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Abstract 

Background:  Volatile fatty acids (VFAs) production from waste activated sludge (WAS) digestion is constrained 
by unbalanced nutrient composition (low carbon-to-nitrogen ratio). Characteristics conditioning by extra carbon 
sources, normally in the mixture of raw solid, has been reported to be an efficient approach to enhance WAS acidifi-
cation. However, little attention has been paid to the contributions of other adjustment forms. Moreover, the corre-
sponding ecological estimation has not been investigated yet.

Results:  In this study, the feasibility of corn stover (CS) conditioning with three adjustment forms [pretreated straw 
(S), hydrolysate (H) and hydrolysate + straw (HS)] in improving VFAs production from WAS was demonstrated. It was 
observed that the highest VFAs yield was achieved in H co-digesting test (574 mg COD/g VSS), while it was only 
392 mg COD/g VSS for WAS digesting alone. VFAs composition was strongly adjustment form-dependent, as more 
acetic (HAc) and propionic (HPr) acids were generated in CS_HS and S, respectively. High-throughput sequenc-
ing analysis illustrated that acid (especially HAc)-producing characteristic genera (Bacteroides, Proteiniclasticum and 
Fluviicola) and HPr-producing characteristic genera (Mangroviflexus and Paludibacter) were detected by CS_HS and S 
conditioning, respectively.

Conclusions:  Corn stover conditioning greatly upgraded the WAS acidification performance, especially for the CS_H 
adjustment form, and the VFAs yield gained was considerably larger than that previously reported. CS adjustment 
forms played an important role in structuring the innate microbial community in WAS. Canonical correlation analy-
sis illustrated that characteristic genera, with better hydrolysis and acidification abilities, could be enriched by the 
feedstocks with certain content of cellulose, hemicellulose or their saccharification hydrolysates. Moreover, ecological 
estimation revealed that, as far as the entire CS (including S and H) per acre was concerned, the capacity of WAS treat-
ment would reach that produced in a one million mts capacity wastewater treatment plants (WWTPs) per day. These 
findings may have crucial implications for the operation of WWTPs.

Keywords:  Waste activated sludge (WAS), Corn straw (CS), Adjustment form, Volatile fatty acids (VFAs),  
Anaerobic digestion, Ecological estimation
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Background
As the by-product of wastewater treatment plants 
(WWTPs), 6.25 million tons of dry waste activated 
sludge (WAS) was produced in China in 2013, which is 
considered as an inevitable drawback inherent to acti-
vated sludge processes [1]. The cost of treating and dis-
posing WAS takes 40–60% of the total costs for WWTPs 
[2]. With the conventional disposal routes coming under 
pressure, more cost-effective and environmentally benign 
alternatives for WAS are needed. Currently, due to its 
carbonaceous characteristics (organics possess 90–95% 
in dry weight), WAS is considered as a renewable and uti-
lizable biomass resource and gained worldwide attention 
[3–5]. Cost-effective microbial conversion from WAS 
by anaerobic digestion to specific valuable products is 
an innovative and promising way to gain social and eco-
nomic benefits.

As the most important intermediate, volatile fatty acids 
(VFAs) production from WAS digestion has been proven 
to be a feasible and effective carbon resource recovery 
process [6, 7]. Compared with time-consuming conven-
tional energy-rich methane production (20–30 days) and 
the low degradation efficiency of the dry organic solids 
(30–50%) from WAS [8], VFAs-producing processes with 
proper pretreatments are completed in a relatively short 
operation cycle (3–8  days). Moreover, VFAs are a good 
choice of extra carbon for many bioprocesses, especially 
for biological nutrients removal (BNR) [9]. Available bio-
degradable carbon is required to promote the growth 
of denitrifying bacteria and phosphorus accumulating 
organisms over competing organisms. In addition, WAS 
contains a significant amount of embedded energy, on 
the order of 20 MJ/kg of dry sludge. By practicing energy 
recovery from WAS, the produced methane, which is 
clean and renewable, can be used as a substitute for fos-
sil fuels and oil to some extent. Moreover, accumula-
tion of VFAs was an important factor that influenced 
biogas generation in two-stage anaerobic digestion [10]. 
Regarding the way to utilize VFAs, undeniably, it mainly 
depends on the composition of the produced VFAs [45]. 
Aiming to strengthen the performance of WAS acidifi-
cation, many approaches involving pretreatments (e.g., 
physical, chemical or biological methods) and optimizing 
operating conditions (e.g., pH, temperature, mixing and 
solids retention time) have thus been developed [8, 11, 
12].

