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Abstract 

Background:  In an effort to find economical, carbon-neutral transportation fuels, biomass feedstock compositional 
analysis methods are used to monitor, compare, and improve biofuel conversion processes. These methods are 
empirical, and the analytical variability seen in the feedstock compositional data propagates into variability in the 
conversion yields, component balances, mass balances, and ultimately the minimum ethanol selling price (MESP). We 
report the average composition and standard deviations of 119 individually extracted National Institute of Standards 
and Technology (NIST) bagasse [Reference Material (RM) 8491] run by seven analysts over 7 years. Two additional 
datasets, using bulk-extracted bagasse (containing 58 and 291 replicates each), were examined to separate out the 
effects of batch, analyst, sugar recovery standard calculation method, and extractions from the total analytical variabil-
ity seen in the individually extracted dataset. We believe this is the world’s largest NIST bagasse compositional analysis 
dataset and it provides unique insight into the long-term analytical variability. Understanding the long-term variability 
of the feedstock analysis will help determine the minimum difference that can be detected in yield, mass balance, and 
efficiency calculations.

Results:  The long-term data show consistent bagasse component values through time and by different analysts. This 
suggests that the standard compositional analysis methods were performed consistently and that the bagasse RM 
itself remained unchanged during this time period. The long-term variability seen here is generally higher than short-
term variabilities. It is worth noting that the effect of short-term or long-term feedstock compositional variability on 
MESP is small, about $0.03 per gallon.

Conclusions:  The long-term analysis variabilities reported here are plausible minimum values for these methods, 
though not necessarily average or expected variabilities. We must emphasize the importance of training and good 
analytical procedures needed to generate this data. When combined with a robust QA/QC oversight protocol, these 
empirical methods can be relied upon to generate high-quality data over a long period of time.
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Background
Lignocellulosic biomass has been identified as a potential 
feedstock for the production of liquid biofuels [1–5]. Such 
non-edible plant matter can become a carbon-neutral, 
renewable source of transportation fuel [6], if processes 

to convert biomass to biofuels can be made economical at 
the scale of the transportation fuel market [7]. A critical 
component of NREL’s biofuels program [8, 9] is a robust 
techno economic analysis (TEA) capability, which allows 
for the economic comparisons of different conversion 
processes, the setting of technical goals to achieve cost 
targets, and determining the cost effects of integrating dif-
ferent processes into a combined process. Challenges to 
economic biofuel conversions include: identification and 
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production of renewable biomass sources [10–13]; col-
lecting and transporting diffuse sources of biomass to a 
central depot or conversion facility [14, 15]; the type and 
mass fraction of components in lignocellulose that can 
be converted to fuels [16, 17]; capital costs and efficiency 
of biomass pretreatments [18, 19]; costs and yields from 
enzymatic hydrolysis [20]; and configuration, yields, scale 
and efficiency of fermentation [21].

When comparing different feedstocks, process inter-
mediate compositions, or TEA results, it becomes criti-
cal to know if any differences seen are significant. It is 
important to determine the effect of long-term analyti-
cal variability on the downstream values derived from 
this data. One important input into TEA models is the 
biomass feedstock composition. These biomass com-
positional methods are empirical, and small differences 
in the analytical technique can have large effects on the 
feedstock compositions and therefore the mass balances, 
conversion yields, and TEA results that are derived from 
these values.

At NREL, we analyze a NIST RM along with each 
batch of 6–10 biomass samples as a method verification 
standard (MVS) to confirm the stability of the analyti-
cal conditions. The analysis of the NIST bagasse, run as 
an MVS for many sample batches, can be used to esti-
mate the method analytical variability over time and its 
effect on MESP. A short-term (about 6  weeks) study of 
the analytical variability on a specially prepared corn 
stover along with NIST bagasse run in two laboratories, 
by seven analysts has been previously reported [22]. The 
corn stover variability from this short-term study was 
used to estimate the effect of primary measurements on 
MESP [23].

Different sources of analytical variability can be assessed 
using these replicated NIST bagasse datasets, which 
include within and between analytical batch variability; 
and between analyst variability, short-term variability, 
long-term variability (the subject of this paper), and inter-
laboratory variability. Understanding the long-term varia-
bility will help determine the minimum difference that can 
be detected in yield, mass balance, and MESP calculations.

