h. The amount 
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Fig. 8  Visible–near infrared mean spectra from original data of different fractions. The five spectra were collected from bamboo node, bamboo 
branch, bamboo green, bamboo timber, and bamboo yellow of 2-year-old bamboo, respectively
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of glucose and xylose released was evaluated by an 
HPLC system (Hitachi L-2000, Hitachi Corp., Japan). 
The system was equipped with a refractive index detec-
tor (Hitachi Corp., Japan) and an autosampler (Hitachi 

Corp., Japan). Ion-moderated partition chromatogra-
phy column (Aminex column HPX-87H) with Cation H 
micro-guard cartridge was used. The Aminex HPX-87H 
column was maintained at 45  °C with 5 mM H2SO4 as 

Fig. 9  PCA analysis of juvenile bamboo fractions based on different raw spectral regions: a raw visible light spectral region; b raw NIR spectral 
region; and c raw visible–near infrared spectral region. (O—bamboo green; M—bamboo timber; I—bamboo yellow; K—bamboo node)
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the eluent at a flow rate of 0.5 ml/min. Before injection, 
samples were filtered through 0.22 µm MicroPES filters, 
and a volume of 20 µl was injected. Peaks were detected 

by refractive index and were indentified and quantified 
by comparison to retention times of authentic standards 
(d-glucose and D-xylose).

Fig. 10  PCA analysis of mature bamboo fractions based on different raw spectral regions: a raw visible light spectral region; b raw NIR spectral 
region; and c raw visible–near infrared spectral region. (O—bamboo green; M—bamboo timber; I—bamboo yellow; K—bamboo node; B—bam-
boo branch)
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NIR spectral data acquisition
NIR diffuse reflectance spectrum (350–2500  nm) was 
collected using the ASD Field Spec® NIR spectrometer 
(Analytical Spectral Devices, Boulder, CO, USA) at room 
temperature. A fiber optic probe was oriented perpendic-
ular to the sample surface and used to collect spectra. The 
instrument reference was a piece of commercial micropo-
rous® Teflon white board. Thirty scans were recorded 
and the results were averaged to yield the final spectrum. 

All spectroscopy measurements were made in a con-
trolled humidity chamber (50–60  %) and at 20 ±  2  °C. 
Three spectral segments (400–780, 780–2500, and 400–
2500  nm) were selected in the study for comprehensive 
analysis of different spectral ranges.

Multivariate analysis (MVA)
The MVA of NIR spectra for qualitative classification 
and quantitative chemical composition prediction was 

Table 5  Results of calibration and prediction models for classifying mature bamboo fractions

Three regions of wavelength were selected to establish models, and these spectra came from original data. The number of sample sets was 100. (B bamboo branch,  
I bamboo yellow, K bamboo node, M bamboo timber, O bamboo green)

Wavelength (nm) Sample sets Parameters B I K M O

400–780 (n = 100) Calibration R2 0.96 0.88 0.81 0.93 0.93

SEC 0.08 0.14 0.17 0.11 0.11

Validation R2 0.90 0.77 0.69 0.71 0.83

SEV 0.13 0.19 0.23 0.21 0.17

Factors 13 13 13 13 13

780–2500 (n = 100) Calibration R2 0.98 0.94 0.93 0.97 0.97

SEC 0.05 0.10 0.10 0.08 0.07

Validation R2 0.93 0.76 0.76 0.85 0.90

SEV 0.11 0.20 0.20 0.16 0.13

Factors 16 16 16 16 16

400–2500 (n = 100) Calibration R2 0.98 0.98 0.96 0.97 0.96

SEC 0.06 0.06 0.08 0.07 0.08

Validation R2 0.94 0.95 0.87 0.90 0.91

SEV 0.10 0.09 0.14 0.13 0.12

Factors 15 15 15 15 15

Table 6  Results of mature bamboo fractions predicted by identification models based on PLS-DA

Three regions of wavelength were selected to establish models, and these spectra came from original data. The number of sample sets was 100. (B bamboo branch,  
I bamboo yellow, K bamboo node, M bamboo timber, O bamboo green)

Wavelength (nm) Fractions No. of prediction samples Correct no. Accuracy (%)

400–780 (n = 100) B 8 8 100

I 8 8 100

K 8 7 87.50

M 8 8 100

O 8 8 100

780–2500 (n = 100) B 8 8 100

I 8 8 100

K 8 8 100

M 8 8 100

O 8 8 100

400–2500 (n = 100) B 8 8 100

I 8 8 100

K 8 8 100

M 8 8 100

O 8 8 100



Page 16 of 18Yang et al. Biotechnol Biofuels  (2016) 9:35 

conducted using the software Unscrambler v9.2 (CAMO, 
Corvallis, OR, USA). In terms of quantitative chemi-
cal composition, MSC, EMSC, SNV, first derivative and 
second derivative of spectral range between 400 and 

2500 nm were also analyzed to compare with raw spec-
tra. PLS regression analysis was calculated to determine 
the quantitative relation between the spectral variable 
and the chemical composition content of the samples. 

