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Abstract 

Background:  The biorefinery based on an effective and economical process is to fractionate the three primary 
constituents (cellulose, hemicelluloses, and lignin) from lignocellulosic biomass, in which the constituents can be 
respectively converted into high-value-added products. In this study, a successive treatment with dilute acid (0.25–
1.0 % aqueous H2SO4, 100–150 °C, 0.5–3.0 h) and alkali (1.5 % aqueous NaOH, 80 °C, 3 h) was performed to produce 
xylooligosaccharides (XOS), high-purity lignin, and cellulose-rich substrates to produce glucose for ethanol produc‑
tion from rice straw (RS).

Results:  During the dilute acid pretreatment, the maximum production of XOS (12.8 g XOS/100 g RS) with a relatively 
low level of byproducts was achieved at a relatively low temperature (130 °C) and a low H2SO4 concentration (0.5 %) 
for a reaction time of 2.0 h. During the alkali post-treatment, 14.2 g lignin with a higher purity of 99.2 % and 30.3 g 
glucose with a higher conversion rate by enzymatic hydrolysis were obtained from the successively treated substrates 
with 100 g RS as starting material. As the pretreatment temperature, H2SO4 concentration, or time increased, more 
β-O-4 linkages in lignins were cleaved, which resulted in an increase of phenolic OH groups in lignin macromolecules. 
The signal intensities of G2 and G6 in HSQC spectra gradually reduced and vanished, indicating that a condensation 
reaction probably occurred at C-2 and C-6 of guaiacyl with the side chains of other lignin.

Conclusions:  The present study demonstrated that the successive treatments with dilute acid and alkali had a 
synergetic effect on the fractionation of the three main constituents in RS. It is believed that the results obtained will 
enhance the availability of the combined techniques in the lignocellulosic biorefinery for the application of the main 
components, cellulose, hemicelluloses, and lignin as biochemical and biofuels.

Keywords:  Rice straw, Dilute acid pretreatment, Alkali treatment, Value-added application

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
A significant type of biomass burning is a common way 
to eliminate waste after harvesting in China, such as in 
Shandong and Hebei Provinces, which is an impor-
tant source of greenhouse gases and particulate pollut-
ants in the atmosphere and has a remarkable effect on 
global atmospheric chemistry and global warming [1, 2].  
To avoid this pollution, many new schemes, including 
papermaking and bioethanol production are developed 
for the application of straw [3, 4]. These schemes mainly 

focus on the value-added application of cellulose. Note 
that rice straw consists of three major biomacromol-
ecules, namely cellulose, hemicelluloses, and lignin, and 
each of these components has a distinct and complex 
structure [5, 6]. Thus, rice straw can be considered as a 
potential renewable source of energy and biobased chem-
icals for economic development and environmental sus-
tainability [7]. Unfortunately, although cellulose has been 
extensively applied in many fields, such as paper, food, 
and plastics industries as the predominant component of 
biomass, other components have not been fully utilized, 
particularly lignin [8, 9].
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The ultimate goal of rice straw separation according to 
the biorefinery is to obtain the fractionation of the three 
primary constituents via an effective and economical 
process, in which the three fractions can be converted 
into multiple biobased products, respectively. To date, 
a series of biorefinery processes for biomass including 
dilute acid, alkali, and steam explosion treatments have 
been investigated [10–12]. Among them, dilute acid pre-
treatment causes structural changes of lignin and cel-
lulose as well as degradation of hemicelluloses, which 
in turn contribute to the reduction of biomass recalci-
trance [13]. Simultaneously, xylooligosaccharides (XOS) 
were produced from hemicelluloses in biomass during 
the dilute acid pretreatment. More importantly, the pre-
treatment accelerates the subsequent delignification [5]. 
As a biorefinery process, there is a growing interest in 
lignin, the third most abundant component in biomass, 
for developing biobased materials and chemicals. In a 
typical cellulosic biomass, lignin fills the spaces between 
cellulose and hemicelluloses, holding the biomass matrix 
together [14]. Hence, it is necessary to isolate lignin from 
the pretreated biomass and to understand the structural 
features, which determine the final utilization of lignin. 
For example, lignin can be used as a substite for phenol 
in producing phenol–formaldehyde resins [15]. Interest-
ingly, alkali treatment is a very effective method to sepa-
rate lignin, especially from the pretreated biomass. It can 
further disrupt the cell wall by partially dissolving lignin 
and then obtain cellulose-rich residues [16]. Cellulose-
rich residues can be further converted to glucose with 
high yields by enzymatic hydrolysis, which provides a 
high efficient way for bioethanol production.

As far as we know, although both acid and alkali pre-
treatments for the enzymatic hydrolysis of biomass have 
been intensively studied [17–20], very little concern is 
given to the fractional applications of the main compo-
nents, cellulose, hemicelluloses, and lignin as biochemi-
cal and biofuels, especially during a combined treatment 
based on successive dilute acid and alkali treatments. For 
instance, in order to achieve high enzymatic hydrolysis 
efficiency, corncob was successively pretreated with acid 
and alkali to remove the non-cellulosic components [17]. 
Similarly, Kim et al. [18] reported the effects of sequen-
tial acid/alkali pretreatment on the enzymatic digest-
ibility enhancement of empty palm fruit bunch fiber. For 
rice straw, sole dilute sulfuric acid or sole dilute alkali or 
combinations of them (dilute sulfuric acid and aqueous 
ammonia) have been studied [21–23]. However, these 
studies only focus on improving the enzymatic hydroly-
sis efficiency of the pretreated biomass. The recovery 
of hemicelluloses and lignin has not been investigated. 
Additionally, in almost all the cellulosic ethanol technolo-
gies, in pre-commercial stage, most of the hemicelluloses 

are preserved during pretreatment and then fermented 
into ethanol, while the structure and further utilization of 
the residual lignin are rarely reported.