Here we report the long-term analytical variability 
of replicated NIST bagasse analyses based on composi-
tional data, where each sample was individually extracted 
from seven analysts, two NREL labs, and 119 batches 
collected over 7 years. We also report on two other sets 
of bagasse data which can highlight different sources of 
analytical variability seen in the individually extracted 
data. Together, these datasets (perhaps the world’s larg-
est NIST bagasse compositional analysis dataset) allow 
for estimates of the long-term analytical variability. We 
compare these data with previously published data, and 
calculate the effects of the variability on MESP values.

Methods
NIST bagasse material
The NIST bagasse (RM 8491), which is available for pur-
chase, was collected, homogenized, and analyzed in a 
round-robin study as described previously [24–26]. The 
reference compositions for the four NIST biomass RMs 
were recently re-standardized using an interlaboratory 
study to update the reported values, and this work showed 
that the RM compositions had not changed since the orig-
inal analysis [27]. We run a RM with each analytical batch 
and it is chosen to most closely match the biomass type 
being analyzed. We use NIST bagasse for the analysis of 
herbaceous biomass samples, and it is assumed that the 
RM behaves similarly to the samples during analysis. The 
compositional results from the MVS are used as part of a 
QA/QC protocol (described below) to help determine if 
the batch results are reported or rerun.

Compositional analysis methods
Feedstock compositions are determined by a series of sol-
vent extractions, gravimetric analyses, acid hydrolyses, and 
chromatographic methods to summatively measure the 
different components of biomass. A history and detailed 
description of these compositional analysis methods has 
been described previously [28]. Two different biomass 
sample types, feedstocks, and solid process intermediate 
samples (e.g., after pretreatment, enzymatic hydrolysis, or 
fermentation) are typically analyzed in our lab. These two 
sample types are prepared differently for compositional 
analysis, with feedstock samples being extracted and pro-
cess intermediate samples analyzed without extraction.

For herbaceous feedstocks, ~3 g of NIST bagasse mate-
rial is extracted and quantified along with the associated 
feedstock samples. For process intermediate samples, 
some large batches (~500  g) are bulk extracted, and in 
these cases the total amount of extractives removed are 
not quantified. Both extracted feedstocks and unex-
tracted process intermediate samples are hydrolyzed for 
1 h in 72 % H2SO4 followed by dilution to 4 % acid, and 
a secondary hydrolysis for 1 h at 121 °C in an autoclave. 
This two-stage hydrolysis breaks down the structural sug-
ars (cellulose and hemicellulose) to monomers for HPLC 
detection. The concentration of monomer carbohydrates 
is converted to an anhydro basis for reporting purposes. 
For instance, the glucose measured in the hydrolysate is 
reported as the polymer form glucan irrespective of the 
source of glucose (cellulose, hemicellulose, etc.), since 
it is the polymer form of the carbohydrate found in the 
sample. This is true for galactose and arabinose as well; 
these monomers are likely present as side chains of the 
hemicellulose. The remaining solids are measured gravi-
metrically as lignin or more specifically as acid insoluble 
residue (AIR), also known as Klason lignin. A UV–Vis 
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analysis is used to measure acid-soluble lignin (ASL) 
in the hydrolysate liquor, and these values are either 
reported separately or combined to report total lignin.

QA/QC protocols
We use a combination of experienced analysts, extensive 
training, proper analytical technique, and QA/QC over-
sight to generate the analytical variability reported here. 
This QA/QC protocol uses the results from the batch 
MVS compared to known values, the component clo-
sures of the samples and MVS, replication among ana-
lytical duplicates, and specific markers within the HPLC 
data to determine if the results are reliable. A set of QA/
QC parameters, including means and tolerances estab-
lished from external publications  and internal studies, 
has been developed to evaluate data batches. Deviations 
from the QA/QC parameters for a sample are sufficient 
to warrant repeated analysis of that individual sample. 
Unexplained deviations within the MVS analysis lead to 
reanalysis of the entire batch of samples. Repeated excur-
sions beyond the MVS limits by a single analyst triggers 
closer technique scrutiny or even retraining. Thus, the 
data presented in this manuscript include only those 
samples that passed internal QA/QC checks.

