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Presence does not imply activity: DNA 
and RNA patterns differ in response to salt 
perturbation in anaerobic digestion
Jo De Vrieze1,2*†  , Leticia Regueiro2†, Ruben Props1, Ramiro Vilchez‑Vargas1, Ruy Jáuregui3,4, Dietmar H. Pieper3, 
Juan M. Lema2 and Marta Carballa2

Abstract 

Background:  The microbial community in anaerobic digestion is mainly monitored by means of DNA-based meth‑
ods. This may lead to incorrect interpretation of the community parameters, because microbial abundance does not 
necessarily reflect activity. In this research, the difference between microbial community response on DNA (total com‑
munity) and RNA (active community) based on the 16S rRNA (gene) with respect to salt concentration and response 
time was evaluated.

Results:  The application of higher NaCl concentrations resulted in a decrease in methane production. A stronger 
and faster response to salt concentration was observed on RNA level. This was reflected in terms of microbial commu‑
nity composition and organization, as richness, evenness, and overall diversity were differentially impacted. A higher 
divergence of community structure was observed on RNA level as well, indicating that total community composition 
depends on deterministic processes, while the active community is determined by stochastic processes. Methanos-
aeta was identified as the most abundant methanogen on DNA level, but its relative abundance decreased on RNA 
level, related to salt perturbation.

Conclusions:  This research demonstrated the need for RNA-based community screening to obtain reliable informa‑
tion on actual community parameters and to identify key species that determine process stability.
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Background
Anaerobic digestion (AD) contains a complex microbial 
community that produces biogas from organic waste 
streams. The four different steps in the AD process are 
carried out by distinct groups of micro-organisms, each 
requiring specific conditions to ensure optimal perfor-
mance [1]. Operational control is of crucial importance 
to ensure maximal biogas production rates [2]. At pre-
sent, the stability of the AD process is mainly monitored 
based on the conventional parameters, such as pH, vola-
tile fatty acid (VFA) concentrations, alkalinity, and biogas 

composition [3–5]. More complex stability indicators, 
such as the Ripley index [6] and the VFA:Ca ratio [7], 
were developed to estimate AD stability. None of these 
parameters consider microbial community dynamics or 
abrupt changes, and, therefore, cannot be used for long-
term stability prediction.

Monitoring of the microbial community could lead to 
a better stability prediction and even prevent operational 
failure [8, 9]. The development and subsequent applica-
tion of culture-independent molecular techniques, such 
as 16S rRNA gene amplicon sequencing, have led to a 
strong increase in knowledge concerning the microbial 
community in the AD process [10, 11]. Microbial commu-
nity evenness [12–14] and dynamics [8, 15, 16], whether 
or not influenced by a suitable inoculum [17], reflect the 
microbial community structure and organization, and 
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can strongly impact AD process resilience. The identifi-
cation of the main microbial groups, performing specific 
reactions, and their role in the AD process has paved the 
road for the development of microbial community-based 
process stability indicators [18–23].

The majority of studies performing amplicon sequenc-
ing focused on the 16S rRNA gene, which resulted in rel-
ative abundance profiles of the various microbial groups 
potentially important for AD process performance [10, 
11]. This approach provides only limited information 
on the active microbial community, and consequently, 
on their potential involvement in the process [10]. An 
approach that takes the 16S rRNA itself into consid-
eration could lead to a more accurate estimation of the 
active microbial community. In the few studies perform-
ing RNA-, protein-, or metabolite-based community 
analysis, it was shown that methanogens had a higher 
level of activity in comparison with their absolute or rela-
tive abundance [24–26]. The application of RNA-, pro-
tein-, and/or metabolite-based methods would enable 
a better understanding of the influence of operational 
parameters on the microbial community performance 
[27]. The response time on RNA, protein, or metabolite 
level to changes in operational parameters is much faster 
than on DNA level, especially for the slow growing meth-
anogens [28]. This allows the possibility for a more accu-
rate measurement of the microbial community structure 
and activity dynamics, which could entail a more specific 
adjustment of selective operational parameters, such as 
pH or organic loading rate [29, 30].

In this research, the effect of an increased salinity on 
total and active microbial community composition was 
evaluated. The actual effects of salt concentration in 
function of time were assessed on the level of the 16S 
rRNA gene (DNA) and the 16S rRNA itself, to validate 
their difference in response. The RNA level is consid-
ered a proxy of the active microbial community, while 
the DNA level represents the total microbial community. 
The potentially strong difference in 16S rRNA gene copy 
number between micro-organisms has to be considered 
[31], which is why in this study a major focus was placed 
on the RNA/DNA ratio of the different micro-organisms, 
as well as its changes. The 16S rRNA (gene)-based spe-
cies counting can be considered very useful to estimate 
broad and strong changes over time, yet a metagenom-
ics approach will be needed to identify subtler changes 
[32, 33]. Hence, the focus of this study was mainly on 
strong changes of the microbial community on DNA 
and RNA levels, and shifts in the RNA/DNA ratio. It 
was hypothesized that (1) a higher degree of change in 
the microbial community and faster response should be 
observed on RNA level, compared with DNA, and (2) the 
methanogens, due to their greater sensitivity to high salt 

concentrations [34, 35], would show a higher degree of 
change than the bacterial community, both on DNA and 
RNA levels.