In this study, a combination of successive dilute acid 
(0.25–1.0 % aqueous H2SO4, 100–150 °C, 0.5–3.0 h) and 
alkali (1.5 % aqueous NaOH, 80 °C, 3 h) treatments was 
proposed to enhance availability for the application of 
three major components (cellulose, hemicelluloses, and 
lignin) as biochemical and biofuels (XOS, high-purity 
lignin, and cellulose-rich substrates to produce glu-
cose for ethanol production). The composition of XOS 
was determined by a high-performance anion-exchange 
chromatography (HPAEC). The yield, purity, molecular 
weight, and structural transformation of alkaline lignin 
isolated have been thoroughly investigated. Meanwhile, 
the cellulose-rich substrates were characterized by chem-
ical constituent, scanning electron microscopy (SEM), 
Fourier transform infrared (FT-IR), and X-ray diffrac-
tion (XRD), and the yield of glucose was also determined. 
These results will provide useful information in the utili-
zation of rice straw for the value-added biochemicals or 
bioethanol in biorefinery industry.

Results and discussion
Effects of successive dilute acid and alkali treatments 
on the chemical constituent, surface morphology, 
and crystallinity of the substrate
A biorefinery with successive dilute acid and alkali treat-
ments was applied to enhance the value-added applica-
tion of RS in this study. The scheme of the biorefinery 
process is shown in Fig.  1, and the corresponding solid 
yields obtained at various pretreating conditions are 
shown in Table  1. As shown, the solid yields decreased 
from 76.54 to 56.15/100  g RS as the pretreatment tem-
perature, H2SO4 concentration, or time increased. This is 
mainly due to the degradation of hemicelluloses, which 
was further confirmed by the chemical constituents and 
FT-IR spectral analysis of the dilute acid pretreated sub-
strates (Table 2; Additional file 1: Figure S1). During the 
dilute acid pretreatment, the hydronium ions released by 
the acid resulted in depolymerization of hemicelluloses 
by selective hydrolysis of glycosidic linkages, liberating 
O-acetyl group and other acid moieties to form acetic 
and uronic acids. These acids released are thought to cat-
alyze the hydrolysis of hemicelluloses and oligosaccha-
rides. For control substrate (control-S, without dilute acid 
pretreatment), the characteristic bands of acetyl ester 
units of hemicelluloses at 1728 (C=O conjugates) and 
1246  cm−1 (C–O) were observed by FT-IR spectra. As 
elevating severity, the intensities of the two bands were 
gradually reduced due to the deacetylation of hemicel-
luloses during the pretreatment [24]. When the pretreat-
ment temperature was higher than 130 °C under the acid 
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conditions, the two bands almost disappeared, confirm-
ing the significant degradation of hemicelluloses. During 
the dilute acid pretreatment, most of hemicelluloses were 

degraded, while lignin was retained in the pretreated 
substrates. In fact, most lignin embeds in the spaces of 
the plant cell walls and enhances the mechanical strength 
of the cell walls through covalently linked hemicelluloses. 
Previous literature reported that lignin had negative 
effects on the access of enzymes to cellulose [25]. In order 
to improve the glucose yield of biomass, an appropriate 
pretreatment should be employed to remove lignin from 
the pretreated substrates. Alkali solutions, such as aque-
ous NaOH, are widely used to disrupt the rigid structure 
of the cell wall for the separation of the main compo-
nents of biomass. Wen et al. [26] demonstrated the yield, 
purity, dissociation mechanisms, and structural features 
of dissolved lignin (DL), milled wood lignin (MWL), and 
alkali lignin (AL) of the bamboo, and their results showed 
that the yield of AL was significantly higher than those of 
DL and MWL. In addition, Xiao et al. [27] also pointed 
out that solution of 1  % NaOH at 75  °C for 3  h was an 
effective method to disrupt the recalcitrant nature of 
the plant cell wall. Therefore, based on the above inves-
tigations, a further treatment was performed with 1.5 % 
aqueous NaOH at 80 °C for 3 h to isolate lignin from the 
pretreated substrates. As shown in Table 2, the contents 
of hemicelluloses and lignins unceasingly decreased in 
the post-treated substrates as compared to the pretreated 
substrates alone, further verifying that the delignification 
with alkali treatment effectively removed lignins and the 
residual hemicelluloses from the pretreated substrates. 
Especially, after the post-treatment process, the removal 
of lignins can enhance the glucose yield of substrate. 
Meanwhile, the lignins obtained as byproducts can also 
be recovered for further utilization. Furthermore, the dis-
appearance of the two bands at 1728 and 1246  cm−1 in 
the post-treated substrates revealed that alkali treatment 
completely cleaved the ester bands of hemicelluloses, 
such as acetyl and uronic ester groups [28].

