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Abstract 

Feruloyl esterases (FAEs) represent a diverse group of carboxyl esterases that specifically catalyze the hydrolysis of 
ester bonds between ferulic (hydroxycinnamic) acid and plant cell wall polysaccharides. Therefore, FAEs act as acces‑
sory enzymes to assist xylanolytic and pectinolytic enzymes in gaining access to their site of action during biomass 
conversion. Their ability to release ferulic acid and other hydroxycinnamic acids from plant biomass makes FAEs 
potential biocatalysts in a wide variety of applications such as in biofuel, food and feed, pulp and paper, cosmet‑
ics, and pharmaceutical industries. This review provides an updated overview of the knowledge on fungal FAEs, in 
particular describing their role in plant biomass degradation, diversity of their biochemical properties and substrate 
specificities, their regulation and conditions needed for their induction. Furthermore, the discovery of new FAEs using 
genome mining and phylogenetic analysis of current publicly accessible fungal genomes will also be presented. 
This has led to a new subfamily classification of fungal FAEs that takes into account both phylogeny and substrate 
specificity.
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Background
Plant biomass is a magnificent renewable source of biopol-
ymers. It offers a wealth of possibilities for development 
and production of sustainable raw materials and energy 
which fit perfectly with the development of a bio-based 
economy [1]. Lignocellulosic biomasses from agricultural, 
agro-industrial, crop, and forestry wastes as well as her-
baceous prairie grass, energy crops, and marine algae are 
regarded as the prospective feedstocks for modern bioeth-
anol and biochemical production [2, 3]. The enzymatic 
hydrolysis of lignocellulosic biomass has many advan-
tages when compared to chemical conversion in bioetha-
nol production. There is no substrate loss due to chemical 

modifications; non-corrosive operational conditions may 
be used and the process is more environmentally friendly 
[4]. However, plant cell walls have evolved to defend 
against external factors, including mechanical, thermal, 
chemical, and biological stress [5, 6]. To efficiently and 
completely depolymerize different types of lignocellulosic 
materials, an arsenal of carbohydrate-active and lignin-
acting enzymes is required [7, 8]. Feruloyl esterases (FAEs, 
also known as ferulic/cinnamic acid esterases, EC 3.1.1.73) 
are responsible for removing ferulic acid residues and 
cross-links from polysaccharides. They act as accessory (or 
auxiliary) enzymes that assist the other enzymes in gaining 
access to their site of action during biomass conversion [9, 
10]. In addition to their potential role in bioethanol pro-
duction, FAEs and their hydrolytic or transesterification 
products are of great interest for various biotechnological 
applications, in particular as modified natural antioxidants 
or food flavor precursors [11, 12]. Therefore, discovery 
of new FAEs with novel properties and applications is of 
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considerable interest to industry [13]. In this review, we 
describe (1) the roles of FAEs in plant biomass degrada-
tion, (2) an overview of biochemical properties as well as 
the conditions that induce FAE production, (3) discovery 
of FAEs and insight into their phylogenetic relationships 
among fungal genomes, (4) an updated subfamily classi-
fication for fungal FAEs and (5) the recent applications of 
FAEs in biotechnological processes.

Ferulic and hydroxycinnamic acids in plant cell walls
Different types of lignocellulosic biomass can be used 
for second generation bioethanol production. In order 
to select the appropriate specificity of enzymes required 
for biomass degradation, we briefly summarize the occur-
rence of ferulic and hydroxycinnamic acids in the differ-
ent types of plant biomass. A variety of hydroxycinnamic 
acids are present in the plant cell walls (up to 3% of cell 
wall dry weight), usually esterified or etherified to the pol-
ymers within the lignocellulosic matrix [14, 15]. Ferulic 
acid (ferulate, 4-hydroxy-3-methoxycinnamic acid, mainly 
trans- or E-form; Fig. 1) and to a lesser extent p-coumaric 
acid (p-coumarate, 4-hydroxycinnamic acid) are the most 
abundant hydroxycinnamic acids (hydroxycinnamates) in 
the plant cell wall polysaccharides. They are regarded as 
essential and unique structural components in the fam-
ily Poales of commelinid monocots (e.g., wheat, rice, bar-
ley, oat, corn, sorghum, and sugarcane) [15, 16]. Ferulic 
acid is linked to cell wall polysaccharides mainly through 
ester-bonds between their carboxyl group and the O-5 
hydroxyl group of α-l-arabinofuranosyl residues in glu-
curonoarabinoxylan (Fig. 1e) [17, 18]. In eudicotyledons, 
ferulic acid is mainly found in the order ‘core’ Caryophyl-
lales (e.g., sugar beet; [19]). It is ester-linked to pectin at 
the O-2 and O-5 hydroxyl group of α-l-arabinofuranosyl 
residues in arabinan as well as at the O-6 hydroxyl group 
of β-d-galactopyranosyl residue in (arabino-)galactan, 
both of which are side chains of rhamnogalacturonan I 
(Fig.  1f ) [16, 20–22]. Ferulic acid can oxidatively cross-
link to form intermolecular ester-bonds to another ara-
binoxylan [mainly 5,5′-, 8-O-4′-, 8,5′-, 8,8′-diferulic acids 
(Fig.  1  g–l)], and ester-ether bonds between polysaccha-
ride and lignin (arabinoxylan–ferulate–lignin) [15, 16, 
19, 23–25]. Diferulic acids have been mainly detected 
in the high-arabinose substitution region of arabinoxy-
lan, because dimerization requires the ferulic acid to be 

in close proximity [26]. In addition, cross-linking of cell 
wall polysaccharides and lignin by hydroxycinnamic acids 
leads to a dramatic increase in mechanical strength of the 
plant cell wall, decelerates wall extension, and acts as a 
barrier to block the ingress of microbial invaders as well 
as hydrolytic enzymes [16, 23, 27].

Ferulic acid is also detected in all families of gymno-
sperms, ester-linked to the primary cell walls, with an 
amount ranging from 0.01 to 0.16% [28]. However, up to 
now there is still no identification of which polysaccha-
rides ferulic acid is linked to in gymnosperms [14].