Pretreatment is a prerequisite to enhance the hydroly-
sis of particulate organic matter, either enclosed inside 
the microbial cell or enmeshed in an extracellular poly-
meric matrix, to soluble substrates in WAS [13]. Nev-
ertheless, VFAs yield is still limited by the unbalanced 
nutrient component, especially the low carbon-to-nitro-
gen ratio (C/N ratio:  ~6.0), caused by the large amount 

of proteins in WAS. This unbalanced situation results in 
the inefficient conversion of complex organic matter. It 
is concluded that the suggested C/N ratio for anaerobic 
sludge digestion is 20–30 [14]. The organic solid waste 
with a high carbon content is, therefore, suitable for 
being treated with WAS possessing high nitrogen content 
to obtain a nutrient balance. Previous research showed 
that conditioning with carbon-rich municipal solid 
wastes, agricultural residues, or industrial wastes have 
been reported as a cost-effective solution for the produc-
tion of VFAs [15–17]. Lignocellulose is considered as an 
attractive raw material for the production of VFAs from 
co-digestion with WAS because of its availability in large 
quantities at low cost [18, 19]. In China, corn stover (CS) 
is one of the most abundant agricultural wastes [20]. CS 
consists of high contents of cellulose, hemicellulose and a 
relatively low content of lignin [21]. Recent studies have 
portrayed that the presence of cellulose and hemicellu-
lose in the pretreated lignocellulose residues lead to an 
apparent improvement in WAS acidification, and this, in 
turn, may affect the composition and metabolism activity 
of fermentation bacteria [18]. However, a large amount 
of monomeric sugars (e.g., glucose, xylose and arabinose) 
are present in the CS hydrolysates. It is also an ideal feed-
stock for the carbohydrate substrate in the conversion of 
WAS to VFAs. It is crucial to investigate the vital roles 
of different CS conditioning forms on WAS acidification 
and the effects that will be produced on the VFAs com-
position and metabolism activity of fermentation bacte-
ria. Moreover, to provide a sound basis for cost-efficient 
biomass stabilization and bioenergy recovery applied 
in WWTPs, it is important to know what the entire CS 
could bring for the VFAs recovery from WAS digestion.

Anaerobic digestion generally requires multiple groups 
of microorganisms working together to transform pri-
mary substrates to energy or high-valued chemicals [22, 
23]. Previous studies showed that microbial community 
functional structure played an important role in bioreac-
tor performance [22, 24, 25]. In this sense, understand-
ing microbial behavior and interactions is essential to 
improve the fermentation process. Additional explora-
tion of the microbial communities will allow engineers 
and researchers to establish more direct cause-and-
effect relationships between community structure and 
function. Based on the considerations above, we inves-
tigated the VFAs production from WAS digestion by 
CS conditioning, with three adjustment forms (e.g., 
straw, hydrolysate, hydrolysate  +  straw), by means of 
process assessment associated with microbial commu-
nity response analysis. We monitored the performances 
of hydrolysis, acidification and methanogenesis dur-
ing WAS and CS co-digestion. Shifts of the acidifica-
tion spectrum from WAS by conditioning with different 
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CS forms were studied. Furthermore, we also examined 
the related functional microbial community structures, 
using high-throughput pyrosequencing of the 16S rRNA 
gene. Correlations between environmental variables and 
microbial populations were assessed, using canonical 
correspondence analysis (CCA).

Methods
Characteristics and pretreatment procedure of substrates
Waste activated sludge was collected from the Jinzhong 
municipal wastewater treatment plant (Taiyuan City, 
China) and concentrated by settling at 4  °C for 24  h. 
Prior to its use as feed, WAS was screened with a 1 mm 
sieve to remove impurities to prevent clogging problems. 
Ultrasonic pretreatment of WAS was performed with a 
28 + 40 kHz ultrasonicator; other operation parameters 
were documented in a previous publication [19]. The 
main characteristics (average value plus standard devia-
tion of three tests) of the concentrated and pretreated 
WAS are displayed in Additional file 1: Table S1.

CS used in this study was collected at Taiyuan City, 
Shanxi Province, China. The chopped CS was dried in the 
oven at 70  °C until constant weight. Then, it was milled 
to 2–10 mm before storing at room temperature prior to 
the tests. Alkaline pretreatment of CS was performed in a 
thermostatic water bath at 85 °C with a solid–liquid ratio 
of 1:10 (g dry weight to mL). The NaOH concentration 
was 2% (w/w) and the residence time was 1 h. The main 
compositions of raw and pretreated CS on a dry basis 
were 36 and 65% cellulose, 23 and 13% hemicellulose 
and 14 and 5% lignin, respectively. The CS hydrolysate 
contained 2.8  g/L glucose, 5.5  g/L xylose and 1.0  g/L 
arabinose. The volatile solids content was 0.84 g volatile 
solids/g dry solids. The solid residue was separated by 
centrifugation (10,000  rpm (9392×g), 10  min) (Sigma 
3K30, Germany) and then dried at 70  °C to a constant 
weight and milled to 1–2 mm. The pretreated CS residue 
and supernatant were added for balancing the C/N radio 
of WAS fermentation.