Calculation spreadsheets
Determining summative mass closure on a compositional 
batch requires hundreds of measurements and calcula-
tions. NREL has published Microsoft Excel workbooks 
that perform all of the necessary calculations, along with 
flags to identify samples that do not replicate within spec-
ified uncertainties. They have proven to be a useful tool to 
the biofuels community, as mistakes in calculations can be 
difficult to detect. These workbooks can be downloaded 
from NREL’s biomass website (http://www.nrel.gov/bio-
energy/biomass-compositional-analysis.html).

For this work, two workbooks were employed: one for 
feedstocks (which include extraction) and one for process 
intermediate samples (which do not require extraction). 
The feedstock workbook mathematically corrects all struc-
tural (or non-extractable) material by the amount of extrac-
tives removed. Thus, the structural values will decrease, as 
they are put on a whole (including extractives) dry weight 
basis. In comparison, process intermediate samples that 
are analyzed without correcting for extractives content 
will only report structural components (i.e., reporting on 
an extractives-free basis). Both routes of analysis should 
result in a mass closure close to 100 % component closure 
(though on different reporting bases), which suggest that all 
the biomass components are being detected and counted 
properly. Both workbooks calculate carbohydrate values 
after correcting for losses during hydrolysis using a SRS 
run with each batch. It is also possible to back calculate this 

data using an average SRS value, in an attempt to remove 
this possible source of variability.

Scientific data management system
Data from experimental batches were recorded, calcu-
lated, and analyzed in Microsoft Excel spreadsheets, 
though they did not provide a convenient method for data 
management nor for meta-analysis of large datasets. To 
resolve these issues, batch spreadsheets were collected 
in a web-enabled, in-house scientific data management 
system built with open source tools including Oracle’s 
Java and MySQL, Google’s Google Web Toolkit, Red 
Hat’s JBoss and Hibernate, and Apache POI. The system 
tracked sample data, work records, and analytical results, 
and archived copies of related files. Data mining was facil-
itated by a simple, web-based interface. Selected compo-
sitional data were collected and downloaded in Microsoft 
Excel file format to be curated further and analyzed.

Datasets analyzed
There are three datasets analyzed for this paper which 
are presented in increasing method complexity order as 
follows:

1.	 The short-term round-robin set (ST-RR) includes 67 
samples from a single bulk extraction batch of NIST 
bagasse material run in batches of 8–12 bagasse rep-
licates by seven different analysts over 2  months, 
though no analyst ran multiple batches. These 
samples were analyzed in a dedicated experiment 
designed to control and minimize many common 
sources of analytical variability. All samples were 
taken from one bulk extraction and were analyzed in 
a single laboratory using the same autoclave, and on 
the same HPLC. Analytical batches contained only 
the NIST bagasse material to allow examination of 
within batch variability.

2.	 The long-term extractives-free dataset (LT-EF) 
includes 295 samples from several bulk-extracted 
NIST bagasse batches that were analyzed in duplicate 
and included as MVS along with batches of process 
intermediate samples. The extractives-free results 
from this dataset include variability resulting from 
seven analysts in two labs using multiple autoclaves, 
HPLC systems, and analytical standards over 7 years. 
This dataset does not include analytical uncertainties 
due to individual extractions.

3.	 The long-term individually extracted biomass data-
set (LT-IE) includes 119 samples from individually 
extracted bagasse run by seven analysts in two labs 
over 7  years. In addition to the variability sources 
described in the LT-EF set, this dataset includes ana-
lytical variabilities due to extractions.

http://www.nrel.gov/bioenergy/biomass-compositional-analysis.html
http://www.nrel.gov/bioenergy/biomass-compositional-analysis.html
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Statistics
Compositional data from the calculation spreadsheets 
were aggregated into a text file (Additional file 1) for sta-
tistical analysis using “R” statistical software [29] (analysis 
code provided as Additional file 2) . We used P < 0.05 as 
a level for tests of significance. Given that there are doz-
ens to hundreds of replicates in these datasets, there is 
the power to detect statistically significant yet practically 
small differences. Compositional differences of less than 
0.3 % dry weight are not considered practically significant.