The morphological changes of the pretreated and 
post-treated substrates were measured by SEM images 
(Additional file  1: Figure S2). The control-S exhibited 
a smooth and rigid surface structure. By contrast, the 
surfaces of the pretreated substrates were broken into 
separated fibers or fiber bundles and appeared cracks on 
different levels. The reason for this was mainly that the 
degradation of hemicelluloses during the pretreatment 
opened up macropores. During the further alkali treat-
ment, the surface morphology of the substrates became 
looser with wider separation of the fibers than the pre-
treated substrates alone. This was possible that most of 
lignins and residual hemicelluloses were removed during 
the alkali post-treatment. The removal of both hemicel-
luloses and lignins resulted in the release of a larger spe-
cific surface area, which favored the following enzymatic 
hydrolysis.

Fig. 1  Schematic illustration of the combined biorefinery processes

Table 1  The conditions of dilute acid pretreatment of rice 
straw and the solid yields obtained

Entry Temperature (°C) Time (h) H2SO4 (%) Solid yield (%)

1 100 2 0.5 76.54

2 110 2 0.5 72.01

3 120 2 0.5 68.06

4,10,14 130 2 0.5 64.65

5 140 2 0.5 63.58

6 150 2 0.5 61.62

7 130 0.5 0.5 65.16

8 130 1.0 0.5 65.12

9 130 1.5 0.5 64.69

11 130 2.5 0.5 62.68

12 130 3.0 0.5 60.10

13 130 2.0 0.25 66.91

15 130 2.0 0.6 62.28

16 130 2.0 0.7 61.73

17 130 2.0 0.8 59.91

18 130 2.0 1.0 56.15
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Crystallinity is an essential factor that reflects the 
hydrolysis properties of substrates. The crystalline region 
hinders cellulases accessing to the cell walls of fibers, 
resulting in the reduction of cellulose hydrolysis [29]. The 
crystallinity indexes (CrIs) of the pretreated and post-
treated substrates were determined by XRD patterns 
(Additional file 1: Figure S3) and the results are listed in 
Table 3. As compared to the CrI of control-S (34.0 %), the 
CrIs of the pretreated substrates increased from 40.8 to 
43.0 % with the increase of the pretreatment temperature, 
H2SO4 concentration, or time. This increasing trend was 

attributed to the raise of cellulose concentration in the 
pretreated substrates due to the degradation and removal 
of amorphous hemicelluloses during the pretreatment 
process. However, the CrIs of the pretreated substrates 
began to decrease under a harsh condition (130 °C, 1.0 % 
H2SO4, 2.0 h), which was probably related to the partial 
degradation of crystalline cellulose. As expected, the 
further alkali treatment resulted in higher CrI values in 
the post-treated substrates, which was ascribed to the 
removal of lignins during the alkali post-treatment. Bi 
et  al. [30] also reported that sodium hydroxide treat-
ment enhanced the CrI of sugarcane bagasse since par-
tial amorphous constituents (hemicelluloses and lignins) 
were removed during the treatment process.

Effects of dilute acid pretreatments 
on xylooligosaccharides and degraded byproducts 
of polysaccharides
The XOS production was influenced by the pretreat-
ment conditions (Fig.  2). As the pretreatment tempera-
ture increased from 100 to 130  °C, the yields of XOS 
were raised from 7.8 to 12.8 g XOS/100 g RS. However, 
when the pretreatment temperature further increased 
to 150 °C, the yields of XOS rapidly declined (12.8–3.6 g 
XOS/100 g RS). These phenomena were probably that the 
XOS were further degraded into other small molecules 

Table 2  Chemical compositions of the control, pretreated, and post-treated substrates under various conditions

a  Cellulose expressed as glucan; Hemicelluloses expressed as xylan + arabinan + galactan; Lignin expressed as acid insoluble lignin (Klason lignin) and acid soluble 
lignin. Data represented are the averages of the results from duplicated experiments
b  Hemi expressed as Hemicelluloses
c  S refers to dilute acid pretreated materials under different conditions and R refers to the NaOH post-treated substrates from the dilute acid pretreated rice straw