Experimental setup and operations
Batch experiments were carried out in twenty-one batch 
reactors. These reactors, with 300 mL of the mixed sub-
strates each, were divided into seven groups (three 
reactors as replicates for each group). The feedstock 
for one group was only the ultrasonic pretreated WAS 
(hereinafter referred to as the control test). Two groups 
were fed with the mixtures of pretreated WAS and pre-
treated straw, with CS proportion of 50 and 35% (here-
inafter referred to as the 50:50%_S and 65:35%_S tests). 
Two groups were fed with the mixtures of pretreated 
WAS and CS hydrolysate (hereinafter referred to as the 
50:50%_H and 65:35%_H tests), the amounts of which 

were in accordance with the above straw tests. The feed-
stocks for the remaining two groups were the mixtures 
of pretreated WAS and CS, both hydrolysate and straw 
(hereinafter referred to as the 50:50%_HS and 65:35%_HS 
tests). After flushing with nitrogen gas to remove oxygen, 
all bottles were capped, sealed, and stirred in an air-bath 
shaker (100 rpm) at 35 ± 1 °C.

DNA extraction and pyrosequencing
Before DNA extraction, sludge samples were centri-
fuged at 8000g to remove the supernatant. DNA was 
extracted from the sludge sediments of three replicate 
reactors using a Soil DNA Isolation Kit (Sangon Biotech 
Co., Ltd.), according to the manufacturer’s instructions, 
and then it was pooled together. Amplicon liberates 
were constructed for pyrosequencing using the bacte-
rial fused primers 341F and 805R for the V3–V4 region 
of the 16S rRNA gene. To achieve the sample multiplex-
ing during pyrosequencing, barcodes were incorporated 
between the adaptor and forward primer. The procedure 
of polymerase chain reaction (PCR) was performed in 
our previous study [26]. After being purified and quanti-
fied, the PCR amplicon was used for pyrosequencing on 
an Illumina MiSeq. The raw sequences were deposited 
in the NCBI Short Read Archive database with accession 
no. SRR3602034. The adapters, barcodes, and primers in 
all raw sequences were trimmed to minimize the effects 
of random sequencing errors. Sequences shorter than 
350  bp, or containing any ambiguous base calls, were 
removed.

The remaining sequences were clustered into opera-
tional taxonomic units (OTUs), using the 97% identity 
threshold (3% dissimilarity level). Alpha diversity meas-
urements, including Shannon and Chao1 indices were 
calculated for each sample. Beta diversity was calculated 
using the distance matrices generated using the phylo-
genetic-based method UniFrac [27] and then visualized 
using principal coordinates analysis (PCoA). Finally, the 
OTUs networks were visualized in Cytoscape v3.2.1 for 
depicting the similarities and differences between the dif-
ferent sludge fermentation systems [28]. CCA analyses 
were conducted by Canoco 4.5 to examine correlations 
between characteristic genera and the environmental 
and performance measurements, including pH and the 
concentrations of methane, VFAs, HAc, HPr, soluble 
proteins (Spr) and carbohydrates (Sca). The relative abun-
dance of 16 characteristic bacteria was used in the CCA 
analysis.

Analytical methods
Sludge samples were centrifuged at 10,000 rpm (9392×g) 
after anaerobic fermentation, filtered through a 0.45 μm 
cellulose nitrate membrane filter and finally stored at 
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4  °C, prior to analysis. The determination of TSS, VSS, 
SCOD, TCOD, carbohydrates, and proteins was per-
formed as previously described [29]. A total of 500  mL 
Cali-5-Bond™ gas-sampling bags were used to collect 
the biogas produced. The total volume of gas was meas-
ured using a glass syringe. Gas composition was ana-
lyzed using a gas chromatograph (GC) (4890D, Agilent) 
equipped with a thermal conductivity detector (TCD). 
The cellulose, hemicellulose and lignin contents of CS 
were measured using a Fiber Analyzer (ANKOM, USA). 
The xylose, arabinose and glucose concentrations in CS 
hydrolysate were measured using high performance liq-
uid chromatography (HPLC) (model e2695, Waters Co., 
Milford, MA). Another Agilent 7890 GC, equipped with 
a flame ionization detector (FID), was utilized to analyze 
the composition of the VFAs. VFAs production was cal-
culated as the sum of the measured acetic (HAc), pro-
pionic (HPr), n-butyric (n-HBu), iso-butyric (iso-HBu), 
n-valeric (n-HVa) and iso-valeric (iso-HVa) acids. The 
COD conversion factors were 1.50  g COD/g protein 
(assumed as (C4H6.1O1.2N)x), 1.06 g COD/g carbohydrate 
(assumed as C6H12O6), 1.07 g COD/g HAc, 1.51 g COD/g 
HPr, 1.82 g COD/g HBu, and 2.04 g COD/g HVa.