Role of FAEs in plant biomass degradation
Opening up the plant cell wall is a significant part of the 
process design for bioethanol and biochemical production. 
Due to the heterogeneity and complexity of the plant cell 
walls, a variety of carbohydrate- and lignin-active enzyme 
sets with complementary activities and specificities are 
required for complete enzymatic hydrolysis of plant bio-
mass (for details see [8, 29]). As ferulic acid is linked to 
the lignin–carbohydrate complexes, disruption of the 
ester bond of the lignin–ferulate–arabinoxylan complex is 
important for complete cell wall deconstruction. FAEs play 
a key role in providing accessibility for glycoside hydro-
lases and polysaccharide lyases to the lignocellulose fib-
ers by removal of the ester-bonds between plant polymers 
[9, 10]. FAEs not only act synergistically with xylanolytic 
enzymes to convert xylan into its monomers, but have 
also proved to enhance overall saccharification of ligno-
cellulosic biomass, e.g., wheat straw [30] and sugarcane 
bagasse [31], when co-incubated with cellulase and xyla-
nase. Moreover, overexpression of FAEs in planta reduces 
the levels of cell wall esterified phenolics and in most cases 
also enhances sugar release and improves cell wall digest-
ibility [32–36]. This technique has also been applied to 
create self-processing transgenic plants that can alter their 
composition upon activation of the enzyme(s), e.g., to 
reduce recalcitrance of cell walls prior to saccharification 
(e.g., [37]; see application section below).

Overview of substrate specificity of characterized 
FAEs and their other properties
FAE discovery
The first FAEs were discovered in the late 80’s when a 
new type of esterase capable of releasing the covalently 

(See figure on next page.) 
Fig. 1 Model structures of hydroxycinnamic acids, feruloylated plant cell wall polysaccharides and the site of attack by the carbohydrate‑active 
enzymes (modified from [8, 15]). a p‑coumaric acid, b caffeic acid, c ferulic acid, d sinapic acid, e feruloylated glucuronoarabinoxylan, f feruloylated 
pectic rhamnogalacturonan I, g 8,5′‑(benzofuran)‑diferulic acid, h 8,5′‑diferulic acid, i 5,5′‑diferulic acid, j 8,4′‑diferulic acid, k 8,8′‑diferulic acid, l 
8,8′‑(aryl)‑diferulic acid. ABF α‑arabinofuranosidase; ABN endoarabinanase; ABX exoarabinanase; AXE acetyl xylan esterase; BXL β‑1,4‑xylosidase; FAE 
feruloyl esterase; GAL β‑1,4‑endogalactanase; GUS α‑glucuronidase; LAC β‑1,4‑galactosidase; RGAE rhamnogalacturonan acetyl esterase; RGL rham‑
nogalacturonan lyase; RGX exorhamnogalacturonase; RHG endorhamnogalacturonase; XLN β‑1,4‑endoxylanase
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linked ferulic acid from xylan was reported [38–41]. 
During this period, most FAEs were identified by direct 
purification from culture supernatant, which required an 
appropriate induction condition [42–44]. The first fun-
gal FAE encoding genes were identified from Aspergillus 
niger and Aspergillus tubingensis [45]. Peptide sequencing 
was used to identify short amino acid sequences of FAEs 
followed by degenerate or rapid amplification of cDNA 
ends PCR to obtain the whole gene sequence (Addi-
tional file 1: Table S1). Screening of cDNA libraries was 
also used for discovery of FAEs particularly for anaero-
bic rumen fungi (e.g., [46–48]). In recent years, publicly 
available fungal genome sequences have facilitated sim-
ilarity-based discovery, and genome mining has become 
the most promising discovery technique (Additional 
file  1: Table S1). Databases such as carbohydrate-active 
Enzymes (CAZy) database (http://www.cazy.org; [49]) are 
very powerful tools for discovery of alternative enzymes 
of existing families. Discovery of novel enzyme classes or 
alternative enzymes from enzyme families not included 
in the database (such as several FAE families) requires 
other approaches. However, it should be noted that FAEs 
are a very diverse enzymes, so similarity-based discovery 
does not necessarily guarantee the same function.

Activity and properties of FAEs
Although FAEs have been identified in various plant cell 
wall degrading microbes, to date fungi are still the main 
source of FAEs used in industry [50]. Thorough data col-
lection for the physicochemical properties of purified 
FAEs has been previously reported [9, 50–53], and there-
fore here we only present the properties of characterized 
fungal FAEs for which amino acid sequences have been 
reported (Additional file 1: Table S1; see also update clas-
sification section).

FAEs are active in a broad pH (from pH 3 to 10) 
and temperature (from 20 to 75  °C) range, but gener-
ally they are mainly active at pH 4–7 and temperatures 
below 50 °C (Additional file 1: Table S1; [50, 53]). A few 
reports also showed the effect of metal ions and inhibi-
tors on FAEs [54–57]. It should be noted that the struc-
tures of only two fungal FAEs have been reported until 
now: A. niger (AnFaeA—[58–61]) and Aspergillus oryzae 
(AoFaeB—[62]), of which only AoFaeB contains a cal-
cium binding site in its structure. It is located far from 
the active site but may have a role in stabilizing the 
protein structure. FAEs catalyze the hydrolysis of the 
substrate following the mechanism utilized by serine 
proteases [63] with a conserved Ser-His-Asp/Glu cata-
lytic triad [64]. Glu as a part of catalytic triad, instead 
of Asp, was recently reported in several Basidiomycetes, 
which is uncommon among FAEs, but found in some 
members of the α/β-hydrolase-fold superfamily [57, 65, 

66]. Differences in amino acid residues within loops and 
domains that situate in close proximity to the catalytic 
and substrate binding sites enable different FAEs to target 
different substrates [59, 62, 64]. The catalytic mechanism 
of FAEs involves two steps, the initial acylation of the 
nucleophilic serine residue forming acyl-enzyme inter-
mediate followed by deacylation of the intermediate. In 
the deacylation step, nucleophilic water (hydrolysis) or 
other hydroxyl molecule from e.g., carbohydrate or alco-
hol (transesterification, see also industrial applications 
section) can attack the intermediate and cause the release 
of the product [58, 64].