Chemical composition (w/w, %)a Chemical composition (w/w, %)a

Hemib Cellulose Lignin Hemib Cellulose Lignin

Control-S 27.46 38.29 20.50 Control-R 33.57 56.45 3.00

S(100-0.5-2) 14.95 48.22 26.90 R(100-0.5-2) 13.03 78.37 2.53

S(110-0.5-2) 12.61 50.25 28.40 R(110-0.5-2) 7.13 80.29 2.81

S(120-0.5-2) 7.56 51.86 30.63 R(120-0.5-2) 4.17 81.93 6.38

S(130-0.5-2) 5.18 53.51 31.47 R(130-0.5-2) 3.14 82.29 7.23

S(140-0.5-2) 4.39 55.04 31.93 R(140-0.5-2) 2.26 82.81 7.89

S(150-0.5-2) 2.36 57.16 32.80 R(150-0.5-2) 1.03 84.29 8.31

S(130-0.5-0.5) 8.08 51.84 30.33 R(130-0.5-0.5) 5.32 79.34 5.30

S(130-0.5-1) 6.96 52.10 31.33 R(130-0.5-1) 3.83 80.15 5.56

S(130-0.5-1.5) 5.91 52.79 31.32 R(130-0.5-1.5) 2.53 81.82 5.88

S(130-0.5-2.5) 4.09 55.02 32.73 R(130-0.5-2.5) 2.33 82.29 6.75

S(130-0.5-3) 3.49 57.14 33.13 R(130-0.5-3) 1.84 83.81 7.61

S(130-0.25-2) 8.51 52.71 29.87 R(130-0.25-2) 4.47 80.17 5.42

S(130-0.6-2) 5.15 54.51 31.93 R(130-0.6-2) 1.95 83.01 7.00

S(130-0.7-2) 3.44 59.04 32.30 R(130-0.7-2) 1.80 84.55 8.58

S(130-0.8-2) 2.93 56.82 33.50 R(130-0.8-2) 1.47 82.23 9.60

S(130-1-2) 1.87 29.08 59.61 R(130-1-2) 1.17 78.13 11.43

Table 3  The crystallinity indexes of  the control, pre-
treated, and  the cellulose-rich fractions obtained by  the 
integrated treatment

CrI (%) CrI (%)

Control-S 34.0 Control-R 42.1

S(100-0.5-2) 40.8 R(100-0.5-2) 42.8

S(130-0.5-2) 43.0 R(130-0.5-2) 48.9

S(150-0.5-2) 41.7 R(150-0.5-2) 49.2

S(130-0.5-0.5) 40.3 R(130-0.5-0.5) 47.6

S(130-0.5-3) 41.2 R(130-0.5-3) 46.7

S(130-0.25-2) 42.8 R(130-0.25-2) 44.8

S(130-1-2) 42.5 R(130-1-2) 46.6
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(such as furfural) under the harsh conditions, as revealed 
by the subsequent degraded byproducts analysis in the 
liquors produced during the pretreatment. Likewise, 
when the reaction time was prolonged from 0.5 to 2.0 h 
at 130 °C with 0.5 % H2SO4, the yield of XOS increased. 
However, further prolonging the reaction time to 3.0  h, 
the yield of XOS rapidly reduced. Interestingly, the effect 
of dilute acid concentration on yield of XOS showed a 
similar tendency. It was found that a maximum yield of 
XOS was achieved (12.8 g XOS/100 g RS) at 130 °C with 
0.5 % H2SO4 for 2.0 h in this study. Recently, a relatively 
high XOS production from oil palm empty fruit bunch 
by hot compressed water pretreatment was studied [31]. 
Results showed that the highest XOS yield of 4.8/100  g 
biomass was obtained at 190 °C for 20 min. As compared 
to hot compressed water treatment, the higher XOS yield 
was obtained by the dilute acid pretreatment under the 
optimized pretreatment condition in this study. Thus, 
dilute acid pretreatment is a promising method for the 
production of XOS from RS.

When XOS was produced by the dilute acid pretreat-
ment, a variety of other compounds, such as formic acid, 
acetic acid, levulinic acid, lactic acid, hydroxymethylfur-
fural (HMF), and furfural was produced and appeared in 
the reaction media. The concentrations of the degraded 
byproducts of polysaccharides in the liquor phase are 
listed in Additional file  1: Table S1. It is interesting to 
note that the release of the degraded byproducts was 
closely related to the pretreatment conditions. For exam-
ple, the concentrations of all the degraded byproducts 
increased with the growth of pretreatment temperature, 
H2SO4 concentration, or time. It was found that the 

maximum concentration of all the degraded byproducts 
was observed at 150 °C with 0.5 % H2SO4 for 2.0 h. This 
indicated that the pretreatment temperature was more 
effective than the H2SO4 concentration and reaction time 
on the degraded byproducts from the polysaccharides. 
Due to the existence of the degraded byproducts from 
polysaccharides during the dilute acid pretreatment, the 
liquor phase was not a very pure source of XOS. In indus-
try, to purify and then produce commercial XOS, the 
liquors have to be refined by removing non-XOS com-
pounds [32]. In the past two decades, several promising 
purification technologies have been developed, such as 
membrane technology, chromatographic separation, sol-
vent extraction, and adsorption [33–36]. Among these 
technologies, membrane separation technology is the 
most promising technology for refining and concentrat-
ing XOS as compared to others, since they may be less 
expensive [33]. In this case, the size-dependent selection 
mechanism of the membrane process results in the vari-
ous concentrations of molecules with different molecular 
weights. Membrane separations have been applied for 
the preparation of several XOS from various biomasses, 
such as Olive stones, Pinus pinaster wood, and forest 
waste [37–39].

Effects of dilute acid pretreatments on the yield, purity, 
molecular weight, and the structure feature of the alkali 
lignins released
The yields of alkali lignins, which were calculated based 
on the lignins in respective substrate, are shown in Addi-
tional file 1: Table S2. The data showed that only 30.7 % 
of the lignin from the control-S was obtained. For the 
pretreated substrates, the yields of the lignins increased 
with the raise of pretreatment temperature, H2SO4 con-
centration, or time. The increasing trend was related to 
the dilute acid pretreatment conditions, which cleaved 
the chemical bonds between lignin and hemicelluloses 
to different degrees [40]. Thus, the pretreatment accel-
erated more lignins release (33.16–47.76  %) during the 
alkali post-treatment. In other words, the dilute acid pre-
treatment was a promising process for efficiently loos-
ing the tight cell wall structure, and then facilitating the 
release of lignin from the plant cell wall with the assist 
of alkali treatment. Moreover, to verify the purity of the 
lignins isolated, the associated polysaccharides in the 
lignins were detected by HPAEC (Additional file 1: Table 
S2). The date showed that all the lignins contained rather 
low amounts of associated polysaccharides (<3.29 %). As 
compared to the control lignin, the amounts of polysac-
charides in the pretreated lignins were reduced, suggest-
ing that the hemicelluloses were significantly degraded 
during the pretreatment under the conditions given. To 
assess the effect of the pretreatment on the molecular 