TEA analysis
TEA analysis includes a conceptual level of process 
design to develop a detailed process flow diagram (based 
on research data); rigorous material and energy balance 
calculations (via a commercial simulation tool, Aspen 
Plus); capital and project cost estimations (via an eco-
nomic model using spreadsheets); a discounted cash flow 
economic model; and the calculation of an MESP for 
an “Nth” plant. The 2011 NREL biochemical cellulosic 
ethanol design case model [9] is used as the benchmark 
model for this study. Variation in the feedstock compo-
sition (principally the structural carbohydrates) not only 
impacts the overall process design, but can impact the 
ethanol yield and MESP [30]. Thus, we have performed 
a sensitivity analysis using the benchmark model, and we 
performed MESP calculations on the bagasse composi-
tions from the LT-IE dataset. All other model parameters 
and the overall conceptual process design are kept con-
stant; and we report the variability in MESP based only 
on compositional variability.

Results and discussion
Short‑term round‑robin bagasse data
A general statistical summary of the short-term round-
robin (ST-RR) set is shown in Table 1. The data reported 
here on an extractives-free basis are artificially inflated 

compared to previous bagasse data reported on an as-
received basis, although the standard deviations for the 
major components are similar [22]. A pooled standard 
deviation is provided that minimizes the contribution of 
the batch-to-batch variability and is seen to be univer-
sally lower than the regular standard deviation for each 
constituent. This can be seen in Fig. 1, where each batch 
has variances that are tighter than that of the complete 
sample set, and the overall variability is driven by the 
batch-to-batch variability.

Long‑term mean results
The mean values for the major bagasse constituents in 
the LT-EF and LT-IE datasets are presented as control 
charts in Figs.  2 and 3, respectively. These charts show 
consistent mean compositional values and standard devi-
ations over 7 years. This suggests that the standard com-
positional analysis methods used to generate these data 
were performed consistently, and that the feedstock itself 
remained constant over this time period. Most of the 
individual data points fall between the two standard devi-
ation (dashed) lines with a small minority falling outside 
two or even three standard deviations from the overall 
mean result. The descriptive statistics for the LT-EF and 
LT-IE datasets are presented in Tables  2 and 3, respec-
tively. However, on an extractives-free basis, an ANOVA 
showed that the mean values for glucan, total lignin, and 
total component closure were the same (data not shown) 
for all three datasets (ST-RR, LT-EF, and LT-IE) reported 
here. The ANOVA for xylan showed a statistically signifi-
cant (though not practically significant) mean difference 
of 0.22  % between the ST-RR and the LT-EF datasets, 
which only can be discerned using such large datasets. 
As opposed to the ST-RR dataset, the pooled standard 
deviations (by analyst) are essentially the same as the reg-
ular standard deviations, which suggests that over time 
the batch-to-batch variability can even out among the 

Table 1  The short-term round-robin set: descriptive statistics of  NIST RM 8491 sugarcane bagasse composition on  an 
extractives-free, % dry mass basis

These samples were taken from a single large-scale extraction and analyzed in replicate (7–10 times) per batch/analyst. They were analyzed in one lab on one HPLC 
system using the same standards as part of an experiment to artificially reduce variability. The pooled standard deviation was calculated by batch/analyst

SD standard deviation, Pooled SD pooled standard deviation, N number of samples analyzed, RSD relative standard deviation, RpSD relative standard deviation 
calculated from the pooled SD, ASL acid-soluble lignin, AIR acid insoluble residue

Ash ASL AIR Glucan Xylan Galactan Arabinan Acetyl Total component 
closure

Mean 3.71 4.18 22.16 41.13 23.19 0.76 1.84 3.34 100.71

SD 0.20 0.56 0.34 0.62 0.41 0.19 0.24 0.05 1.34

Pooled SD 0.15 0.09 0.19 0.40 0.24 0.09 0.13 0.04 0.70

N 67 66 66 58 58 55 58 67 58

RSD (%) 5.4 13.3 1.5 1.5 1.8 24.9 13.1 1.4 1.3

RpSD (%) 4.1 2.1 0.9 1.0 1.0 12.0 7.1 1.3 0.7
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analysts. Even though the means are practically the same, 
there are some significant differences noted in the stand-
ard deviations, which can be used to assign causes for the 
sources of variability as described below.