Different substrates were used for characterization 
of FAEs: polysaccharides (e.g., wheat bran and sugar 
beet pulp [67]), feruloylated oligosaccharides (e.g., feru-
loylate-Ara-Xyl1–3, feruloylate-Ara1–3, p-coumaroylate-
Ara-Xyl1–3 [22]), and monomeric hydroxycinnamate 
model substrates (e.g., methyl, ethyl, p-nitrophenyl, or 
α-naphthyl ferulate [46, 68–70]). Short chain fatty acid 
model substrates (e.g., α-naphthyl acetate, umbellif-
eryl acetate, and umbelliferyl butyrate) are also used for 
the activity assay. However, they only show whether the 
enzyme is active, but not whether they are specific to fer-
ulic or hydroxycinnamic acid.

Reversed phase HPLC/UV is the most used technique 
for detection of ferulic and hydroxycinnamic acids, and 
their release from feruloylated poly- and oligosaccha-
rides [22, 71, 72]. However, it is time consuming and 
usually requires prior isolation/extraction step before 
the analysis, which makes it less useful for rapid or 
high-throughput screening [70]. For the activity screen-
ing, a spectrophotometry-based method using mono-
meric hydroxycinnamate model substrates which detects 
the release of chromophore group (e.g., p-nitrophenyl, 
α-naphthyl ferulate) or the reduction of substrate (e.g., 
methyl, ethyl ferulate) is rapid and easy to perform. 
The spectrophotometric assay is widely accepted, even 
though there is a concern about the spectral overlapping 
between substrate and product, e.g., methyl substrates 
and their aromatic acids. Recently, other methods have 
been developed such as high-performance thin layer 
chromatography and electrochemical sensor for rapid 
detection of ferulic acid which may be useful for enzy-
matic screening [73, 74].

Several fungi produce more than one FAE isozyme 
and different substrates are required to determine their 
substrate specificity. The classical examples are two A. 
niger FAEs, AnFaeA and AnFaeB [45, 67, 75]. Regarding 
the monomeric substrates, AnFaeA is specific for ferulic 
and sinapic acid methyl esters, while AnFaeB is specific 
for ferulic, p-coumaric, and caffeic acid methyl esters 
(Fig.  1a–d). Of the oligomeric substrates (derived from 
wheat bran and sugar beet pulp), AnFaeA catalyzes the 

http://www.cazy.org
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hydrolysis of the feruloylated (1,5) arabinosyl xylo-oligo-
saccharides from wheat arabinoxylan, but is less active 
towards feruloylated (1,2) arabino- and (1,6) galacto-
oligosaccharides from sugar beet pulp. AnFaeB is active 
towards feruloylated oligosaccharides derived from both 
monocot and dicot cell walls [15, 68, 76]. Regarding the 
polymeric substrates, both FAEs also show opposite sub-
strate preference. AnFaeA highly prefers to hydrolyze 
wheat arabinoxylan over sugar beet pectin and can also 
release the diferulic acid (5,5′, 8-O-4′), whereas AnFaeB is 
more active towards sugar beet pectin but cannot release 
diferulic acid [15, 75].

Inducing substrates, regulation, and production
Production of FAEs in nature depends highly on the 
available carbon sources or inducing compounds. Feru-
lic acid, and related hydroxycinnamic acids (e.g., caffeic, 
p-coumaric acids) and phenolic compounds (e.g., vanil-
lic acid, vanillin, and veratric acid) can induce the pro-
duction of FAEs [75]. Feruloylated plant biomass such 
as wheat bran, sugar beet pulp/pectin, and maize bran 
are frequently used as substrates for production of FAEs 
(Additional file 1: Table S1). Recent transcriptomic data 
from different fungal species suggested that the low- to 
non-feruloylated biofuel feedstocks such as the straw 
from wheat, barley, corn, rice, and soybean as well as the 
woody substrates from both softwood (pine) and hard-
wood (aspen) can substantially upregulate the expression 
of fae genes [77–80]. Although the presence of ferulic 
acid in the cultivation is not absolutely required, addition 
of ferulic acid can considerably improve the production 
of FAEs [76]. Xylose induces the production of AnFaeA, 
whereas most monosaccharides do not appear to support 
the production of other FAEs [75].

Detailed expression studies of FAE encoding genes are 
rare and have so far been mainly performed in species 
of the genus Aspergillus. Here expression of fae genes is 
presumed to be controlled by at least three independ-
ent regulatory systems [81]. The xylanolytic transcrip-
tional activator XlnR, a zinc binuclear cluster motif 
(Zn(II)2Cys6), is a key factor in the regulation of hemicel-
lulolytic and cellulolytic genes in Aspergilli [82–84]. In 
A. niger, faeA and other genes encoding xylan degrading 
enzymes (e.g., xlnB, xlnC, xlnD, axeA, axhA, and aguA) 
are under control of XlnR [81, 82]. Another major regu-
lator that is responsible for carbon catabolite repression 
in many filamentous fungi is the conserved zinc-finger 
regulator CreA [85, 86]. Expression of faeA was influ-
enced by the balance between induction by XlnR and 
repression by CreA, whereas faeB was not activated by 
XlnR, but still sensitive to CreA-mediated repression 
[75, 87]. creA deletion mutants showed improved pro-
duction of secreted lignocellulose degrading enzymes 

including FAEs [75, 77]. In addition, both faeA and faeB 
are expressed in the presence of ferulic acid and other 
hydroxycinnamic acids [75], indicating the presence of 
a ferulic acid- or hydroxycinnamic acid-responsive tran-
scriptional regulator. It should be noted that the ferulic 
acid induction is independent of XlnR and the combined 
ferulic acid induction and XlnR effect on expression of A. 
niger faeA is larger than the sum of the two effects alone 
[81]. However, it is unclear whether the ferulic acid- or 
hydroxycinnamic acid induction is mediated by a single 
regulatory system since different sets of phenolic com-
pounds induced the expression of faeA and faeB [75, 88]. 
As FaeA is only found in Aspergilli and related species 
(see below), it is currently unclear to which extent XlnR 
orthologs in other fungi are involved in activating expres-
sion of FAE encoding genes.