Fig. 2  The yield of xylooligosaccharides in the liquor phase obtained 
during the various dilute acid pretreatments. The liquid number (1, 
4, 10, 14, 6, 7, etc.) on the y axis correspond to the liquids obtained 
during the dilute acid pretreatment of rice straw under various condi‑
tions, and pretreatment conditions are given in detail in Table 1
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weight of the lignins isolated, the lignins were performed 
by GPC. The changes in molecular weight of the lignins 
based on the different pretreatment conditions are listed 
in Additional file 1: Table S3. The molecular weight (Mw) 
of control lignin was 2910  g  mol−1, and its polydisper-
sity (Mw/Mn) was 1.87. During the pretreatment, it was 
observed that the Mw (2320–2870 g mol−1) of the lignins 
reduced slightly. This suggested that the lignins under-
went a slight depolymerization under the conditions 
given [41]. In addition, the polydispersity indexes (1.45–
1.78) of the alkali lignins were reduced slightly, implying 
the formation of some homogeneous lignin fragments, 
which were probably originated from successive dilute 
acid and alkali treatments.

To further reveal the structural transformations of the 
lignins isolated during the various pretreatment condi-
tions, the samples were investigated by 2D-HSQC NMR 
spectra (Figs.  3, 4) and the signals are assigned (Addi-
tional file 1: Table S4) [42–47]. The inter-unit linkages in 
the lignins, β-ether (A, β-O-4) and phenylcoumaran (B, 
β-5) are identified due to the presence of cross-peaks at 
δC/δH 71.7/4.83 (Aα), 59.7/3.54 (Aγ), and 62.7/3.55 (Bγ), 
respectively. The cross-peaks of methoxy groups in the 
lignins (−OCH3, δC/δH 55.6/3.72) were clearly observed. 
The aromatic lignin units syringyl (S), guaiacyl (G), and 
p-hydroxyphenyl (H) units showed prominent correla-
tions at δC/δH 103.8/6.70 (S2,6), 110.7/6.95 (G2), 115.3/6.76 

(G5), 118.9/6.76 (G6), and 127.9/7.20 (H2,6), respectively. 
Minor amounts of oxidized S units (S′) were detected due 
to the presence of a correlation at δC/δH 106.0/7.30 (S′2,6). 
Moreover, the lignins obtained appeared to contain small 
amounts of p-hydroxycinnamates (p-coumaric and feru-
lic acids). The p-coumaric acid (PCA) was characterized 
by some relatively intense correlations at δC/δH 129.7/7.50 
(PCA2,6) and 143.9/7.48 (PCA7), while ferulic acid (FA) 
was found at δC/δH 110.9/7.27 (FA2), 116.6.0/6.39 (FA8), 
and 143.9/7.48 (FA7). As can be seen, as the pretreatment 
temperature, H2SO4 concentration, or time increased, 
some changes appeared in the HSQC spectra of lignins. 
For example, the correlated signals of β-O-4 were dimin-
ished, and the correlated signals of PCA and FA were 
reduced simultaneously. Interestingly, the signal intensi-
ties of C2–H2 and C6–H6 in G unit were decreased gradu-
ally and disappeared under the harsh conditions, which 
is attributable to the fact that the condensation reaction 
probably occurred at C-2 and C-6 of G unit in lignin with 
the side chains of other lignin [48, 49].

In order to further investigate the effects of pretreat-
ment conditions on the major hydroxyl groups of lignins, 
the lignins isolated were estimated by 31P NMR based 
on the integration area of individual peaks (Additional 
file  1: Figure S4). The contents of aliphatic hydroxyls, 
condensed and non-condensed syringyl and guaiacyl 
hydroxyls, p-hydroxybenzoate phenolic hydroxyls, and 

Fig. 3  2D-HSQC spectra and the main structures of the lignins obtained from the integrated process under various processing conditions (side-
chain region). β-aryl-ether units (a β-O-4) and phenylcoumaran substructures (b β-5)
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carboxylic acid hydroxyls were compared in different 
lignin fractions (Table  4) [50, 51]. The results showed 
that the increase of the pretreatment temperature, H2SO4 
concentration, or time resulted in the decrease of the 
aliphatic OH groups. This indicated that the hydroxyl 
groups in the side chain of lignin were probably frag-
mented and eliminated under the harsh conditions [52]. 
On the contrary, the phenolic OH groups in syringyl, 
guaiacyl, p-hydroxyphenyl OH, and free p-coumaric 
acid units increased obviously. The increased phenolic 
OH groups were probably due to the cleavage of β-O-4 

linkages under harsh conditions [53]. Similar observation 
has been reported in an autohydrolysis pretreatment of 
poplar [54]. It was noticed that harsh pretreatment con-
ditions resulted in the slight increase of carboxyl groups, 
indicating that oxidation reaction occurred during the 
pretreatment. In this study, due to the cleavage of β-O-4 
linkages during the synergetic treatment process, the 
lignin fractions with an increased phenolic OH groups 
had a potential application as biomaterials or biochemi-
cals for industries such as lignin–phenol–formaldehyde 
resins and potential antioxidant [15, 55–59]. Ibrahim 