Mean comparisons to previous bagasse data
The LT-IE mean compositional data agrees well with 
previously reported data including a short-term set of 
13 NIST bagasse samples that were run by seven ana-
lysts in two laboratories over the course of several weeks 
[22]. These compositional values also agree with the re-
standardized values reported for the four NIST biomass 
RMs [27], with the exception of the glucan, galactan, and 
acid-soluble lignin components. The NIST bagasse com-
position was re-standardized in a round robin from 11 
laboratories (up to 13 replicates) using median statistics, 
not mean statistics as reported here. The median value 
and uncertainties reported give less weight to extreme 
values and are advantageous for smaller or highly vari-
able datasets, as was seen in these interlaboratory results. 
Not included in this study is the variability seen with 
these methods between institutes, which we recently 
demonstrated can be considerable [27].

Comparing standard deviations to determine the causes 
of variability
Comparing the component standard deviations (rather 
than the mean values) from these three datasets (ST-RR, 
LT-EF, and LT-IE) can reveal the sources of analytical 
variability, and estimate the relative magnitude of these 
factors. We can use the following model to assign the 
different sources of analytical variabilities seen in these 
datasets, assuming they are additive:

This equation assumes that the total analytical vari-
ability is the sum of the variabilities due to the batch-
to-batch differences, analyst-to-analyst differences, the 
effect of using an individual or an overall average SRS 
value, and extracting or not extracting the biomass. In 
addition to these, the variabilities in the analysis system 
(e.g., using multiple HPLCs, multiple batches of analyti-
cal standards, and different autoclaves) that occur over 
a few weeks (short-term) or several years (long-term), 
along with other unknown other sources, add to the total 
analytical variability.

εTOTAL = εBATCH + εANALST + εSRS + εEXTRACTION

+ εSHORT TERM + εLONG TERM + εOTHER.
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Fig. 1  Compositional data from short-term round-robin set (RR) plotted by analyst. Each batch was run by a different analyst with 7–10 replicates 
of the NIST RM 8491 material. This material was extracted in bulk, and all the data were collected from one chromatography system in order to 
minimize variability. The gray band in the background shows the two times the grand standard deviation centered on the grand average (denoted 
by the central line) for the entire RR dataset. Analysts 5 and 9 did not run this experiment. The carbohydrate data for analyst 4 was an outlier and not 
included here, therefore a total component closure cannot be calculated
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Measuring the standard deviation of replicate bagasse 
runs can determine the combined analytical variability, 
though not the individual sources that this model would 
suggest. With these three datasets, the combined stand-
ard deviation is the summation of different combinations 
of individual sources, and by comparing them we can 

infer the magnitude of individual sources, as seen in the 
equations below: 

SD of LT-IE dataset = εBATCH/ANALST + εSRS + εEXTRACTION

+ εSHORT TERM + εLONGTERM + εOTHER
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Fig. 2  Control charts of compositional data for the long-term extractives-free dataset (bulk-extracted NIST RM 8491 sugarcane bagasse composi-
tion) plotted chronologically. Samples in this set were analyzed along with process intermediate samples. The central green line denotes the average 
value, while the dashed red lines show two times the standard deviation and solid red lines show three times the standard deviation
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Fig. 3  Control charts of compositional data for the long-term individually extracted biomass dataset (individually extracted NIST RM 8491 sugarcane 
bagasse composition) plotted chronologically. This set was analyzed along with feedstock samples. The central green line denotes the average value, 
while the dashed red lines show two times the standard deviation and solid red lines show three times the standard deviation
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Thus, the difference in the standard deviations between 
the LT-IE and LT-EF sets would be due to the effect of 
extraction variability, and the difference between the 
LT-EF and ST-RR would be due to long-term variations 
in the analysis system. Other comparisons can be made 
to tease out sources of analytical variability. A compari-
son of the pooled standard deviation (by analyst) with the 
regular standard deviation can reveal differences between 
batch and analyst. For the carbohydrate components, the 
SRS correction factor can be back calculated using an 
average SRS value which removes the variability due to 
individual SRS determinations.