Methods
Substrates and inoculum
A mixture of primary sludge and waste activated sludge 
in a 70:30 weight ratio was used as substrate to feed the 
reactors (Additional file  1: Table S1). Both sludge types 
were collected from the municipal wastewater treatment 
plant of Santiago de Compostela, and the anaerobic inoc-
ulum sludge sample originated from the full-scale meso-
philic sludge digester (Additional file 1: Table S2).

Experimental design
Mother reactors
Three identical lab-scale continuous stirred tank reac-
tors with a working volume of 2  L were operated for a 
period of 42  days at mesophilic temperature (37  °C). 
Stirring took place on a shaker at 120 rpm. Each reactor 
was connected to a Ritter milligas counter (Dr. Ing. Rit-
ter Apparatebau GmbH, Bochum, Germany) to monitor 
biogas production. A sludge retention time of 15  days 
was applied during the first 7 days of the experiment after 
which it was increased to 30 days for the entire remaining 
period. The organic loading rate was fixed at 1 g COD L−1 
d−1 (chemical oxygen demand) to avoid overloading. The 
inoculum was diluted with tap water to a volatile solids 
concentration of 15  g  L−1. Feeding of the reactors was 
performed three times a week, and fresh feed was pre-
pared for every feeding. Biogas production and composi-
tion were determined three times a week, and reported 
at standard temperature and pressure (STP, 273.15  K, 
and 101,325  Pa) conditions. The pH was also measured 
three times a week before feeding, while alkalinity, Rip-
ley index, and VFA concentration were determined on 
weekly basis.

Short‑term perturbation test
The short-term perturbation test consisted of four dif-
ferent treatments, each carried out in triplicate in iden-
tical lab-scale continuous stirred tank reactors with a 
total volume of 500 mL and a working volume of 400 mL. 
First, each reactor was inoculated with 400 mL of anaero-
bic sludge from the mixture of the three mother reactors 
(Additional file 1: Table S3). Second, a single pulse of the 
primary and waste activated sludge mixture was added to 
obtain a single substrate load of 5.0 g COD L−1. Finally, 
a single pulse of NaCl was added, resulting in a surplus 
concentration of 0 (control treatment), 5, 10, and 20  g 
Na+  L−1, respectively, and the reactors were sealed to 
maintain anaerobic conditions. The twelve reactors were 
operated at mesophilic conditions (37  °C) on a shaker 
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(120 rpm) for a period of 14 days. Biogas production and 
composition were measured on a daily basis by means of 
pressure build-up, using an in-house constructed pres-
sure transducer, and reported at STP conditions. Samples 
for pH, VFA, and cation analysis were taken at the end of 
the test. Samples for DNA and RNA analysis were taken 
on day 0, 1, 2, 4, 7, and 14 (T0–T5), and stored at −80 °C 
prior to analysis.

Microbial community analysis
DNA and RNA extraction, amplicon sequencing, 
and amplicon sequence processing
The extraction of genomic DNA and total RNA was car-
ried out using the PowerSoil® DNA Isolation kit and 
RNA PowerSoil® Total RNA Isolation Kit (MoBio Labo-
ratories, Inc., Carlsbad, CA, USA), respectively, accord-
ing to manufacturer’s instructions after which the Illustra 
Ready-To-Go RT-PCR Beads (GE Healthcare, Bucking-
hamshire, UK) were used for conversion of the RNA to 
cDNA. The quantity and quality of the resulting DNA 
and cDNA were determined with a Nanodrop 2000c 
(Thermo Scientific, Wilmington, DE, USA). Microbial 
community analysis was carried out by means of high-
throughput amplicon sequencing using 250  bp paired-
end sequencing chemistry (MiSeq Illumina), both on 
the DNA and cDNA samples. The general primers 807F 
and 1050R, targeting the V5–V6 region of the 16S rRNA 
gene of both bacteria and archaea [36], were used as pre-
viously described [37]. The preparation of libraries for 
barcode sequencing and data-set quality filtering were 
carried out as described by Camarinha-Silva, et al. [38]. 
A quality filter that runs a sliding window of 10% of the 
read length at a time, and calculates the local average 
score based on the Phred quality score of the fastq file, 
was used to trim the 3′-ends of the reads that fall below 
a quality score of 10. All reads that had ambiguous bases, 
any mismatches within the primers and barcodes, or 
more than ten homopolymer stretches were discarded. 
Primers and barcodes were then trimmed from each 
read. Reads were trimmed conservatively to 140 nucleo-
tides, and the paired ends were subsequently matched to 
give 280 nt. The Mothur command unique.seqs was used 
to extract the unique reads. The paired-end reads were 
merged to fully cover the V5–V6 region, and no mis-
match was allowed in the overlapping of the forward and 
reverse reads (Additional file 2). All reads were clustered 
allowing two mismatches (>99% sequence identity). Chi-
mera detection was performed by UCHIME in de novo 
mode, using the sequence abundances of combined sam-
ples as suggested by the developers [39]. UCHIME iden-
tified 0.82% of total reads (139 phylotypes) as chimeras. 
As a significant amount of these reads were sequences 