Fig. 4  2D-HSQC spectra and the main structures of the lignin polymers obtained from the integrated process under the various processing condi‑
tions (aromatic region). PCA free p-coumaric acid; FA ferulic acid; H p-hydroxyphenyl units; G guaiacyl units; S syringyl units; S′ oxidized syringyl units 
bearing a carbonyl at Cα
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et al. [56] examined the influence of chemical properties 
of lignins as well as determine their suitability for par-
tial incorporation into phenol formaldehyde resins. The 
results showed that higher content of phenolic hydroxyl 
groups in kraft lignin allowed the activation of free ring 
position which makes the kraft lignin more reactive 
toward formaldehyde than the soda lignin. In addition, 
lignins have phenolic hydroxyl group that can act as a 
potential antioxidant in the food industry, preventing 
the loss of food flavor, color, and active vitamin content 
[57–59]. Pan et al. [59] reported that the content of phe-
nolic hydroxyl groups in lignin was positively correlated 
to antioxidant activities of lignin.

Effects of successive dilute acid and alkali treatments 
on the enzymatic hydrolysis of cellulose in the substrates
The performance of the enzymatic hydrolysis was assessed 
by determining glucose yield from the conversion of cel-
lulose and this was expressed as the percentage of glucose 
released in relation to the total content of potential glucose 
in the starting material (i.e., the control, pretreated, and 
the post-treated substrates). Figure  5 shows the glucose 
yield of the control, pretreated (Fig. 5a), and post-treated 
substrates (Fig.  5b). As shown in Fig.  5a, the pretreat-
ment on the glucose yield of the substrates increased by 
37.4–71.2 % as compared with control substrate (12.5 %). 
A possible reason was that the pretreatment resulted in 
increased enzyme accessibility due to significant removal 
of hemicelluloses as well as damage of surface morphol-
ogy of the substrates. The glucose yield of the alkali-
treated substrate without dilute acid pretreatment was 
only 35.6 %, while the glucose yield of the pretreated and 
post-treated substrates increased to 61.8–92.7 %. Thus, the 
combining of dilute acid and alkali treatments was highly 
effective for removing hemicelluloses and lignin from 
RS, resulting in increased enzymatic accessibility of the 

substrate and more efficient enzymatic hydrolysis. How-
ever, in the present study, there were no direct correlations 
between glucose yields and the residual contents of lignin 
or hemicelluloses in the pretreated and post-treated sub-
strates. Meanwhile, it was found that crystallinity was not 
an important factor for the enzymatic hydrolysis of the 
substrates. The results indicated that there was no clear 
relationship between the CrI and glucose yield since the 
cellulose hydrolysis was not only affected by cellulose crys-
tallinity but also by several other factors, such as contents 
and distribution of lignins or hemicelluloses, particle size, 
and porosity of the substrates. Thus, single factor may not 
adequately elaborate the differences of hydrolysis, and sev-
eral factors impacted the cellulose hydrolysis of the sub-
strates in the current study.

Effects of successive dilute acid and alkali treatments 
on the higher value application of rice straw
The maximum yield of XOS (12.8 g XOS/100 g RS) was 
obtained with a relatively low level of byproducts under 
the conditions of 130  °C with 0.5  % H2SO4 for 2.0  h. 
Enhancement of the pretreatment time, temperature, 
or H2SO4 concentration reduced the yield of XOS and 
increased the concentrations of the byproducts. Based 
on the above process condition, during the further alkali 
post-treatment, a relatively high yield of lignin (45.58 %) 
and cellulose-rich substrate (82.29  % cellulose) were 
collected. For the cellulose-rich substrate, the glucose 
yield reached to 88.4  % after enzymatic hydrolysis for 
72  h. Process yield was normalized to a common basis 
of 100 g of dried RS as the starting material (Fig. 6). By 
the biorefinery process, hemicelluloses, lignins, and cel-
lulose of RS were effectively separated and utilized. Spe-
cifically, 12.8  g XOS was obtained, meanwhile, 14.2  g 
lignin and 30.3 g glucose were also collected. Zhu et  al. 
[60] reported that the integration of autohydrolysis and 

Table 4  Quantification of the functional groups (mmol/g) by quantitative 31P-NMR in the alkali lignins obtained by the 
integrated process

C condensed; NC non-condensed; H + P−OH the total content of p-hydroxyphenyl OH and free p-coumaric acid

Lignin fractions Aliphatic OH Syringyl OH Guaiacyl OH H + P−OH Carboxylic group Total phenolic OH

C NC C NC

AL 2.72 0.02 0.12 0.07 0.35 0.16 0.86 0.72

L(100-0.5-2) 1.56 0.11 0.34 0.20 0.59 0.31 0.93 1.55

L(130-0.5-2) 1.40 0.16 0.34 0.21 0.60 0.35 0.93 1.66

L(150-0.5-2) 1.39 0.17 0.35 0.22 0.60 0.37 1.01 1.71

L(130-0.5-0.5) 1.45 0.11 0.31 0.19 0.57 0.34 0.93 1.52

L(130-0.5-3) 1.39 0.19 0.36 0.22 0.62 0.37 0.97 1.76

L(130-0.25-2) 1.47 0.18 0.32 0.19 0.60 0.32 0.88 1.61

L(130-1-2) 1.37 0.20 0.37 0.26 0.68 0.42 1.06 1.93
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organosolv pretreatment led to an enhanced digestibil-
ity of Eucommia ulmoides Oliver wood as compared to 
autohydrolysis or organosolv pretreatment alone. Under 
the condition of autohydrolysis at 180  °C for 0.5  h and 
sequent treatment using 50 % aqueous ethanol with 1 % 

HCl as a catalyst, 9.5  g XOS, 14.5  g lignin, and 27.1  g 
glucose based on 100 g of initial biomass were obtained. 
Therefore, the biorefinery process based on successive 
dilute acid and alkali treatments for higher value applica-
tion of rice straw is promising in industry.