Figure 4A shows the comparison of the standard devia-
tions of the three largest components plus total compo-
nent closure as determined on different sets of biomass. 
In Fig. 4A, the first two bars for each component shows 
the pooled and regular standard deviations for the ST-RR 
dataset. Each batch was run by a different analyst, so it 
is not possible to separate batch and analyst effects. The 
pooled standard deviation measures the variability within 
the batch/analyst for this set, and the regular standard 
deviation measures the between batch/analyst variabil-
ity. This can be seen in Fig.  1, where the vertical devia-
tions are similar across the analysts while the differences 
between analyst values are larger.

The pooled standard deviation from the RR dataset 
shows a minimum short-term analytical variability for 
these methods after attempting to artificially reduce 
common sources of variability, by restricting the analysis 
to one extracted batch of bagasse run in one autoclave 

SD of LT-EF dataset = εBATCH/ANALST + εSRS + εSHORT TERM

+ εLONGTERM + εOTHER

SD of 2010 ST data = εBATCH/ANALST + εSRS

+ εSHORT TERM + εOTHER

SD of ST - RR dataset = εBATCH/ANALST + εSRS + εOTHER.

and on one HPLC. The regular standard deviation is sig-
nificantly higher (at least P < 0.002) compared to the cor-
responding pooled standard deviation for all the major 
components, which suggests that the analyst/batch vari-
ability is a significant driver of the overall variability. 
This finding corresponds with previous corn stover and 
bagasse ST experiments showing similar effects of ana-
lyst/batch on these methods [22].

While this ST-RR data cannot differentiate between 
batch and analyst, the long-term datasets show mainly 
consistent compositions among the different analysts. 
Figure  5 shows the average compositions of the major 
components from the LT-EF dataset presented by analyst. 
A Turkey honest significant difference analysis shows that 
there is no difference in the mean compositional values 
for the LT-EF glucan and xylan along with all major com-
ponents in the LT-IE dataset (data not shown). Thus, the 
variability seen by each analyst is due to different batches, 
although the average results are similar among all ana-
lysts. Analyst number 4 has values statistically (though 
not practically) lower compared to the other analysts, for 
the LT-EF total lignin and therefore total component clo-
sure. In general, these data suggest that analyst-to-analyst 
variability is not a significant factor and that batch-to-
batch variability is a large contributor in total variability. 
More effort is needed to identify and reduce the sources 
of batch-to-batch variability seen here such as volume 
losses during lignin separation, autoclave heating differ-
ences, or other effects.

For the major carbohydrate components (glucan and 
xylan), it is possible to separate the effect of different SRS 
calculation methods on the component concentration. 
The last four bars in Fig. 4A for glucan and xylan show 
the SD calculated normally with corresponding SRS run 
at the same time as the standards and the same data cal-
culated with the average SRS response calculated from 
the entire time period. The mean values did not change 
for the components, though some of the SD did change. 

Table 2  The long-term extractives-free dataset: descriptive statistics of  NIST RM 8491 sugarcane bagasse composition 
on an extractives-free,  % dry mass basis

This set includes bulk-extracted bagasse samples run along with process intermediate samples. They were analyzed in different labs and on different HPLC systems

SD standard deviation, Pooled SD pooled standard deviation, N number of samples analyzed, RSD relative standard deviation, RSD relative standard deviation, RpSD 
relative standard deviation calculated from the pooled SD, ASL acid-soluble lignin, AIR acid insoluble residue

Ash Protein ASL AIR Glucan Xylan Galactan Arabinan Acetyl Total component 
closure

Mean 3.66 0.55 4.51 21.81 40.96 22.97 0.94 1.94 3.41 100.55

SD 0.33 0.05 0.51 0.53 0.73 0.67 0.32 0.32 0.33 1.50

Pooled SD 0.32 0.03 0.42 0.43 0.74 0.67 0.32 0.33 0.34 1.49

N 288 103 234 233 293 293 292 293 295 291

RSD (%) 8.9 9.8 11.3 2.4 1.8 2.9 34.1 16.7 9.8 1.5

RpSD (%) 8.8 5.5 9.2 2.0 1.8 2.9 34.1 16.9 9.9 1.5
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For glucan, the average SRS values were not statistically 
different, and the xylan values were statistically higher 
(and therefore worse) for the average SRS. The combi-
nation of similar glucan values and worse xylan values 
for the averaged SRS data suggests the individual SRS is 
making appropriate adjustments to the final composi-
tional value, and using an average SRS value would add 
unnecessary variance to the xylan value.