Table 7  Results of calibration and prediction models for analysis of glucose and xylose content level

The data of glucose and xylose content level and spectra were collected from 4- and 6-meter-height juvenile bamboo before aqueous ammonia pretreatment, and 
2- and 10-year-old mature bamboo and 4- and 6-meter-height juvenile bamboo after aqueous ammonia pretreatment

Wavelength (nm) Sample sets Level Before aqueous ammonia pretreatment 
(n = 40)

After aqueous ammonia pretreatment 
(n = 90)

Glucose Xylose Glucose Xylose

R2 SEC/SEV R2 SEC/SEV R2 SEC/SEV R2 SEC/SEV

400–780 Calibration High 0.998 0.01 0.996 0.03 0.821 0.21 0.941 0.12

Low 0.998 0.01 0.996 0.03 0.821 0.21 0.941 0.12

Validation High 0.743 0.26 0.808 0.23 0.814 0.22 0.869 0.17

Low 0.743 0.26 0.808 0.23 0.814 0.22 0.869 0.17

Factors High 11 9 1 8

Low 11 9 1 8

780–2500 Calibration High 0.955 0.11 0.978 0.08 0.810 0.22 0.850 0.19

Low 0.955 0.11 0.978 0.08 0.810 0.22 0.850 0.19

Validation High 0.491 0.38 0.857 0.20 0.783 0.24 0.783 0.22

Low 0.491 0.38 0.857 0.20 0.783 0.24 0.783 0.22

Factors High 7 7 3 6

Low 7 7 3 6

400–2500 Calibration High 0.939 0.13 0.984 0.07 0.994 0.04 0.978 0.07

Low 0.939 0.13 0.984 0.07 0.994 0.04 0.978 0.07

Validation High 0.748 0.26 0.891 0.17 0.953 0.11 0.924 0.13

Low 0.750 0.26 0.891 0.17 0.953 0.11 0.924 0.13

Factors High 7 8 12 11

Low 7 8 12 11

Table 8  Prediction results of unknown samples of glucose and xylose content level

The data of glucose and xylose content level and spectra were collected from 4- and 6-meter-height juvenile bamboo before aqueous ammonia pretreatment, and 2- 
and 10-year-old mature bamboo and 4- and 6-meter-height juvenile bamboo after aqueous ammonia pretreatment (based on PLS-DA)

Wavelength (nm) Sugars Level Before aqueous ammonia pretreatment (n = 40) After aqueous ammonia pretreatment (n = 90)

No. of prediction 
samples

Correct no. Accuracy (%) No. of prediction 
samples

Correct no. Accuracy (%)

400–780 Glucose High 10 10 100 18 18 100

Low 6 6 100 18 18 100

Xylose High 8 8 100 24 24 100

Low 8 8 100 12 12 100

780–2500 Glucose High 10 10 100 18 18 100

Low 6 6 100 18 18 100

Xylose High 8 8 100 24 24 100

Low 8 8 100 12 12 100

400–2500 Glucose High 10 10 100 18 18 100

Low 6 6 100 18 18 100

Xylose High 8 8 100 24 24 100

Low 8 8 100 12 12 100
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PLS is a linear modeling method compressing the spec-
tral data and projecting them onto partial least squares 
components, which can be divided into the PLS1 and 
PLS2 methods. The PLS1 method extracts the spec-
tral information into the PLS components to ensure the 
maximized covariance to the dependent variable. In the 
PLS2 method, two or more dependent variables are mod-
eled simultaneously. The regression coefficient plots were 
used to analyze PLS models for each composition [32]. 
The accuracy of the model was evaluated by the determi-
nation of R2c, RMSEC, R2p, RMSEP RPD, and RER (Ran-
gey of reference data/standard error of prediction (SEP)). 
The optimal number of PLS principle components was 
suggested by the software Unscrambler v9.2. RPD sta-
tistic was particularly applied to evaluate the prediction 
abilities between alternative models. RPD was calculated 
using the following equation:

A summary of previous studies using RPD suggests that 
a model with an RPD value of less than 2.5 is not able to 
provide sufficient prediction, whereas a model with RPD 
value in the range of 2.5–3 and more than three provides 
good and excellent prediction, respectively [33]. Accord-
ing to the American Association of Cereal Chemists 
(AACC) Method 39-00 [34], any model that has RER ≥4 
is qualified for screening calibration. When RER ≥10, the 
model is acceptable for quality control, and if RER ≥15 
the model is very good for research quantification [35].

On the other hand, prior to qualitative classification 
based on NIR spectra combined with PLS-DA, an indi-
vidual PCA supervised the specific class-belonging of all 
the training set objects in advance. PCA is a multivari-
ate method that can estimate the correlation structure 
of the variables. It can reduce the dimensionality of the 
original variables according to the importance of a vari-
able in a PC model [36]. Samples from prediction set 
were selected for discriminant analysis using the PLS-
DA models. PLS-DA involves developing a conventional 
PLS regression model, in which the variable is a binary 
variable. If a variable takes the value of 1, the specimen in 
question is a member of that group and if a variable takes 
the value of 0, the specimen in question is not a mem-
ber of that group. In the predicted results, samples with 
Y variable (predicted category variable) >0.5 and a devia-
tion that does not cross the 0.5 line would belong to the 
group and samples with Y variable (predicted category 
variable) <0.5 and a deviation that does not cross the 0.5 
line would not belong to the group, and samples with a 
deviation that crosses the 0.5 line could not be safely rec-
ognized [37]. About three-fifth of the samples were used 

RPD =

SD

RMSEP
.

as calibration set, and the rest of the samples were used 
for predictions.
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