documented as originating from type strains (9 phylo-
types), isolates (13 additional phylotypes) had been docu-
mented in multiple long-sized 16S rRNA gene sequences 
(23 additional phylotypes) or at least in a single long-
sized 16S rRNA gene sequence (11 additional sequences) 
[40], chimera removal was not performed. The amplicon 
sequence fragments were assigned to phylotypes, using 
the Ribosomal Database Project database, based on the 
Naive Bayesian classification with a confidence threshold 
of 80% [41].

Data processing and statistical analysis
The resulting data set containing the relative abundance 
of each phylotype in all samples was analysed using the 
R software, version 3.2.3. (http://www.r-project.org) 
[42]. Rarefaction curves were generated for each sample 
to evaluate sampling depth [43, 44], using the phyloseq 
[45] and vegan packages [46]. The vegan package was also 
used to determine the diversity indices, and to calculate 
Bray–Curtis dissimilarity matrices (vegdist function). A 
table containing all samples with the abundance of dif-
ferent phylotypes and their taxonomic assignments was 
created (Additional file 2), which was used to generated 
the heat maps on different phylogenetic levels by means 
of the pheatmap package. Reproducibility analysis of the 
replicates, significant differences in diversity parameters, 
and variation between Bray–Curtis dissimilarity matri-
ces were determined by means of analysis of variance 
(ANOVA). Permutational multivariate analysis of vari-
ance (PERMANOVA) of the Bray–Curtis dissimilarity 
matrices was carried out with the vegan package (adonis 
functions). For multivariate abundance analysis, all analy-
ses were conducted with the mvabund package and seed 
777 [47]. Samples were pruned from phylotypes with 
a maximum relative abundance lower than 0.1% or that 
were absent in one of the samples. This was done to focus 
specifically on the abundant micro-organisms with clear 
temporal dynamics. After this preprocessing, a forward-
selection-based modelling approach was used for testing 
the relationship between environmental parameters and 
phylotypes abundances. The mean–variance relationship 
was modelled by a negative binomial distribution. Before 
hypothesis testing, all models were verified for accord-
ance with the model assumptions (Additional file  1: 
Figure S1). Hypothesis testing was performed using likeli-
hood ratio tests with pit resampling (5000 runs). The final 
model consisted of salt concentration and time as contin-
uous predictors and the reactor replicate and nucleic acid 
type as categorical predictors. Inference on the model 
parameters of individual species was assessed using the 
adjusted P-values, calculated after 5000 resampling runs, 
which accounted for inter-variable correlations.

http://www.r-project.org
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Analytical methods
The pH was measured with a Crison 506 standard pH 
meter (Crison, Barcelona, Spain), equipped with an 
Ingold U 455 electrode (Mettler-Toledo International 
Inc., Barcelona, Spain). Total solids (TS), volatile solids 
(VS), total alkalinity, partial alkalinity, and total ammo-
nia nitrogen (TAN) were determined according to the 
standard methods [48]. The free ammonia concentration 
was calculated based on the pH, temperature, and TAN 
concentration [49]. The Ripley index was defined as the 
ratio between the intermediate alkalinity (total alkalinity 
minus partial alkalinity), and total alkalinity [6]. Sodium, 
potassium, calcium, and magnesium concentrations 
were measured by means of ion chromatography (IC), 
using a Metrohm 861 Advanced Compact IC, equipped 
with a column Metrosep A Supp 5–250 and a 853 CO2 
Suppressor.

The volatile fatty acids (VFA) were extracted from 
2 mL samples using diethyl ether (2 mL), and analysed by 
means of a gas chromatograph (HP, 5890A) with a glass 
column (3  m  ×  2  mm), filled with Chromosor WAW 
(mesh 100/120), and impregnated with Neopentylglyco-
ladipate (25%) and H3PO4 (2%), a flame ionization detec-
tor and an automatic injector (HP, 7673A). The column, 
injector, and detector temperatures were set at 105, 260, 
and 280 °C, respectively. The carrier gas was nitrogen gas, 
saturated with formic acid, at a flow rate of 24 mL min−1. 
Dry air and hydrogen gas were used as auxiliary gases, 
with flow rates of 400 and 30  mL  min−1, respectively. 
Pivalic acid was used as internal standard. Calibration of 
the gas chromatograph was carried out using the Volatile 
Free Acid Mix (Sigma-Aldrich BVBA, Diegem, Belgium), 
and values were corrected for the partition coefficients 
of the different VFA in diethyl ether. The lower detection 
limit was between 10 and 20 mg L−1.