Fig. 5  Glucose yields of enzymatic hydrolysis of the control, pretreated (a), and post-treated substrates (b). Control-S extractive-free raw material, 
S substrates obtained by the direct dilute acid pretreated materials under different conditions, Control-R substrate obtained by the alkali treatment 
raw material without dilute acid pretreatment, R substrates obtained by the alkali post-treated substrates from the dilute acid pretreated substrates
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Conclusions
Successive treatments with dilute acid and alkali have 
been performed for the production of XOS, lignin, and 
cellulose-rich substrates for bioethanol production from 
rice straw. During the dilute acid pretreatment, a maxi-
mum production of XOS (12.8 g XOS/100 g RS) with a 
relatively low level of byproducts was obtained at 130 °C 
with 0.5 % H2SO4 for 2.0 h. On further alkali treatment, 
14.2 g lignin with a higher purity of 99.2 % and 30.3 g glu-
cose by enzymatic hydrolysis were also obtained from the 
successively treated substrates per 100  g starting mate-
rial. The cleavage of β-O-4 linkages of lignin resulted in 
an increase of the content of phenolic OH groups with 
the elevating severity. During the treatment processes, 
the C-2 and C-6 of guaiacyl were condensed with the side 
chains of other lignin. The successive treatments of rice 
straw for production of XOS, lignin, and glucose can be 
further extended to the value-added application of vari-
ous lignocellulosic biomasses.

Methods
Raw materials
RS was obtained from Shandong Province of China. RS 
was firstly dried in an oven at 60  °C for 24  h and then 

ground in a mill to obtain a 40–60 mesh powder. Then, 
the powder was extracted with toluene–ethanol (2:1, v/v) 
in a Soxhlet apparatus for 6 h to remove extractives and 
then dried in an oven at 60 °C for 24 h to serve as control 
substrate (control-S). The chemical composition of con-
trol-S (%, w/w) was determined to be cellulose 38.29 %, 
hemicelluloses 27.46  %, and lignin 20.50  %, according 
to National Renewable Energy Laboratory’s (NREL) 
standard analytical procedure. All chemicals were ana-
lytical grade and purchased from Sigma–Aldrich and 
Megazyme.

Biorefinery process
Control-S was successively treated by dilute acid and 
alkali. The dilute acid pretreatments (100, 110, 120, 130, 
140, and 150 °C with 0.5 % H2SO4 for 1.0 h; 130 °C with 
0.5 % H2SO4 for 0.5, 1.0, 1.5, 2.5, and 3.0 h; and 130  °C 
with 0.25, 0.6, 0.7, 0.8, and 1.0 % H2SO4 for 2.0 h, respec-
tively) were performed in a batch reactor (100 mL inter-
nal volume, Sen Long Instruments Company, Beijing, 
China) at a solid-to-liquor ratio of 1:15 (g/mL). The 
reactor was made of Hastelloy C-276 to mitigate the 
effects of acid corrosion at high temperatures. The sub-
strates pretreated with dilute acid were filtered off with a 

Fig. 6  Mass balance during the pretreatment at 130 °C with 0.5 % sulfuric acid for 2.0 h
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Buchner funnel, washed thoroughly with distilled water, 
and further dried in a cabinet oven with air circulation 
at 60  °C for 16  h and then labeled as S(100-0.5-2), S(110-0.5-

2), S(120-0.5-2), S(130-0.5-2), S(140-0.5-2), S(150-0.5-2), S(130-0.5-0.5), 
S(130-0.5-1), S(130-0.5-1.5), S(130-0.5-2.5), S(130-0.5-3), S(130-0.25-2), 
S(130-0.6-2), S(130-0.7-2), S(130-0.8-2), and S(130-1-2), respectively, 
corresponding to temperature, H2SO4 concentration, and 
time of pretreatment.

A further treatment was performed with 1.5  % aque-
ous NaOH at 80  °C for 3  h under a solid-to-liquid ratio 
of 1:10 (g/mL) to isolate lignin from the pretreated sub-
strates and obtain post-treated substrates (cellulose-rich 
substrates). The collected liquid fractions were concen-
trated to 40 mL and poured into 200 mL of acidic water 
(pH 2.0, adjusted by HCl) to precipitate the alkali-soluble 
lignins. The precipitations were centrifuged, freeze-dried, 
and then named as L(100-0.5-2), L(110-0.5-2), L(120-0.5-2), L(130-