Results and discussion
Effect of feedstock proportions and CS adjustment 
forms on WAS digestion in the processes of hydrolysis, 
acidification and methanogenesis
In this study, WAS provided a nitrogen source from 
proteins, which were the main part of the flocs and CS 
offered carbon sources from carbohydrates in the form 
of monosaccharides (H) and cellulose/hemicellulose 
polysaccharides (S). The time-course profiles of soluble 
organics are shown in Additional file  2: Fig. S1. A large 
amount of soluble carbohydrates and proteins were 
observed in CS and WAS co-digestion solution after pre-
treatments, which were maximized in the 50:50%_HS 
test, i.e., 1477 ± 22 and 12995 ± 247 mg COD/L. These 
soluble organic compounds were rapidly consumed dur-
ing the first 96 h of operation in conjunction with VFAs 
production, and then they stabilized at different levels 
with negligible variation until the end of the run. The 
stabilized soluble carbohydrates in the 65:35% group, for 
instance, were estimated to be approximately 485, 527 
and 484  mg COD/L in the H, S and HS tests, and the 
corresponding values for proteins were measured to be 
4862, 3307 and 4198 mg COD/L approx. The accumula-
tion of soluble organics depends on their rates of produc-
tion and consumption. Production was achieved through 
the hydrolysis of particulate organics, which mainly 
aggregated in extracellular polymeric substances (EPSs) 
and embedded in the microbial cells for WAS [30] and 
polymerized in the form of cellulose and hemicellulose 

polysaccharides for CS. On basis of the conversion of 
soluble organics in the subsequent acidification and 
methanogenesis processes, the highest conversion of 
carbohydrates and proteins were achieved in 50:50%_H 
and HS tests, which were, respectively, 20 and 4.2 times 
higher than that in the control. With the decrease of CS 
feedstock proportion, there was a slight reduction in 
the consumed organics (890 and 5625 mg COD/L in the 
65:35%_H and HS tests). Apparently, CS adjustment, no 
matter what the form was, improved the consumption of 
protein from WAS fermentation. The same phenomenon 
was also observed in other studies [15, 16].

VFAs were produced from proteins and carbohydrates 
biodegradation by acidogenic bacteria, and good agree-
ment was obtained between them (Fig. 1 and Additional 
file  2: Fig. S1). From 96  h onward, VFAs production 
sharply increased in all tests and then fluctuated little 
with the further increase in fermentation time, espe-
cially for the co-digesting tests. In contrast, it gradu-
ally decreased with time extension in the control and 
65: 35%_H tests. Clearly, the optimal fermentation time 
was 96  h for the VFAs production. This result was in 
good accordance with the fact that the released soluble 
organics were consumed at that time (Additional file  2: 
Fig. S1). The maximum VFAs concentration for sludge 
alone was only 6320 ± 196 mg COD/L. Digesting sludge 
alone for VFAs production has been proven to be less 
judicious in many cases [15, 16, 31, 32]. In comparison, 
in the case of co-digestion, no matter what the feedstock 
proportions and CS adjustment forms were, the addition 
of CS greatly upgraded the VFAs production. When 65: 
35%_H, S and HS as carbon addition were employed, a 
marked rise in VFAs yields to 8338 ±  276, 9527 ±  534 
and 10194 ± 72 mg COD/L were observed, respectively. 
A further rise in CS feedstock proportions contributed 
more significantly to VFAs production. The time-course 
curve showed that the sequence of VFAs production was 
HS>S>H> control tests. However, taking VFAs yield as 
the target, the conditioning of CS hydrolysate gained the 
higher value (564 mg VFAs-COD/g VSS, 50:50%), which 
increased 20 and 24% over that of the CS_S and HS tests. 
A lower CS feedstock proportion (65:35%) led to more 
VFAs accumulation, i.e., 583, 478 and 455  mg VFAs-
COD/g VSS in the CS_H, S and HS tests, while that was 
only 392 mg COD/g VSS in the control.

VFAs, as the products of acidogenesis, are the sub-
strates for methanogenesis and can be easily metabolized 
to methane. As depicted in Fig.  2, methane produc-
tion was also strongly affected by the feedstock propor-
tions and CS adjustment forms. We noted that, at the 
lower CS feedstock proportion (65:35%), (cumulative) 
methane production was improved by CS_H or CS_S 
conditioning from WAS digestion. The data obtained 
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fitted the linear growth model (YCH4  =  constant +kt), 
and the corresponding production rate constants (k) 
were calculated. The specific methane yield slightly 
increased from 12.5 ±  0.9  mL/g VSS (k =  0.0621  h−1, 
R2  =  0.9539) in the control to 16.0  ±  0.8  mL/g VSS 
(k = 0.0563 h−1, R2 = 0.8178) and 16.1 ± 0.2 mL/g VSS 
(k =  0.0729  h−1, R2 =  0.8507) in the CS_S and H tests, 
while it was inhibited in the CS_HS test (3.3 ± 0.0 mL/g 
VSS, k = 0.0127 h−1, R2 = 0.8548) after 240 h of fermen-
tation time. However, at the higher CS feedstock propor-
tion (50:50%), no matter what the CS adjustment form 
was, methanogenesis was all indeed inhibited. Wang 
et  al. investigated the feasibility of co-digesting sludge 
with Quercus serrate chips, and they also reported that 
the addition of Quercus serrata chips inhibited the total 