Biogas composition was determined by gas chromatog-
raphy (HP, 5890 Series II), equipped with a thermal con-
ductivity detector. The stainless steel column has a total 
length of 2 m and an internal diameter of 3.175 mm, and 
was filled with Poropack Q (mesh 80/100). The tempera-
tures of the injector, column and detector were set at 110, 
35, and 110 °C, respectively. Helium was used as carrier 
gas at a flow of 15 mL min−1.

Results
Mother reactors performance
Three identical mother reactors were operated for a 
period of 42  days to obtain a stable microbial commu-
nity, adapted to the feed sludge mixture. Methane pro-
duction slowly increased to a final value of 173 ± 27 mL 
CH4 L−1 d−1 on day 42 (Additional file  1: Figure S2a), 
which corresponded with a COD conversion efficiency 
of 49.5 ± 7.8%. The pH remained between 6.91 and 7.22 

over the entire period (Additional file  1: Figure S2b), 
and total VFA decreased from 1561 ± 202 mg COD L−1 
to values below the limit of detection at the end of the 
experiment (Additional file  1: Figure S2c). The Ripley 
index also remained around the threshold value of 0.3 
[6] throughout the experiment (Additional file 1: Figure 
S2d).

Short‑term operational response to salt perturbation
The triplicate reactors were followed for a period of 
14  days after which methane production reached a pla-
teau in each treatment (Additional file 1: Figure S3). Total 
methane yield reached similar values of 1.20 ± 0.08 and 
1.16 ± 0.23 L CH4 L−1 in the control (no Na+ addition) 
and treatment with 5  g Na+ L−1, respectively (Fig.  1). 
This corresponds with a COD substrate conversion to 
CH4 of 68.5 ± 4.5 and 66.1 ± 13.1%, respectively. In con-
trast, the treatments with 10 and 20  g Na+ L−1 clearly 
had a much lower methane production, with values 
of 0.32 ± 0.14 and 0.08 ± 0.01 L CH4 L−1, respectively. 
These values corresponded with a COD conversion to 
CH4 of 18.2 ± 7.9 and 4.9 ± 0.8%, indicating severe inhi-
bition of methanogenesis. These results were confirmed 
by the increase in VFA concentration to 1.24 ± 0.33 and 
1.12 ± 0.46 g COD L−1 in the reactors with 10 and 20 g 
Na+ L−1, respectively, while no VFA were detected in 
the control and the treatment with 5  g Na+ L−1 (Addi-
tional file 1: Figure S4a). The accumulation of VFA in the 
reactors with 10 and 20  g Na+ L−1 corresponded with 
28.6 ± 1.2 and 27.8 ± 0.5%, respectively, of the substrate 
COD. When adding, however, both COD converted to 
CH4 and VFA together, it seems that both methanogen-
esis and acidogenesis/acetogenesis were affected in the 
reactors with 10 and 20 g Na+ L−1, as the residual VFA 
concentrations did not compensate for the decrease in 
methane production. The major fraction of the VFA was 
acetate, with values of 60.8 ±  9.0% for the reactor with 
10 g Na+ L−1 and 50.2 ± 1.0% for the reactor with 20 g 
Na+ L−1. The pH showed a clear decrease in the reac-
tors with 10 and 20 g Na+ L−1, compared with the initial 
pH, while this was not the case in the other two reactors 
(Additional file 1: Figure S4b). The actual Na+ concentra-
tions were confirmed by the IC analysis at the end of the 
experiment, and this confirmed that the Na+ concentra-
tion in the control treatment was lower than 0.25 g Na+ 
L−1 (Additional file 1: Figure S4c).

Microbial community analysis
Amplicon sequencing analysis resulted in an average of 
45,950 ± 19,632 reads per sample, which were clustered 
into 2787 phylotypes. Complete coverage of the micro-
bial community was confirmed by the rarefaction curves 
(Additional file  1: Figure S5). Taxonomic resolution 
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allowed to annotate the phylotypes in 31 different phyla, 
64 classes, 91 orders, 152 families, and 330  genera. The 
feed sludge sample was only included in the heat map 
analysis.