Native fungal FAEs are produced mainly through two 
types of cultivation techniques: submerged/liquid fer-
mentation in which fungi are grown in liquid medium 
often with vigorous aeration; and solid-state fermenta-
tion in which they grow on moist solid substrates such 
as lignocellulosic biomass. Although FAE production 
from native sources can reach high levels, e.g., >106 mU/
mL for submerged fermentation of Aspergillus awamori 
[54] and >103 mU/g for solid-state fermentation of Peni-
cillium brasilianum [89], production of FAEs from native 
sources faces considerable complications e.g., the choices 
of suitable substrates, control of fermentation conditions, 
up-scaling and the purification process [90]. Over the 
past decade, FAE production has shifted more towards 
heterologous mainly using two expression hosts, i.e., 
Escherichia coli and Pichia pastoris under the isopropyl 
β-d-1-thiogalactopyranoside (IPTG) or methanol induc-
ible promoters, respectively, for Academia (Additional 
file  1: Table S1). For industry, the established platforms 
of the company are being used. Heterologous production 
offers several advantages over native production, such 
as well-established cultivation conditions for up-scaling, 
fusion of affinity tags for downstream processing and 
possibilities for enzyme engineering.

Classification of FAEs
The initial classification of FAEs was based on the induc-
tion and substrate specificity of AnFaeA and AnFaeB 
[15, 91]. Subsequently, based on the substrate specific-
ity towards four model substrates (methyl ferulate, sina-
pate, caffeate, and p-coumarate) and the ability to release 
diferulic acid, FAEs were classified into four types (A, B, 
C and D) [92]. Type A FAEs prefer substrates contain-
ing methoxy substitutions at C-3 and/or C-5 as found in 
ferulic and sinapic acids, and are active towards methyl 
p-coumarate. They are also capable of releasing 5,5′- and 
8-O-4′-diferulic acids. Type B FAEs prefer substrates 
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containing one or two hydroxyl substitutions, as found 
in p-coumaric and caffeic acids, respectively. Hydrolytic 
rates of type B FAEs are significantly reduced when a 
methoxy group is present and they are not active against 
methyl sinapate. In addition, type B FAEs cannot release 
diferulic acid. Type C and D FAEs possess broader sub-
strate specificity with activity towards all four model sub-
strates, but only type D can release diferulic acid from 
plant cell walls [92].

The ABCD classification was very useful and initially 
was supported by phylogenetic analysis because a lim-
ited number of amino acid sequences of FAEs were avail-
able at that time. As more FAEs were characterized, it no 
longer adequately reflects the wealth of putative FAEs 
encoded by microbial/fungal genomes. Hence, a refined 
classification was introduced based on phylogenetic anal-
ysis of available fungal genomes, which separated FAEs 
into seven subfamilies (SF1-7) [51]. This classification 
demonstrated that FAEs evolved from highly divergent 
esterase families (tannases (SF1-4), acetyl xylan ester-
ases (SF6), and lipases (SF7)) and do not have a com-
mon ancestor, even though they all contain a conserved 
Ser-His-Asp catalytic triad [51]. The availability of fungal 
genome sequences also enabled a more detailed compari-
son of the diversity and prevalence of putative FAEs [93, 
94]. Although FAEs are carbohydrate-active enzymes, 
they are only partially included in CAZy database [49] 
as some FAEs (SF5, SF6) belong to carbohydrate esterase 
family 1 (CE1) together with acetyl xylan esterases. More 
recently, a further refined classification was proposed by 
clustering 365 FAE-related amino acid sequences using 
descriptor-based computational analysis and machine 
learning algorithms [52]. At the same time, pharmacoph-
ore models for specific FAE subgroups were also devel-
oped, which will be useful for production of FAE-based 
biosynthetic compounds. The descriptor-based classifica-
tion separated the FAEs into 12 families; however, some 
of these families were further divided into subgroups 
(A–D) to distinguish the substrate specificity of charac-
terized FAEs within the family.

Update on the classification of fungal FAEs
New phylogenetic tree based on all published fungal 
genomes
Based on the previously reported phylogenetic analysis 
[51], we reconstructed a novel phylogenetic tree using 20 
amino acid sequences from characterized FAEs (Table 1) 
and a BLASTP search against 247 published fungal 
genomes (Additional file 1: Table S2). All resulting amino 
acid sequences with an expect value lower than 1E−40 
were collected. Duplicate and incomplete sequences as 
well as sequences with ambiguous amino acids (X) were 
discarded. Signal peptides were predicted using SignalP 

[95] and removed from all candidate sequences. This 
analysis resulted in 1251 putative FAE sequences, which 
were aligned using Multiple Sequence Comparison by 
Log-Expectation (MUSCLE). Phylogenetic analysis was 
performed using the neighbor-joining method with pair-
wise deletion of gaps and the Poisson correction distance 
of substitution rates (statistical support for phylogenetic 
grouping was estimated by 1000 bootstrap re-samplings) 
of the Molecular Evolutionary Genetics Analysis (MEGA 
6) program [96]. A few characterized acetyl xylan ester-
ases, lipases, and tannases were included in the analysis 
to reveal the relationships of FAEs with those enzymes. 
In this analysis, the xylanase-related FAEs (e.g., FAEs 
from Aspergillus terreus (AtFAE-2, AtFAE-3) [56]) 
were not included in the similarity search because they 
showed similarity to GH10 and GH11 xylanases. Includ-
ing these xylanase-related FAEs also recognized other 
non-FAE members of these two families, which could not 
be screened out because only two fungal xylanase-related 
FAEs were identified. Also, a putative FAE from Xylaria 
polymorpha (XpoGH78) [97] was not included in the 
phylogenetic tree because it showed no relationship with 
other FAE sequences.