methane production [33]. Similarly, an adverse effect of 
shredded grass on methane production during the co-
digestion with sludge was observed [34]. In this study, 
the pH reduction resulting from the high concentration 
of VFAs could be the reason for the low methanogen-
esis efficiency. It is well-known that methanogenesis is 
strongly pH-dependent, and most methanogenic bacte-
ria function in a pH range of 6.5–7.2 with an optimum 
pH near 7.0 [35]. In this study, we have studied the pH 
evolution in the WAS and CS co-digestion. As shown 
in Fig.  2c and d, the pH values of the 50:50%_H, S and 
HS tests and the 65:35%_HS test at 240 h were all indeed 
beyond the optimum range. In contrast, the pH was in 
the optimum range in the 65:35%_H and control tests 
(7.5 and 7.4), which were consistent with the enhanced 
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biogas yield. Interestingly, the pH value of the 65:35%_S 
test first decreased to ~6.0 from 96 to 168 h, which led 
to the slight increase in methane production. With a fur-
ther increase of fermentation time, the pH value gradu-
ally increased to 6.8 (240  h), which was conducive to 
the metabolism of methanogens, and the corresponding 
methane yield sharply increased from 4.6 ± 0.4 (168 h) to 
16.0 ± 0.8 mL/g VSS (240 h).

Shift of the acidification spectrum from WAS 
by conditioning with different CS forms
According to the composition analysis (Fig.  1c), the six 
VFAs varied with different CS proportions at 96 h, when 

the VFAs had reached a plateau in most of the reactors. 
Among them, the top three (individual) VFAs produced 
were HAc (53–59%), HPr (17–23%) and n-HBu (8–10%) 
in the 50:50% tests. The results were somewhat in accord-
ance with the observations of Jia et  al. [15] and Feng 
et al. [16], who highlighted the positive role of perennial 
ryegrass and rice in sludge digestion. In contrast, the top 
produced VFAs were HAc (51–58%), HPr (16–20%) and 
iso-HVa (10–12%) in the 65:35% tests, which was consist-
ent with individual WAS digestion (41, 20 and 15% for 
HAc, HPr and iso-HVa) (Fig. 1c). Similarly, this was also 
confirmed by our previous research [36] on the co-diges-
tion of Agaricus bisporus substrates and WAS. Clearly, 
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the product spectrum can be affected by the digesting 
feedstock proportions, especially for the distributions of 
HVa and HBu. The reason behind this maybe that HVa 
was mainly associated with the fermentation of proteins 
via reductive deamination of single amino acids or by 
oxidation–reduction between pairs of amino acids via the 
Stickland reaction [37]. The yield coefficients of HVa from 
monosaccharides and amino acids (i.e., ƒva,su and ƒva,aa) 
postulated by Anaerobic Digestion Model No.1 (ADM1) 
were 0 and 0.23, respectively. As mentioned above, pro-
tein was the main constituent of WAS, which accounted 
for 58% of TCOD [19]. When digesting sludge alone, of 
course, the harvest was considerably more abundant in 
HVa (21%) than that in the conditioning tests. With the 
increase of the CS proportion to 35% and further to 50%, 
HVa was decreased to 12 and 9% in the HS groups. HBu 
was also abundant for digesting sludge alone (19%). With 
the increase of the CS proportion to 35% (50%), HBu cor-
respondingly decreased to 14% (12%) in the HS groups. 
It was reported that HVa and HBu can be converted into 
HAc and HPr via the ß-oxidation pathway by acetogenic 
bacteria in the syntrophic acetogenesis process, and the 
specific thermodynamic equation of HBu and HVa deg-
radation was shown as the following [37]:

From an overall perspective, the condition-
ing of WAS digestion by external CS addition was 
an efficient approach for the transformation of 
high-molecular-weight VFAs (e.g., HVa and HBu) to low-
molecular-weight VFAs (HAc and HPr).

Overall analysis of Illumina sequence data
In total, four 16S rRNA gene libraries of the 65:35% co-
digestion and control tests at 240  h were constructed 
from MiSeq sequencing, in total, with 101,567 high-qual-
ity reads (average length of 450 bp), and they were sub-
sequently clustered into 11,733 OTUs at a 3% distance 
(Additional file  3: Table S2). Rarefaction curves for all 
libraries displayed shapes indicative of effective sampling 
of community diversity (Additional file  4: Fig. S2). The 
microbial diversities of the evolving communities were 
assessed based on α-diversity. The Shannon diversity 
index provided the species evenness, indicating that the 
control had the highest diversity (Shannon 6.29) among 
the four communities. Based on the Chao1 indices, in 
which the richness was indicated, the control also had 
relatively higher diversity (7663). A reduction in bacte-
rial diversity occurred in the co-digesting tests, caused by 
the directional selection of bacteria, which resulted in the 
loss of biodiversity (Additional file 3: Table S2).