Total and active microbial community composition 
at different phylogenetic levels
As each treatment was carried out in triplicate, the 
reproducibility of the microbial community results (both 
DNA and RNA) was evaluated by means of ANOVA. No 
significant differences were observed among replicates 
(P  <  0.0001), and, as a consequence, reads of replicates 
were added for the generation of heat maps. Microbial 
community composition was determined on phylum, 
class, order, family, and phylotype level (Fig. 2; Additional 
file  1: Figs. S6–S8). An overall dominance of Bacteroi-
detes (23.6 ± 5.2%), Proteobacteria (17.2 ± 7.3%), and, to 
lesser extent, Firmicutes (12.2 ± 3.3%) could be observed 
in the different reactors, while Euryarchaeota cov-
ered on average 4.4 ± 3.1% of the microbial community 
(Fig.  2a). The Proteobacteria phylum showed a higher 
relative abundance on RNA (21.1  ±  8.8%) compared 
with DNA (13.5  ±  2.0%) level, while the opposite was 
observed for the Bacteroidetes, with relative abundances 
of 19.9 ± 3.9% on RNA and 27.0 ± 3.7% on DNA level. 
An increase in Firmicutes in the presence of high salt 
concentrations could be observed on RNA level, while 
a decrease in Bacteroidetes could be observed on DNA 
level in function of time. The Euryarchaeota showed a 
distinctly lower relative abundance on RNA (2.4 ± 1.0%) 
compared with DNA level (6.4 ± 3.2%).

While the microbial community profile appeared to 
be rather uniform at phylum level, this was not the case 
for the most abundant phylotypes (Fig.  2b). Methanos-
aeta (Phy1), Rikenella (Phy2), and two unclassified Bac-
teroidetes phylotypes (Phy 3 and 4) were each higher on 

DNA level compared with RNA, and also showed a high 
level of variation with respect to salt concentration and 
time. Methanosaeta (Phy1) was by far the most abun-
dant methanogen, both on DNA and RNA levels, with 
the highest relative abundance at low salt concentrations 
on DNA level, but this was not confirmed on RNA level. 
The relative abundance of both Phy2 and Phy4 increased 
on RNA level between day 2 and 7), compared with day 1 
and day 14, indicating a higher activity during this period. 
The relative abundance of Phy15 (unclassified Actinomy-
cetales) showed an increased abundance on RNA level 
only in the control treatments, indicating its preference 
for a low salt concentration and/or a competitive advan-
tage over other micro-organisms at these conditions [50].

Total and active microbial abundance on community level: 
organization, variance, and diversity
Beta diversity analysis, including both DNA and RNA 
samples, revealed a significant correlation with salt con-
centration (P  =  0.001) and time (P  =  0.001), both on 
the total (DNA) and active (RNA) microbial community 
(Fig. 3 and Additional file 1: Fig. S9). While the microbial 
community clustered closely together on DNA level, this 
appeared not to be the case for the RNA level (Fig.  3). 
PERMANOVA analysis of the Bray–Curtis dissimilar-
ity index showed a significant difference (P  =  0.001) 
between the total and active community. This was con-
firmed by a significantly different (P  <  0.0001) overall 
degree of variation between the DNA and RNA levels, 
as observed by the relative distance from the centroid, 
based on the Bray–Curtis dissimilarity index (Additional 
file 1: Figure S10). The relative distance between the cor-
responding microbial community abundance and activ-
ity profile of each sample was significantly influenced by 
time (P =  0.017), with a significant increase in distance 
on day 7 (P = 0.009) and 14 (P = 0.004) of the short-term 
batch test, while salt concentration did not significantly 
contribute to this relative distance (P = 0.87).

Microbial community diversity analysis revealed an 
overall significant difference in richness (P  <  0.0001), 
Fisher’s alpha diversity (P  <  0.0001), and Pielou’s even-
ness (P = 0.026) between the DNA and RNA profiles of 
the different samples (Fig. 4). Richness and Fisher’s alpha 
diversity were significantly higher on DNA level. In con-
trast, Pielou’s evenness was significantly higher on RNA 
level.

Separate analysis on DNA and RNA levels was carried 
out to estimate the single impact of the salt concentra-
tion and time on the total and active microbial commu-
nity (Additional file 1: Figure S11 and S12). The inoculum 
sample was excluded from the analysis, as this was only 
a single sample, to avoid biasing the diversity parameter 

Fig. 1  Cumulative methane yield in the short-term perturbation tests 
after 14 days of operation. Average values of the triplicate reactors are 
presented, and error bars show standard deviations
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results. On DNA level, each of the diversity parameters 
showed a highly significant increase with increasing salt 
concentration, while this was not the case for the RNA 
profile for which only Fisher’s alpha diversity and rich-
ness showed a minor significant increase (Additional 
file 1: Figure S11). In contrast to salt concentration, time 
had a highly significant impact on RNA level, as each of 
the diversity parameters showed a significant decrease 
with increasing time, especially for the last two time 
points (day 7 and 14), with the exception of Simpson 
diversity (Additional file 1: Figure S12). This was not the 
case for the DNA profile, with only inconsistent signifi-
cant differences between the different time points. This 
clearly reflects the distinct DNA and RNA response, with 
salt concentration mainly affecting overall relative abun-
dance and time overall activity.