Previously, the phylogenetic analysis classified the 
FAEs into seven subfamilies [51] (Table  1; Additional 
file  1: Table S1). SF1 contained FAEs from A. niger 
(AnFaeB [75]) and A. oryzae (AoFaeB, AoFaeC [98]) 
which are closely related to tannases. SF5 contained 
FAEs from A. nidulans (AN5267 [99]) and Neurospora 
crassa (NcFaeD [91]) and some members of this subfam-
ily belong to CE1 in the CAZy database. SF6 contained 
FAEs from Chaetomium sp. CQ31 (ChaeFAE [100]) and 
Talaromyces funiculosus (FaeB [69]) which also belong 
to CE1 and are closely related to acetyl xylan esterases. 
SF7 contained exclusively FAEs from Aspergillus spp., 
e.g., A. niger (AnFaeA [45]), Aspergillus flavus (AfFaeA 
[101]), and A. oryzae (AoFaeA [102]), which are closely 
related to lipases. SF2–SF4 only contained putative 
FAEs, which showed sequence similarity to SF1 and tan-
nases (Table 1). Our new phylogenetic analysis classified 
the putative FAEs into 13 subfamilies (Fig. 2; Additional 
file 2: Figure S1). In comparison with the previous phylo-
genetic analysis [51], members of SF1–SF3 and SF5–SF7 
remain classified to the same subfamilies. In addition, a 
FAE from Fusarium oxysporium (FoFaeC [103]) has been 
characterized, which belongs to SF2 and SF7 members 
that were expanded to cover other fungi than Aspergil-
lus spp. (e.g., Jaapia argillacea, Penicillium rubens, and 
Armillaria mellea). Subfamily SF8 contains FAEs from 
Auricularia auricular-judae (EstBC [104]), Anaeromyces 
mucronatus (Fae1A [48]), and Orpinomyces sp. (OrpFaeA 
[105]), while SF12 contains Pleurotus sapidus (Est1 [106]) 
and Pleurotus eryngii (PeFaeA [57]) FAEs, for which there 
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were no homologs found in the previous study [51]. The 
new subfamily SF9 separated from SF4 which previously 
contained a putative FAE from A. oryzae (BAE66413). 
Three tannases (A. fumigatus (XP_748839 [107]), A. niger 
(ABX89592 [108]), and A. oryzae (BAA09656 [109])) 
were positioned in SF11, indicating that the enzymes of 
this subfamily may actually possess tannase activity or 
potentially dual-activity and may not be true FAEs. The 
study also resulted in new subfamilies SF10 and SF13. 
By contrast, no closely related homologs were found for 
the FAEs from e.g., Piromyces equi (PeEstA [110]), Piro-
myces sp. (FaeA [47]), and Coprinopsis cinerea (CcEst1 
[111]) and together with the other sequences which 
are not classified in any group, these are referred to as 
ungrouped sequences (U1–U10, Fig. 2; Additional file 2: 
Figure S1). These ungrouped sequences may develop into 
new subfamilies if homologs for them are discovered.

Reflection on origin of the different types of FAEs 
and comparison with ABCD classification
As mentioned before, FAEs evolved from a diverse class 
of enzymes (e.g., tannases, acetyl xylan esterases, lipases, 
and choline esterases). Most FAEs have evolved from 
tannases, as enzymes belonging to the subfamilies SF1-4 
and SF9-11 are related to tannases. SF5 and SF6 enzymes 
show relationship with acetyl xylan esterases, whereas 
SF7 enzymes are related to lipases. SF12 and SF13 are 
related to both lipases and choline esterases. Some FAEs 
are also related to xylanases (GH10 and GH11) and α-l-
rhamnosidases (GH78), whereas some show no similar-
ity to any of the above enzymes (Additional file 1: Table 
S1). Having evolved from different types of enzymes may 
explain why different FAEs target different hydroxycin-
namic acids. While the ABCD classification system pro-
vides hints for the specificity of putative FAEs [92], it 

Fig. 2 Phylogenetic relationships among the (putative) fungal FAEs. Glucuronoyl esterases (GEs, green-filled circles) were used as an outgroup. AXE, 
acetyl xylan esterase (blue-filled circles); LIP, lipase (yellow-filled squares); SF, subfamily; TAN, tannase (purple-filled circles). FAEs from previously reported 
phylogenetic analysis [51] were marked with magenta open triangles for SF1, magenta open rhombuses for SF2‑4, magenta-filled triangles for SF5, 
magenta-filled rhombuses for SF6, light blue-filled squares for SF7, brown-filled circles for AtFAE2 and AtFAE3, and magenta-filled circles for ungrouped 
ones. Light blue-filled circles indicate ungrouped sequences which numbering indicates different groups



Page 10 of 18Dilokpimol et al. Biotechnol Biofuels  (2016) 9:231 

no longer reflects the evolutionary relationships among 
different FAEs [51, 52]. In comparison with the ABCD 
system, SF6 and SF7 contain solely type B and A FAEs, 
respectively, whereas SF1 contains both type B and C 
FAEs, and SF5 a mix of type A and D FAEs (Table 1). SF1 
and SF5 may be further divided to support ABCD clas-
sification when more FAEs from these subfamilies are 
characterized. In addition, the two new subfamilies SF8 
and SF12, which are distantly related to SF7, also contain 
type A FAEs, whereas FAEs from Ustilago maydis (SF13) 
which are distantly related to SF6 also possess type B 
activity. Therefore, the ABCD system needs to be revis-
ited and combined with the phylogeny-based classifica-
tion to provide a well-based system that will help in the 
identification of different types of FAEs and predict the 
properties of newly discovered FAEs.