(1)HBu+ 2H2O → 2HAc+ 2H2

(2)HVa+ 2H2O → HPr+HAc+ 2H2

The similarity of the microbiome was calculated 
and examined by β-diversity. Differences in the bacte-
rial community composition among the samples were 
assessed by PCoA, generated from unweighted UniFrac 
(Additional file 5: Fig. S3A). Principal components 1 and 
2 explained 25.3 and 24.3% of the bacterial community 
composition variations, respectively. It was clear that 
the four samples were totally separated from each other, 
which was further proven by the results of hierarchical 
cluster analysis (HCA) (Additional file 5: Fig. S3B). That 
is, conditioning with CS, in different adjustment forms, 
substantially changed the bacterial community structure, 
despite the fact that the same initial source of the WAS 
microbial consortia was shared. To elucidate the interac-
tions among all of the OTUs and analyze the shared and 
most abundant OTUs in the four WAS samples, the OTU 
network was constructed (Fig.  3a). Collectively, only 
457 phylum-level OTUs were shared. The majority of 
the shared OTUs were Proteobacteria (33%), Firmicutes 
(12%) and Bacteroidetes (9%) (Fig. 3b).

Microbial diversity and distribution analysis
Phylogenetic analysis of the 16S rRNA gene sequences 
was performed at the phylum, class and genus levels to 
further investigate the diversity of the microbial com-
munity. Clear changes were observed in microbial com-
munity structures during WAS co-digestion with CS in 
different adjustment forms (Fig.  3c, d). The phyla Fir-
micutes, Bacteroidetes, Chloroflexi and Proteobacteria, 
which were recognized as common anaerobic fermen-
tation phyla, were dominant in the four communities. 
Firmicutes were primarily dominant in the co-digesting 
tests, with 36, 28 and 35% in H, S and HS, compared 
with 9% in the control. As reported, Firmicutes played 
a critical role in the anaerobic hydrolysis and acidifica-
tion process [38]. Almost the same trend was observed 
for Bacteroidetes. Conversely, Chloroflexi and Proteo-
bacteria decreased in all co-digesting samples. Such 
major difference of distributions of phyla between the 
sludge digestion alone and the co-digestion tests should 
be responsible for the distinct conditioning effects of CS 
addition, with different forms, on WAS digestion.

Pyrosequencing detected 67 bacterial classes in all four 
communities. The majority of sequences belonged to 12 
classes, among which Clostridia (phylum Firmicutes) and 
Bacteroidia (phylum Bacteroidetes) were the dominant 
ones. The sum accounted for 45–76% of the total bacte-
rial sequences for the co-digesting tests, while that was 
only 11% in the control (Fig. 3d). Clostirida was reported 
to consist of abundant anaerobic species and capable 
of decomposing solid wastes and producing organic 
acids by cellulolytic enzymes [39]. Bacteroidia was one 
of the few types of bacteria resistant to the extreme pH 
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conditions, and it was reported to play a critical role in 
sludge reduction [40].

Further investigation on the genus level provided 
more detailed information about microbial communi-
ties (Fig.  3e). Bacteroides (belonging to the class Bacte-
roidia) took up the largest proportion of co-digesting 
tests, especially in S (23%) and HS (34%), and it was iden-
tified as one of the most dominant heterotrophic organ-
isms in anaerobic wastewater treatment sludge and was 
capable of converting proteins and carbohydrates to HPr 

and HAc as its primary products in anaerobic sludge fer-
mentation [41]. As one of class Bacteroidia, Paludibac-
ter reached the highest abundance in S (4%), which was 
commonly considered to be a strictly anaerobic, HPr—
producing bacterium [42]. Mangroviflexu (belonging to 
class Marinilabiaceae), which was also mainly detected 
in S (7%), was an obligately anaerobic mesophilic micro-
organisms and be able to ferment various substrates with 
the production of HPr, HAc, and succinate [43]. This 
was a good explanation for the higher produced HPr in 
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CS_S conditioning test than that in H and HS (Figs. 1c, 
3b). Moreover, among these class Bacteroidia microor-
ganisms, Parabacteroide and Petrimonas, which were 
abundant in HS (6%) and H (3%), were also reported to 
have the ability to degrade complex organic matter to 
form acid [26, 44]. Three genera of Clostridia (Proteini-
clasticum, Saccharofermentans and Sedimentibacter) 
were identified. It is worth noting that a high protein or 
polysaccharide content would lead to the dominance of 
Proteiniclasticum (highest in HS (9%)), which is able to 
produce VFAs as end products from fermentation [45]. 
For Saccharofermentans, the main end products of fer-
mentation from glucose were HAc, lactate and fumarate 
[46], which peaked at ~4% in S. Sedimentibacter, which 
was mainly detected in H (3%) and only enriched at 
around pH 8.0, was known to ferment proteins through 
Stickland-type reactions to produce VFAs [47]. As stated 
in Fig. 2d, the pH was approximately 7.5 in the H test on 
day 10, which was beneficial for Sedimentibacter metabo-
lism. The other dominant genera in H were Cloacibacil-
lus (class Synergistia, 3%) and Acetoanaerobium (class 
Bacilli, 6%), which were specialized in amino-acid- bio-
degradation [48] and HAc production (from H2 and CO2) 
[49]. The dominant genera in the control included Thau-
era (2%), Nitrosospira (1%), Longilinea (5%) and Levilinea 
(4%), which were all common microbial consortia during 
the wastewater treatment.