Differential impact of salt concentration and time on specific 
phylotypes
After validation of normality of residuals and homogene-
ity of variance in the residuals (Additional file  1: Figure 
S1), multivariate abundance analysis was applied to eval-
uate the impact of salt concentration and time on the rel-
ative abundance of each phylotype between the DNA and 
RNA levels. To avoid a biased result from low-abundant 
phylotypes and/or those present in only a limited number 
of samples, only those phylotypes with a maximum rela-
tive abundance >0.1% and present in all DNA and RNA 
samples were considered for further analysis. This cut-off 
resulted in 79 phylotypes of which 41 revealed a signifi-
cant difference (P < 0.05) between DNA and RNA relative 
abundance (Fig. 5). A total of 21 phylotypes showed a sig-
nificant higher relative abundance on DNA level, while 20 

Fig. 2  Heat map representing the microbial community of all samples a on phylum level at a relative abundance >0.1% averaged over all samples, 
and b the 15 main phylotypes that are present at a relative abundance >1% averaged over all samples. The colour scale ranges from 0 to 70% and 
0 to 35% on phylum and phylotype levels, respectively. The different samples were labelled according to the time point (T0–T5) and salt concentra‑
tion (0, 5, 10 and 20 g Na+ L−1). The inoculum sample (Inoc) at the start of the experiment as well as the feed sludge (Sludge) were also included in 
the heat map
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phylotypes showed a higher relative abundance on RNA 
level. All four archaeal phylotypes with a significant dif-
ference in DNA and RNA profile, amongst which Metha-
nosaeta (Phy1, P =  0.0002), Methanospirillum (Phy102, 

P = 0.0002) and Methanobacterium (Phy392, P = 0.0004) 
showed a lower relative abundance on RNA level, which 
was also the case for Rikenella (Phy2, P =  0.0002) and 
other phylotypes belonging to the Bacteroidetes phylum. 
In contrast, two unclassified Actinomycetales (Phy 15 
and 27, P =  0.0002), two unclassified Armatimonadetes 
(Phy49 and 63, P =  0.0002), and an unclassified Syner-
gistaceae (Phy28, P = 0.0002) showed a significant higher 
relative abundance on RNA level.

Both salt concentration and time also affected spe-
cific phylotypes, with 32 and 20 phylotypes significantly 
influenced by salt concentration and time, respectively 
(Fig.  6; Additional file  1: Table S4). Salt concentration 
had the strongest negative effect on Methanosaeta (Phy1, 
P = 0.024), and also an unclassified Methanomicrobiales 
phylotype (Phy54, P = 0.031) was negatively affected by 
salt, while an unclassified Archaeon (Phy685, P = 0.012) 
was positively affected by salt. Time had a significant pos-
itive effect on the unclassified Methanomicrobiales phy-
lotype (Phy54, P = 0.008).

The effect strength of time was additionally depend-
ent on the RNA/DNA ratio for 21 phylotypes, while 
this could only be observed for 2 phylotypes for the salt 
effect (Fig. 6; Additional file 1: Table S4). This indicates a 
stronger effect of time on the RNA/DNA ratio of specific 
phylotypes compared with salt concentration. The two 
main archaeal phylotypes (i.e. Methanosaeta, Phy1 and 

Fig. 3  Non-metric multidimensional scaling (NMDS) analysis of the 
Bray–Curtis dissimilarity index of the microbial community on DNA 
(□) and RNA (○) level

Fig. 4  Box plots of the alpha diversity metrics of the microbial community on DNA (red) and RNA (green) level. Significant differences between the 
DNA and RNA profile are marked with *(P < 0.05), **(P < 0.01), or ***(P < 0.001), based on the ANOVA analysis
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unclassified Methanomicrobiales, Phy54) clearly showed 
a different response on RNA and DNA levels and with 
respect to salt concentration and time (Figs.  5 and 6). 
This was confirmed by a visualization of the 79 selected 
phylotypes (Fig. 7). A significantly lower RNA/DNA ratio 
could be observed for Methanosaeta (P =  0.0002), with 
the strongest decrease at high salt concentrations. The 
unclassified Methanomicrobiales did not show a change 
in RNA/DNA ratio over time or related to salt, or differ-
ence in relative abundance on RNA and DNA levels, but, 
nonetheless, a significant negative (P = 0.031) effect was 
observed in relation to salt, while there was a significant 
positive effect of time (P =  0.008). Overall, the metha-
nogenic phylotypes showed the strongest differential 
response between DNA and RNA, both to salt concen-
tration and time.