Prevalence of different types of FAEs in fungal genomes
From the 247 published fungal genomes in early 2015, 
155 of them contained putative FAEs (Tables 2a, b; Addi-
tional file  2: Figure S2). Approximately 10% of genomes 
had only one putative FAE and, surprisingly, almost 25 
and 5% of the analyzed fungal genomes contained more 
than 10 and 20 putative FAEs, respectively. The basidi-
omycetes Auricularia subglabra and Moniliophthora 
roreri possessed more than 30 putative FAEs followed 
by the ascomycetes A. niger, Aspergillus luchuensis (for-
merly A. kawachii), Oidiodendron maius, Colletotrichum 
gloeosporioides with more than 20 putative FAEs. This 
variation in FAE content could be related to the different 
abilities of the fungi to degrade feruloylated substrates, 
which in turn may be related to the presence of such sub-
strates in their natural habitat. However, the multiplicity 
of putative FAEs identified here could include pseudo-
genes and the similarity-based method could result in the 
inclusion of other FAE-related enzymes, e.g., SF11 may 
also contain tannases. We summarized the prevalence of 
putative FAEs in industrially and ecologically important 
fungi in Table 2. Most of these fungi produce more than 
one type of FAEs. It should be noted that our findings are 
in agreement with the earlier study reporting that Tricho-
derma reesei (syn. Hypocrea jecorina) does not have any 
putative FAEs in its genome [112], and therefore supple-
mentation of FAEs can significantly increase the sacchar-
ification efficiency of an enzyme cocktail from T. reesei 
[30, 31, 67]. However, two other species of this genus, T. 
atroviride and T. virens, contain three putative FAEs in 
their genomes.

Industrial applications of FAEs
With the ability to remove hydroxycinnamic acids from 
plant cell walls, FAEs have considerable roles in biotech-
nological processes for various industrial applications. 

Earlier Fazary and Ju [113] excellently reviewed the early 
industrial use of FAEs through patents. To date the pat-
ents on FAE applications and discovery are almost dou-
bled compared to 2008. In this section, we update the 
patents on FAEs presented in European Parliament docu-
ments (EP) and World Intellectual Property Organiza-
tion-Patent Cooperation Treaty (WIPOPCT) databases 
(Additional file  1: Table S3), and highlight the applica-
tions in five major fields: (1) biomass processing, (2) feru-
lic acid and related fine chemicals production, (3) pulp 
and paper, (4) feed and (5) seasonings and alcoholic bev-
erages (Fig. 3).

Applications in biomass processing
FAEs are considered to be essential accessory enzymes 
to complete hydrolysis of lignocellulosic biomass for 
bioethanol and other biorefineries. To date more than 
150 patents have been filed on applications of FAEs 
towards biomass processing (Additional file 1: Table S3, 
both discovery and saccharification). Activity of FAEs 
on plant biomass in combination with other hydrolases 
and oxidases not only significantly increases the break-
down of plant materials and enhances the availability of 
fermentable carbohydrates, but it also releases phenolic 
compounds and toxic esters which inhibit the fermen-
tation process of pretreated lignocellulosic materials 
(e.g., [114]). For this reason, fusions of FAEs and other 
enzymes/proteins have also been created aiming to 
increase the catalytic efficiency and/or substrate affinity 
[115–117]. Different strategies have been applied to cre-
ate FAE mutants which can tolerate the high tempera-
tures in bioprocesses [118–120]. Furthermore, transgenic 
plants have been manipulated specifically for biofuel 
production to reduce recalcitrance of cell walls prior to 
saccharification, which also enhance the digestibility 
and biomass conversion for livestock (e.g., [32–35, 121]). 
Besides, FAEs are not only used for complete hydrolysis 
of lignocellulosic materials, but they can also be applied 
for manipulating the structure of oligosaccharides e.g., 
in production of xylo-oligosaccharides [122] which are 
industrially important functional food additives with 
prebiotic properties [123].

Applications in production of ferulic acid and related fine 
chemicals
Ferulic acid and other hydroxycinnamic acids are phe-
nolic phytochemicals which are widely used in food and 
cosmetic industries because of their unique and potent 
properties as, e.g.,

1. Antioxidant—they are able to neutralize free radicals, 
e.g., reactive oxygen species which are implicated 
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Table 2 Prevalence of the families of FAEs in industrially and ecologically important fungal genomes
Subfamily (number of putative FAEs)

Speciesa Phylum Frequency 1 2 3 4 5 6 7 8 9 10 11 12 13 U

Agaricus bisporus var bisporus (H97) Basidiomycota 7 0 0 0 0 0 1 0 0 0 0 0 3 3 0

Aspergillus clavatus NRRL 1 Ascomycota 6 1 0 0 0 3 1 0 0 1 0 0 0 0 0

Aspergillus flavus NRRL3357 Ascomycota 16 2 0 1 0 2 1 1 0 1 3 3 0 2 0

Aspergillus fumigatus A1163 Ascomycota 7 2 0 0 0 1 0 0 0 0 1 2 0 1 0

Aspergillus fumigatus Af293 Ascomycota 9 2 0 0 0 1 1 0 0 0 1 2 0 2 0

Aspergillus nidulans FGSC_A4 Ascomycota 8 1 0 0 0 1 1 0 0 0 2 2 0 1 0

Aspergillus niger ATCC 1015 Ascomycota 29 1 0 0 0 1 1 1 0 6 5 12 0 2 0

Aspergillus oryzae RIB40 Ascomycota 14 2 0 1 0 2 1 1 0 1 3 3 0 0 0

Aspergillus terreus NIH 2624 Ascomycota 10 1 0 0 0 3 1 1 0 0 1 2 0 1 0

Aureobasidium pullulans var. pullulans EXF-150 Ascomycota 15 0 0 2 0 0 1 0 0 2 4 4 0 2 0

Bjerkandera adusta Basidiomycota 2 0 0 0 0 0 1 0 0 0 0 0 0 1 0

Botrytis cinerea B05.10 Ascomycota 12 0 0 0 0 0 1 0 0 2 2 7 0 0 0

Ceriporiopsis (Gelatoporia) subvermispora B Basidiomycota 6 0 0 0 0 0 2 0 0 2 0 0 0 2 0

Chaetomium globosum CBS 148.51 Ascomycota 16 0 0 0 0 4 6 0 0 1 5 0 0 0 0

Cladosporium fulvum Ascomycota 9 0 1 1 0 0 0 0 0 1 3 2 0 1 0

Colletotrichum higginsianum IMI 349063 Ascomycota 9 0 1 2 0 0 2 0 0 1 3 0 0 0 0

Coprinopsis cinerea okayama7#130 Basidiomycota 9 0 0 0 0 0 2 0 0 0 0 0 4 0 3

Cryptococcus neoformans var neoformans JEC21 Basidiomycota 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Dichomitus squalens Basidiomycota 7 0 0 0 0 0 0 0 0 2 0 0 2 3 0 