0.5-2), L(140-0.5-2), L(150-0.5-2), L(130-0.5-0.5), L(130-0.5-1), L(130-0.5-

1.5), L(130-0.5-2.5), L(130-0.5-3), L(130-0.25-2), L(130-0.6-2), L(130-0.7-2), 
L(130-0.8-2), and L(130-1-2) according to the pretreatment con-
ditions of the temperature, the H2SO4 concentration, and 
the time. Control lignin (i.e., alkaline lignin, AL) was also 
isolated from the control-S under the same alkali treat-
ment condition. Meanwhile, the alkaline post-treated 
substrates obtained from the corresponding pretreated 
substrates were filtered off with a Buchner funnel, washed 
thoroughly with distilled water, and further dried in a cab-
inet oven with air circulation at 60  °C for 16 h and then 
labeled as R(100-0.5-2), R(110-0.5-2), R(120-0.5-2), R(130-0.5-2), R(140-

0.5-2), R(150-0.5-2), R(130-0.5-0.5), R(130-0.5-1), R(130-0.5-1.5), R(130-0.5-

2.5), R(130-0.5-3), R(130-0.25-2), R(130-0.6-2), R(130-0.7-2), R(130-0.8-2), 
and R(130-1-2), respectively. As a control substrate, control-
R was also obtained from control-S under the same alkali 
treatment condition without dilute acid pretreatment. All 
of the prepared substrates (control, pretreated, and com-
bining alkaline post-treated) were used to produce glu-
cose by enzymatic hydrolysis in the present study.

Enzymatic hrdrolysis
Enzymatic hydrolysis was performed on the substrate 
(2  % w/v) in 10  mL 50  mM sodium acetate buffer (pH 
4.8) with a 25  mL Erlenmeyer flask at 50  °C in a dou-
ble-layer shaking incubators (ZWYR-2102C) (Shang-
hai, China) at 150  rpm for 72  h. Commercial enzyme 
(Cellic®CTec2, 17  FPU/g substrate) was provided by 
Novozymes North America, Inc. (Franklinton, NC) and 
employed for all the enzymatic hydrolyses. The hydro-
lyzates were sampled periodically and analyzed by a 
HPAEC (Dionex, ICS 3000, U.S.) system equipped with 
an integral amperometric detector and CarboPac PA 100 
(4 ×  250  mm, Dionex) analytical column. The detailed 
procedures were previously described in a publication 
[61]. All of the hydrolysis experiments were performed 

in triplicate, and average values and corresponding deri-
vations were given.

Analysis methods
The chemical compositions (%, w/w) of all the substrates 
were determined by NREL standard analytical procedure. 
The content of cellulose and hemicelluloses in the sub-
strates was determined by HPAEC system on a CarboPac 
PA20 (3  ×  150  mm, Dionex) analytical column. SEM 
images were performed with a S-3400 N II (Hitachi, Japan) 
instrument at 10  kV and 81  mA. FT-IR spectroscopic 
measurements were conducted on a Nicolet iN10 spec-
trophotometer in the range of 1760–860  cm−1 at 4  cm−1 
resolution with 64 scans. XRD in reflection mode was per-
formed using an XRD-6000 apparatus (Shimadzu, Japan) 
with Ni-filtered Cu Kα radiation (χ = 1.54 Å) generated at 
40 kV and 30 mA. The scattering angle (2θ) was from 10 to 
36° at a scanning speed of 2°/min. The CrIs of the substrates 
were calculated from the ratio of the crystalline peak area 
to the total area of crystalline and amorphous peaks.

The liquor obtained from dilute acid pretreatment was 
stored and filtered to determine XOS and byproducts 
(e.g., formic acid, furfural). Liquor sample of 3  mL was 
post-hydrolyzed with 4 % H2SO4 at 121 °C for 1 h to deter-
mine the total concentration of XOS. The increased con-
centrations of monosaccharides after post-hydrolysis were 
related to the concentration of XOS [62]. According to 
this procedure, saccharides of DP 2 or higher were consid-
ered as XOS. All the liquor fractions were filtered through 
0.22-μm filter and subsequently analyzed by HPAEC sys-
tem. The amounts of byproducts in the liquid fractions 
were also quantitatively determined by high-performance 
liquid chromatography (HPLC; Agilent 1200, USA) with 
a Bio-Rad Aminex HPX-87H analytical column and a 
refractive index detector. The eluent was 5  mM H2SO4 
solution with a volumetric flow rate of 0.5 mL/min. Col-
umn temperature was set at 50 °C. The temperature of RI 
detector was 40 °C and injection volume was 10 μL.

The associated polysaccharides in the lignins were 
calculated using HPAEC as reported previously [13]. 
Molecular weights of the lignins were determined by 
GPC with an ultraviolet detector at 240 nm. The column 
used was a PL-gel 10 mm mixed-B 7.5 mm i.d. column, 
which was calibrated with PL polystyrene standards. 
Four milligrams of the lignins were dissolved in 2  mL 
of tetrahydrofuran (THF), and 20 μL of lignin solutions 
was injected. The column was operated at ambient tem-
perature and eluted with THF at a flow rate of 1.0  mL/
min. The solution-state 2D HSQC spectra of the lignins 
were acquired on a Bruker AVIII 400 MHz spectrometer 
at 25  °C. The data were acquired using 60  mg of lignin 
in 0.5  mL of DMSO-d6. Functional groups (phenolic 
hydroxyl, aliphatic hydroxyl, and carboxyl groups) of the 
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lignins were determined by 31P NMR spectra according 
to a previous publication [63].
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