Discussion
The introduction of salt perturbation in a short-term 
AD batch test resulted in a distinct negative effect on 
methane production for the highest salt concentrations. 
A clear differentiation in terms of overall composition, 
variation, and diversity was observed between the total 
(DNA) and active microbial community (RNA), related 
to both salt concentration and time. The multivariate 
regression approach allowed to determine not only the 
phylotypes that experienced a significant effect of salt 

Fig. 5  Relative difference in RNA and DNA abundances of the 41 
phylotypes that showed a significant difference in RNA and DNA 
abundances (out of a total of 79 phylotypes). These 79 phylotypes 
had a relative abundance >0.1% in at least one sample, and were 
present in all samples. Average values of the parameter estimation of 
the multivariate abundance model of all samples (excluding the feed 
sludge samples) are presented, and ordered from the most negative 
(RNA/DNA ratio <1) to the most positive values (RNA/DNA ratio >1). 
Error bars represent standard errors of the parameter estimation of 
the model. A smoothing function was fitted to the data for illustration 
of trends (local regression)

Fig. 6  Relative effect of a salt concentration and b time on the 32 and 20 phylotypes (●) that showed a significant different abundance in func‑
tion of salt concentration and time, respectively (out of a total of 79 phylotypes). These phylotypes had minimum relative abundance >0.1% in at 
least one sample, and were present in all samples. Average values of the parameter estimation of the multivariate abundance model of all samples 
(excluding the feed sludge samples) are presented, and ordered from the most negative (negative effect) to the most positive (positive effect) val‑
ues. The effect strength of time was additionally dependent on the RNA/DNA ratio for 21 phylotypes (■), while this could only be observed for two 
phylotypes for the salt effect (not included in the figure). Error bars represent standard errors of the parameter estimation of the model. A smooth‑
ing function was fitted to the data for illustration of trends (local regression)
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concentration and time, but also the size of the effect. 
This was reflected in the differential response of spe-
cific phylotypes, amongst which the dominant archaeon 
Methanosaeta experienced the strongest effect, while the 
effect was less pronounced for most bacterial phylotypes.

Salt concentration and time differentially impact the total 
and active microbial community
The comparison of the microbial community via DNA- 
and RNA-based measurements revealed an overall 
higher diversity on DNA level, and a higher degree of 
variation on RNA level. A high species richness and 
diversity can relate with an increased resilience, as a 
larger pool of available micro-organisms enhances the 
potential to maintain functionality, and respond to dis-
turbances [14, 16, 51]. Such a high community compo-
sitional diversity does not necessarily reflect a similar 
profile in terms of activity. In principle, few species are 
required to take care of the entire AD process, while the 
others are dormant, and will not become active before a 
change in environmental conditions occurs [52, 53]. This 
was also the case for the results of this study, as a lower 
richness is observed on RNA level, while the higher even-
ness relates with a higher degree of functionality [12–14, 

54], although there is no direct dependency of function-
ality on microbial richness and evenness. As there is no 
direct proof for the relation between microbial richness 
or evenness and process stability, these results should be 
interpreted with care.

Salt perturbation often promotes a change in microbial 
community composition and/or organization [55, 56], 
which reflects the susceptibility of certain micro-organ-
isms and the resistance of others to salt perturbation. The 
remarkable difference in diversity parameters between 
DNA and RNA in relation to both salt concentration 
and time, as observed in this study, reflects the differ-
ent mechanisms that drive the total and active microbial 
community profiles. The significant increase in diversity 
on DNA level in relation to increasing salt concentrations 
was not observed on RNA level. This can be explained 
by the combined effect of the apparent microbial com-
munity shift and the difference in half-life between DNA 
and RNA molecules. The increased salt concentration 
resulted in a shift in microbial community composition, 
as observed by beta diversity analysis. This led to other 
species becoming more active in detriment of others 
that became less active or even dormant, thus explain-
ing the limited degree of variation in diversity on RNA 
level. However, due to the stability of the DNA molecule 
compared with RNA and the fact that a decrease in activ-
ity does not lead to a decrease in abundance on short-
term, diversity on DNA level increased. The decrease in 
diversity on RNA level in function of time related to the 
decrease in methane production at the end of the test, 
because only a single feed pulse was introduced at the 
beginning of the test.

The higher degree of overall variation on RNA level 
could not be attributed to the salt concentration. This 
unexplainable variation on RNA level indicates that the 
selection of active species depends both on determinis-
tic and stochastic processes. Deterministic factors, such 
as pH and temperature, determine which species can be 
present (DNA) in the anaerobic digester [57, 58], while 
the actual active community (RNA) seems to be influ-
enced mainly by stochastic processes, related to the 
apparent random variation on RNA level [59].

Specific phylotypes determine the overall microbial 
community response to salt perturbation
The active microbial community in AD seems to aim for 
a high degree of evenness, regardless the lower level of 
evenness in the total community, which undoubtedly 
relates with the requisite for a well-balanced succes-
sion of the different phases in the AD process. This high 
degree of evenness on RNA level is, however, insufficient 
to assure stable process performance in AD, because 

Fig. 7  Comparison of RNA and DNA relative abundances of the 
selected 79 phylotypes in each of the samples (excluding the feed 
sludge sample). These 79 phylotypes had a relative abundance >0.1% 
in at least one sample and were present in all samples. The two most 
abundant methanogens [Methanosaeta, Phy1 (red) and an unclassi‑
fied Methanomicrobiales phylotype, Phy54 (blue)] were highlighted, 
and the intensity of the colour relates to the salt concentration. The 
dashed line represents a DNA:RNA relative abundance ratio of 1
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methane production declined nonetheless at high salt 
concentrations. This implies the importance of specific 
active (groups of ) micro-organisms to ensure process 
stability.