Dothistroma septosporum NZE10 Ascomycota 10 0 1 1 0 0 0 0 3 1 2 0 0 2 0 

Fomitiporia mediterranea Basidiomycota 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 

Fomitopsis pinicola FP-58527 SS1 Basidiomycota 5 0 0 0 0 0 0 0 0 2 0 0 0 3 0 

Fusarium graminearum PH-1 (NRRL 31084) v1.0 Ascomycota 11 0 1 1 1 1 3 0 0 0 3 0 0 1 0 

Gloeophyllum trabeum Basidiomycota 4 0 0 0 0 0 2 0 0 2 0 0 0 0 0 

Heterobasidion annosum (H. irregulare) Basidiomycota 3 0 0 0 0 0 1 0 0 0 0 0 1 1 0 

Laccaria bicolor Basidiomycota 4 0 0 0 0 0 0 0 0 0 0 0 3 1 0 

Magnaporthe (Pyricularia) oryzae Ascomycota 14 0 2 1 0 3 3 0 0 3 1 0 0 1 0 

Myceliophthora thermophila (Sporotrichum thermophile) v2.0 Ascomycota 5 0 0 0 0 2 3 0 0 0 0 0 0 0 0 

Mycosphaerella graminicola v2.0 Ascomycota 8 0 1 2 0 0 1 0 1 1 1 0 0 1 0 

Nectria haematococca v2.0 Ascomycota 18 0 3 1 0 0 1 0 0 0 11 1 0 1 0 

Neosartorya (Aspergillus) fischeri NRRL 181 Ascomycota 8 2 0 0 0 1 1 0 0 0 0 2 0 2 0 

Neurospora crassa OR74A v2.0 Ascomycota 7 0 0 0 0 2 4 0 0 1 0 0 0 0 0 

Paxillus involutus ATCC 200175 v1.0 Basidiomycota 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

Penicillium rubens Wisconsin 54-1255 Ascomycota 5 1 0 0 0 1 0 1 0 0 0 1 0 1 0 

Phanerochaete carnosa HHB-10118-Sp v1.0 Basidiomycota 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 

Phanerochaete chrysosporium RP-78 v2.2 Basidiomycota 5 0 0 0 0 0 3 0 0 0 0 0 0 2 0 
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to cause DNA damage, cancer, and accelerated cell 
aging [124–126].

2. Sun protection factor—they are able to absorb UV 
radiation by the presence of conjugated double 
bonds, e.g., in an aromatic structure [124, 127].

3. Depigmenting agent—they are tyrosinase inhibitors 
because their chemical structures resemble those of 
tyrosine and are suggested to prevent the formation 

of melanin by competitive inhibition with tyrosine 
[128, 129].

4. Precursor for synthesis of flavor compounds, such as 
vanillin and guaiacol (e.g., 4-vinyl guaiacol)—inter-
mediates of ferulic acid degradation pathway. These 
intermediates are of great interest in the food and 
fragrance industry [130, 131].

Table 2 continued

Phlebia brevispora HHB-7030 SS6 v1.0 Basidiomycota 6 0 0 0 0 0 1 0 0 0 0 0 2 3 0 

Pleurotus ostreatus PC15 v2.0 Basidiomycota 5 0 0 0 0 0 1 0 0 0 0 0 4 0 0 

Podospora anserina S mat+ Ascomycota 14 0 0 0 0 5 6 0 0 1 1 1 0 0 0 

Postia placenta MAD 698-R v1.0 Basidiomycota 4 0 0 0 0 0 0 0 0 4 0 0 0 0 0

Pyrenophora tritici-repentis Ascomycota 7 0 1 1 1 1 1 0 0 1 1 0 0 0 0

Rhizoctonia solani AG-1 IB Basidiomycota 16 0 0 0 0 0 1 0 1 7 0 0 0 7 0

Sclerotinia sclerotiorum v1.0 Ascomycota 5 0 0 0 0 0 1 0 0 0 1 2 0 1 0

Serpula lacrymans S7.9 Basidiomycota 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Stagonospora nodorum SN15 v2.0 Ascomycota 15 0 1 1 1 2 6 0 0 1 2 0 0 1 0

Thielavia terrestris v2.0 Ascomycota 6 0 1 0 0 0 1 0 0 2 1 1 0 0 0

Trametes versicolor v1.0 Basidiomycota 15 0 0 0 0 0 3 0 0 7 0 0 1 4 0

Trichoderma atroviride (ghanense) v2.0 Ascomycota 3 0 0 0 0 0 1 0 0 1 1 0 0 0 0

Trichoderma virens Gv29-8 v2.0 Ascomycota 3 0 0 1 0 1 0 0 0 0 1 0 0 0 0

Ustilago maydis Basidiomycota 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Verticillium dahliae v1.0 Ascomycota 11 0 2 1 0 0 4 0 0 0 2 1 0 0 1

Volvariella volvacea V23 Basidiomycota 8 0 0 0 0 0 4 0 0 0 0 0 1 3 0

Subfamily (number of putative FAEs)

Species Phylum Frequency 1 2 3 4 5 6 7 8 9 10 11 12 13 U

Intensity of blue color indicates the frequency of (putative) FAEs in the subfamily

U ungrouped sequences
a Current name is shown in parenthesis

Fig. 3 Schematic overview of industrial applications of FAEs (modified from [51])
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Ferulic acid and other hydroxycinnamic acids can be 
used as a carrier of vitamin C and E, which double their 
skin photoprotection with stronger lipophilicity allow-
ing better penetration into the stratum corneum [132]. 
Furthermore, they show pharmaceutical and health ben-
eficial functions, e.g., antimicrobial, anti-inflammatory, 
anti-diabetic, anti-thrombosis, anti-cancer, and choles-
terol-lowering agents [11, 12, 133]. Although commer-
cially ferulic acid is mainly produced from rice oil (as 
γ-oryzanol), modern processes are focusing on produc-
tion of ferulic acid by FAEs in combination with other 
hydrolases in a biorefinery process (e.g., [121, 122]).