Figure 4B shows the differences between short-term and 
long-term variabilities for the major components in bio-
mass. In general, the long-term variability is higher com-
pared to the short-term variability, for both the 2010 ST 
data and the ST-RR data. For all the major components, 
the LT-IE variability is significantly higher compared to 
the previously reported 2010 ST Stover variability, which 
was used to determine MESP variability from primary 
measurements [31]. The increase in variability from short-
term to long-term could be due to different lots of HPLC 
standards, standard concentration changes over time, 
changes to the HPLC columns and systems, environ-
mental changes in the lab, and the accumulation of other 
unknown causes. Even with higher long-term variability, 

these values represent plausible minimum variabilities 
when applying our QC methods, although it is possible to 
get much higher variabilities than reported here.

Effects of long‑term variability on MESP
The long-term variability determined here propagates 
into variability in the price of ethanol from a biorefin-
ery or MESP. In order to understand the economic effect 
of the long-term variability seen in NIST bagasse on 
MESP, we inputted the compositions of the individually 
extracted NIST bagasse into the 2011 biochemical design 
case model [9]. The LT-IE dataset is the most complete 
source of analytical variability since it includes all sources 
of variability discussed previously. Figure 6 shows the his-
togram of the MESP calculated from the LT-IE dataset, 
which shows the average MESP at $2.71 /gal with stand-
ard deviation of $0.03 /gal  (in 2014$). Thus, when feed-
stock compositional analysis variability is well controlled, 
the effect on MESP is small.

Previous work provided an estimate of the effect of 
primary measurements (composition plus mass and vol-
umetric flow estimates) on MESP, which showed a MESP 
of $2.21 with a standard deviation of $0.15 gal (in 2007$) 
[30]. This estimate was based on short-term variability, 
which is lower compared to the long-term variability 
presented here. The feedstock portion of the primary 
measurement variability was estimated to be 6.7  % of 
the total or $0.01  /gal (in 2007$) [22]. Thus, the vari-
ability in determining mass and volume flows through 
the biofuels process drives most of the MESP variability 
from primary measurements rather than the feedstock 
analytical variability. Even though the long-term vari-
ability determined here is higher compared to the short-
term variability determined previously, the effect on 
MESP is small. Previous estimates of the effect of differ-
ent sources of corn stover showed an MESP of $2.20 gal 
with a standard deviation of $0.07  /gal (in 2007$) [30]. 
Taken together, this shows that the long-term analytical 
variability does not limit the ability to determine differ-
ences between conversion processes or between differ-
ent sources of feedstock.

Conclusions
Here we report the long-term feedstock analytical vari-
ability for NIST bagasse compositional analysis results 
run over 7 years. This includes long-term effects such as 
HPLC instrument drift, different standard sets, and sea-
sonal changes. This long-term analytical variability data 
can be used as a guide to determine if compositional 
differences are significant. The long-term analytical 
variability is higher compared to previously determined 
short-term analytical variability, although neither of 
these sources drove the MESP variability estimate.
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The analytical variability reported here is not the aver-
age variability seen when utilizing these methods (espe-
cially when first starting to use these methods), but 
represent the inherent variability that can be expected 
with highly trained analysts using these empirical 

methods regularly. Certainly, smaller numbers of rep-
licates run over short periods of time may lead to lower 
variabilities than those reported here, but are not nec-
essarily better or different than those reported here. 
The data we present in this work demonstrate that it is 
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Fig. 6  Histogram of MESP values calculated based on 2011 biochemical design case model using complete LT-IE bagasse compositions, which 
shows variation due to feedstock composition variability. Average MESP = $2.71 per gallon with a standard deviation of $0.03 per gallon
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possible for a team of analysts to obtain consistent results 
over time, not that it is necessarily easy.
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