Correlation between environmental variables 
and microbial populations
To better understand the roles and importance of indi-
vidual microbial groups in different CS and WAS co-
digestion processes, plausible relationship between 
characteristic genera and the environmental and perfor-
mance measurements, including pH, methane, VFAs, 
HAc, HPr, Spr and Sca concentrations, were evaluated 
using CCA (Fig.  4). Based on the assumption that the 
WAS digestion process is most likely driven by the pre-
dominant bacteria, we performed CCA analysis using 
16 characteristic bacteria. This result can explain why 
different adjustment forms of CS could influence the 
WAS hydrolysis, acidification and methanogenesis effi-
ciencies. The contents of methane and pH were proven 
to be positively correlated with the first canonical axis 
(explaining 63.4% of the variance of the genera distri-
bution), and the contents of Spr, Sca, VFAs, HAc and 
HPr showed negative interrelations. For axis 2 (explain-
ing 23.9% variance), only the HPr content showed good 
positive correlation. The detailed information is shown 
in Additional file 6: Table S3. The length of an arrow-line 
indicates the strength of the relationship between the 
environmental variable and the microbial community. 
As indicated, VFAs and HAc were strongly linked to the 

microbial community according to the length of the vec-
tor, followed by HPr and Sca. Moreover, the intersection 
angle between Spr and HAc/HPr was bigger than that of 
Sca, indicating that the Sca was more related to HAc and 
HPr production than Spr. This could be verified by the 
yield coefficients of HAc and HPr from monosaccharides 
and amino acids (i.e., ƒac,su, ƒac,aa, ƒpr,su and ƒpr,aa), which 
were 0.41 vs 0.40 and 0.27 vs 0.05, respectively [37]. The 
changes of Sca and Spr concentrations were closed to VFA 
production (including HAc and HPr), indicating that the 
efficiency of WAS hydrolysis plays an important role in 
the subsequent acidification process. As stated, it was 
also found that pH was closely related to methane pro-
duction, which was consistent with the above discussions 
(“Effect of feedstock proportions and CS adjustment 
forms on WAS digestion in the processes of hydrolysis, 
acidification and methanogenesis” section). In view of 
the CCA result (Fig. 4), we found that pH and methane 
production had very high positive correlation with some 
bacterial genera, including Thauera, Nitrosospira, Lon-
gilinea, Litorilinea, Levilinea and Cloacibacillus, which 
were abundant in the control and H tests. Mangroviflexus 
was highly correlated with HPr production, followed by 
Paludibacter, which was the characteristic genus in S. 
Bacteroides was comparatively correlated with HAc and 
VFAs production, followed by Fluviicola (the character-
istic genus in HS). Instead, the characteristic genera in H 
were Acetoanaerobium, Petrimonas and Sedimentibacter, 
which were closely related to Spr. Note that these char-
acteristic genera could be enriched by the feedstocks 
with certain contents of cellulose, hemicellulose (mainly 
in S) or their saccharification hydrolysates (mainly in H). 
In this sense, the CCA results suggested that adjustment 
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forms of external carbon sources may play an important 
role in structuring the innate microbial community in 
WAS and the relationship between community structure 
and the measured variables may reveal the whole CS and 
WAS co-digestion process.

Significances and potential implementation
This study demonstrated for the first time, the effect of 
CS conditioning with different adjustment forms (H, S 
and HS) on enhancing the WAS digestion efficiency by 
process assessment associated with microbial commu-
nity response analysis. Experimental results showed that 
the highest VFAs yield was achieved by H adjustment 
(~574 mg COD/g VSS), followed by S (~478 mg COD/g 
VSS) and then by HS (~454 mg COD/g VSS), no matter 
what the feedstock proportion was. In contrast, it was 
only 392 mg COD/g VSS for the control. Clearly, the con-
ditioning of CS greatly upgraded the WAS acidification 
performance. A marked rise in VFAs yield was observed 
when CS hydrolysate was employed. A comparison of 
VFAs yield from WAS digestion by co-digesting carbon-
rich substrates is given in Table 1. The yield obtained in 
65:35%_H was considerably larger than what has been 
previously reported [15, 16, 31, 32, 36, 50].

VFAs composition is considered to be crucial when 
the WAS hydrolysate is used as an external carbon 
source. Among the six VFA, HAc was regarded as the 
favorite substrate for many bioprocesses, such as nutri-
ent removal [51] and co-polymer production [52]. HAc 
was strongly dependent on adjustment form. HS condi-
tioning groups yielded more HAc (~58%), followed by 
H (~54%) and S (~52%) groups. Some researchers also 
explored almost the same approach to produce HAc 
by co-fermentation with other carbon-rich substrates. 
Morgan-Sagastume et al. reported that the HAc ratio to 
other acids was higher when fermenting the mixture of 
primary sludge and WAS [53]. Meanwhile, HPr was also 
considered to be an important component for biological 

phosphorus removal [54]. Pijuan et  al. showed that the 
biological removal of phosphorus was enhanced when 
using HPr as the sole carbon source [55]. In this study, 
we found that HPr was also dependent on adjustment 
form. That is, lower HPr was produced in the H and HS 
groups (~17 and ~18%), while higher HPr was produced 
in the S groups (22%). The sum of the concentrations 
of HAc and HPr was maximized in the 50:50%_HS test 
(78%, 9751  mg COD/L), versus 74% (7552  mg COD/L) 
and 60% (3803 mg COD/L) in the 65:35%_HS and con-
trol tests.