Apart from hydrolysis, FAEs can be used for synthesis 
of ester-linked hydroxycinnamic acids through a trans-
esterification reaction by exchanging the organic group 
of an ester (donor) with the organic group of an alcohol 
(acceptor) (Fig. 4), to obtain products with altered chemi-
cal and biological properties. The first report on transes-
terification activity of FAE was investigated on FAE from 
Sporotrichum thermophile (StFaeC) using arabinose and 
arabinobiose as acceptors [134]. Containing both hydro-
phobic ferulic acid and hydrophilic oligosaccharide moie-
ties, feruloylated arabinose and oligosaccharides possess 
the physiological functions of both. This includes anti-
oxidant activity, probiotic effects, and inhibition against 
glycation which are of interest by a wide range of appli-
cations in food, pharmaceutical, and cosmetic indus-
tries [135]. The advantage of using transesterification 
over hydrolases or transferases is the flexibility of their 
acceptor molecules, which can vary from different car-
bohydrates [66, 136, 137], aliphatic and aromatic alco-
hols [138, 139], and glycerol [140, 141] to propolis [142]. 
In the latter case, FAEs can also be used for impoverish-
ing the allergenicity of propolis by specifically removing 
esters of caffeic acid under hydrolytic conditions [143].

Applications in pulp and paper industry
To produce high-quality paper, whiteness is an important 
characteristic of wood pulp. Discoloration of the pulp is 
caused by lignin remaining in the pulp and bleaching is 
the key step to whiten the pulp by removing the residual 
lignin. This process uses hazardous and expensive chemi-
cals; mainly chlorine dioxide and hydrogen peroxide or 
ozone in elemental chlorine-free (ECF) and in totally 
chlorine-free (TCF) chemical processes, respectively. 
In the environmentally friendly biobleaching process, 
FAEs can be used in combination with xylanases and 
lignin-oxidizing enzymes [144–146] particularly in a bi-
sequential process reported by Record et al. [144], which 
the delignification rates were comparable to the results 
obtained with hazardous chemicals. The enzymatic pro-
cess also resulted in lower energy consumption and a 
significant reduction of the chemical oxygen demand 
(COD) value of the pulping waste water [147].

Applications in feed industry
Fiber digestibility is an essential criterion for animal 
feed. Suffering from improper digestion can hamper 
animal growth and cause immunological stress which 
results in reduction of the feed conversion ratio in live-
stock, and hence restricts profitability of farmers. Feru-
lic and hydroxycinnamic acids themselves can promote 
health in animals [148, 149]; however, feruloylation in 
plant cell walls particularly in a high forage diet is among 
the major inhibitory factors for the ruminant digestive 
system. Addition of FAEs or enzyme cocktails contain-
ing FAEs can improve the access of main chain degrad-
ing enzymes resulting in improved fiber digestion and 
bioavailability of phytonutrients, accelerating animal 
growth (e.g., [150, 151]), as well as reducing immuno-
logical stress [152].

Fig. 4 Transferuloylation reaction (modified from [64])
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Applications in seasonings and alcoholic beverage 
industry
Surprisingly, FAEs have been used for both removing 
off-flavors/odors as well as enhancing the aroma in sev-
eral seasonings and alcoholic beverages. Flavor and odor 
are the crucial ingredients for success in the premium 
fermented seasonings and alcoholic beverage industries 
in particular Japanese rice wine and cooking liquor—
sake and mirin. The major flavor component from these 
products is ferulic acid as well as its derivatives including 
4-vinyl guaiacol, vanillic acid, and vanillin. FAEs can be 
applied in the saccharification process as a FAE-producing 
koji (rice-fungal culture starter) or an additive together 
with xylanases and cellulases to increase the release of fer-
ulic acids from the cell wall of rice and other cereal grains, 
which then can be converted to the aromatic derivatives 
during the fermentation and aging process [54, 153–155].

Other applications
Apart from the above-mentioned applications (Addi-
tional file 1: Table S3), FAEs can also be used (1) in a form 
of live FAE-producing Lactobacilli supplement which can 
reduce triglyceride concentrations, hepatic inflammation 
and insulin resistance in medical applications [133, 156]; 
(2) in the milling process for starch production, where 
FAE is used during the wet milling together with e.g., cel-
lulase and proteases providing an increase in production 
yield [157]; and (3) in detergent applications, where FAE-
containing multi-enzyme system is used to improve the 
performance of liquid laundry detergents particularly at 
low temperature (e.g., [158]).

Conclusion
In this review, we provide insight into biodiversity, bio-
chemical properties, production, and discovery of 
FAEs, a highly diverse group of plant cell wall degrading 
enzymes. Although FAEs generally play a role in catalyz-
ing the release of ferulic acid and other hydroxycinnamic 
acids from plant cell wall polysaccharides, they pos-
sess diverse specificities towards different feruloylated 
poly- and oligosaccharides and monomeric hydroxy-
cinnamates. FAEs have evolved from different types 
of enzymes (e.g., tannases, acetyl xylan esterases, and 
lipases), which is reflected by their amino acid sequences. 
Classification based on phylogenetic analysis divided 
FAEs into distinct groups and also resulted in discovery 
of novel putative FAEs. These new FAE candidates may 
possess different substrate specificities and/or biochemi-
cal properties which may be useful in different applica-
tions. It is clear that more biochemical characterization 
of FAEs is needed for better understanding of substrate 
specificity and mode of action of FAEs from different 

subfamilies. The range of industrial applications of FAEs 
has been broadened over the past years with emphasis 
on the conversion of agro-industrial waste materials into 
valuable products and the synthesis of novel ester-linked 
hydroxycinnamic products in particular for health and 
cosmetic applications. The industrial uses of FAEs are 
still limited to only a few enzymes. Here, we provided 
the phylogenetic-based classification and putative FAEs 
resulting from genome mining as a guideline for explora-
tion of FAEs towards the specific applications.
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