Microbial community analysis on different phyloge-
netic levels revealed an overall uniform pattern on the 
higher phylogenetic levels in relation to salt concentra-
tion and time, while a much stronger degree of variation 
could be observed between different phylotypes. The 
overall dominance of the Bacteroidetes, Proteobacteria, 
and Firmicutes bacterial phyla is to be expected, given 
the versatile consortia of bacteria in these phyla involved 
in different phases of the AD process [18, 21, 60]. The 
overall higher activity of the Proteobacteria phylum 
can be considered an indication of their higher involve-
ment than conventionally estimated in the AD process. 
However, due to the metabolic diversity of the different 
members of this phylum, the overall importance of this 
phylum in AD cannot be confirmed. More important for 
the AD process is the lower relative abundance of Eur-
yarchaeota on RNA level, which can be attributed almost 
entirely to the decrease in Methanosaeta (Phy1), as this 
phylotype covered on average 80% of archaeal reads, both 
on DNA and RNA levels. Next to Methanosaeta, several 
bacterial dominant phyla, such as Rikenella (Phy2), also 
showed a clear decrease on RNA compared with DNA 
level, which also explains the higher evenness on RNA 
level.

Acetoclastic methanosaeta as crucial active methanogen 
in relation to salt perturbation
The overall importance of Methanosaeta for methane 
production in the AD process has been confirmed by 
numerous studies, as well as its susceptibility to changes 
in environmental conditions outside the optimal range 
for methane production [18, 34, 61, 62]. However, this is 
the first study in which the relative abundance of Metha-
nosaeta in AD is compared between the DNA and RNA 
levels. The RNA profile of Methanosaeta (Phy1) sug-
gests a lower activity than estimated by its DNA profile, 
but this is similar for several other methanogenic phy-
lotypes. This is in contrast with other studies in which 
a higher (potential) activity in relation to the DNA level 
was observed [24–26]. In this study, the lower relative 
abundance of Methanosaeta on RNA level related to the 
increase in salt concentration, which was not the case for 
the other methanogens, with the exception of an unclas-
sified Methanomicrobiales phylotype (Phy54), indicating 
that salt perturbation strongly affects Methanosaeta in 
AD. The persistence of a high abundance of Methanos-
aeta at suboptimal conditions [63] does not necessarily 

reflect an equally high activity, as observed in our study. 
Due to its high susceptibility to environmental changes, 
Methanosaeta is often replaced by Methanosarcina as 
primordial acetoclastic methanogen [64], but in this 
study, no phylotypes related to Methanosarcina could be 
detected. This may explain the inhibition of methane pro-
duction at 10 and 20 g Na+ L−1, as the hydrogenotrophic 
methanogens were unable to take over the methane pro-
duction process. None of the observed known syntrophic 
acetate oxidizing bacteria, which are necessary to redi-
rect acetate conversion from acetoclastic to hydrogeno-
trophic methanogenesis, showed an increase in activity 
or abundance in relation to salt perturbation [65, 66].

The crucial role of Methanosaeta in AD is appar-
ent, which is amplified by the fact that in the absence of 
Methanosarcina and/or a sufficient response of potential 
syntrophic acetate oxidizing bacteria, the system col-
lapses if Methanosaeta is not able to maintain its activity. 
Hence, despite its low relative abundance on RNA level 
in this study, Methanosaeta can be considered the most 
important methanogen in AD to obtain stable methane 
production.

Conclusions
This research demonstrates a different response between 
the total (DNA) and active (RNA) microbial community 
in AD with respect to salt perturbation. Salt concen-
tration and time more strongly affected the microbial 
community, and especially the archaeal phylotypes, on 
RNA level both in terms of overall diversity and spe-
cific phylotypes. The most abundant archaeal phylo-
type, Methanosaeta, showed a lower relative abundance 
on RNA level compared with DNA level, caused by salt 
perturbation. Although microbial community activity 
analysis based on the rRNA profile should be interpreted 
with care, given its limitations [67], a clear differentia-
tion between the RNA and DNA profile of the microbial 
community was observed in this research. This con-
firms the overall importance of RNA-based community 
screening to analyse the response to disturbances and to 
identify those micro-organisms potentially contributing 
to process performance and stability in AD. However, 
the limitations of 16S rRNA gene sequences in terms of 
differences in 16S rRNA gene copy numbers between 
species have to be considered, and only major changes 
could be identified based on changes in the 16S rRNA 
(gene). Nonetheless, these results proved to be valuable 
with respect to the relation between community changes 
and process disturbance, and could be used to develop 
suitable indicators to engage in more accurate control of 
the AD process.
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