An ecological estimation was conducted for the entire 
process based on the exemplary 100,000 metric tones 
(mts) capacity WWTPs and the corn produced in the 
planting area of one acre. The amount of WAS was cal-
culated according to Feng et al. and the capacity was 43.8 
mts/d (745 kg/d (in VSS)) [56]. In 2015, Shanxi Province 
in China generated 9.4 million tones of corn in the plant-
ing area of 1.7 million hectares [20]. Since straw is not a 
statistical index but rather a complex unit, we estimated 
the amount of straw by the ratio of residue to grain, which 
was reported to be approximately 1.25 for corn [57]. Then, 
we finally obtained the 2378  kg/acre (in VSS) capacity 
for CS. Currently, conventional WAS and CS disposal 
routes were mainly land application, incineration, land-
fill, silage or even improper dumping (Fig. 5a). Figure 5b 
demonstrates the new carbon source recovery concept, 
as applied in a WWTP, by WAS digestion condition-
ing with CS in different adjustment forms. This finding 
showed that it will be very considerable to harvest VFAs 
as a carbon source, especially for the 65:35% WAS and 
CS co-digesting groups. By calculation, the VFAs yield (in 
COD) will be 2165, 2729 and 2597 kg per acre CS with the 
adjustment forms of H, S and HS. More importantly, the 
amount of WAS treated in this case will be equivalent to 
that produced in a 500,000 mts capacity WWTPs per day. 
That will be only 1451 kg VFAs (as COD) for WAS digest-
ing alone. Moreover, as far as the entire CS (one acre) was 

Table 1  Comparison of VFAs yield from WAS fermentation by co-digesting carbon-rich substrates

Sludge Carbon-rich substrates (adjust-
ment forms)

Feedstock proportions VFAs yield References

Adjusting pH (8)-treated WAS Thermal-treated rice (TTR)
(Solid)

50:50% (VSSWAS:VSSTTR) 520 mg COD/g VSS [16]

WAS Perennial ryegrass (Solid) 20:1 (C/N) 369 mg COD/g TS [15]

Mixed sludge (MS) Lime-treated bagasse (LTB) (Solid) 30:70%, 40:60% and 60:40% 
(gMS:gLTB)

360 mg carboxylic acid/g VS [31]

Alkaline- thermal treated WAS Agaricus bisporus substrates (ABS) 
(Solid)

45:55% (VSSWAS:VSSABS) 514 mg COD/g VSSWAS+ABS [36]

WAS Sugar beet pulp lixiviation (SBPL) 
(Solid)

75:25% (vSS:vSBPL) 350 mg COD/g VSS [32]

Dewatered WAS Food waste (FW) (Solid) 12:88% (VSSWAS:VSSFW) 393 mg/g VSS [50]

Ultrasonic treated WAS Alkaline treated CS hydrolysate 65:35% (VSSWAS:VSSCS) 583 mg COD/g VSS This study
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concerned, that is, including not only pretreated CS but 
also hydrolysate, the capacity of WAS treatment would 
achieve that is produced in a one million mts capacity 
WWTPs per day, where 4894 kg VFAs could be harvested. 
It is well-known that the removal of 1  mg nitrogen and 
1 mg phosphorus consumes respectively 6–8 mg [58] and 
7–10 mg COD [59]. In this case, specific removal amounts 
of nutrients, consuming 4894  kg VFAs, could be calcu-
lated to be at least 610 kg nitrogen or 490 kg phosphorus. 
Since it is expected that the problem of WAS disposal and 
biological treatment of nutrients will become more acute 
in the next decades for China, the implementation of this 
carbon recovery process from WAS digestion, condition-
ing by CS external addition, will be of increasing interest. 
Certainly, the practical implementation should further 
assess the potential challenges in WWTPs associated with 
management. In addition, the whole processes must be 

systematically developed along with life cycle, economic 
and ecological assessments for ensuring sustainability.

Conclusions
CS conditioning, with three adjustment forms (S, H and 
HS), exerted a positive influence on VFAs production and 
composition during anaerobic co-digestion with WAS. 
A comprehensive study to shed light on the underlying 
mechanism was undertaken for the first time by means 
of process assessment associated with microbial commu-
nity response analysis. CS_H conditioning gained a higher 
VFAs yield. Pyrosequencing revealed that the abundance 
of anaerobic functional microorganisms was significantly 
advantageous to the VFAs composition shift in three co-
digesting systems. Adjustment forms of CS played an 
important role in structuring the innate microbial commu-
nity in WAS. CCA analysis showed that the relationship 
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between microbial community structure and the meas-
ured variables revealed the whole CS and WAS co-diges-
tion process. Further investigation by ecological estimation 
revealed that the findings obtained in this study may have 
crucial implications for the operation of WWTPs.
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