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Abstract 

Background:  Acetyl-CoA is an important precursor in Saccharomyces cerevisiae. Various approaches have been 
adopted to improve its cytosolic level previously with the emphasis on engineering the “acetyl-” part of acetyl-CoA. To 
the best of our knowledge, there have been no reports on engineering the “-CoA” part so far.

Results:  In this study, we had tried to engineer S. cerevisiae from both the “-CoA” part via pantothenate kinase overex-
pression (PanK from S. cerevisiae, the rate-limiting enzyme for CoA synthesis) and the “acetyl-“part through PDH bypass 
introduction (ALD6 from S. cerevisiae and SeAcsL641P from Salmonella enteric). A naringenin-producing reporter strain 
had been constructed to reflect cytosolic acetyl-CoA level as acetyl-CoA is the precursor of naringenin. It was found 
that PanK overexpression or PDH bypass introduction alone only led to a twofold or 6.74-fold increase in naringenin 
titer, but the combination of both (strain CENFPAA01) had resulted in 24.4-fold increase as compared to the control 
(strain CENF09) in the presence of 0.5 mM substrate p-coumaric acid. The supplement of PanK substrate pantothenate 
resulted in another 19% increase in naringenin production.

Conclusions:  To greatly enhance acetyl-CoA level in yeast cytosol, it is feasible to engineer both the “acetyl-” part and 
the “-CoA” part simultaneously. Insufficient CoA supply might aggravate acetyl-CoA shortage and cause low yield of 
target product.

Keywords:  Acetyl-CoA, Pantothenate kinase, Pyruvate dehydrogenase bypass, Naringenin production, Pantothenate, 
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Background
The continuous use of fossil fuels has led to environ-
ment change. In recent years, people are seeking alter-
native energy resource to replace traditional fossil fuels 
[1]. Microbial conversion of renewable feedstock into 
fuels and chemicals has been intensively investigated [2]. 
Escherichia coli and Saccharomyces cerevisiae (S. cer-
evisiae), the most popular microbial factories, have been 
engineered for the production of valuable products [3, 
4]. Compared with E. coli, yeast has unique advantages, 

such as post-translational modifications, capacity of 
expressing complex enzymes like P450s, less possibility 
of potential phage contamination [5–7]. Thus, it has been 
engineered to utilize various feedstocks to produce natu-
ral products and biofuels [8, 9].

Acetyl-CoA is the precursor of a wide range of 
bioproducts, including isoprenoids, polyketides, 
flavonoids, stilbenes, fatty acids and lipids, polyhy-
droxyalkanoates, and 1-butanol [1, 6, 10]. These prod-
ucts are mostly synthesized by consuming cytosolic 
acetyl-CoA. However, as acetyl-CoA in yeast is mainly 
generated in mitochondria from pyruvate through 
pyruvate dehydrogenase (PDH) complex, it needs car-
nitine/acetyl-carnitine shuttle to be transported out of 
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mitochondria [6, 11]. In order to enhance acetyl-CoA 
level in cytosol, PDH bypass has been introduced into 
S. cerevisiae (Fig. 1). PDH bypass is composed of pyru-
vate decarboxylase (PDC), acetaldehyde dehydroge-
nase (ACDH, such as Ald6), and acetyl-CoA synthetase 
(ACS) [12]: the acetaldehyde formed from pyruvates 
by PDC can be converted into acetate by ACDH, or to 
ethanol by alcohol dehydrogenase (ADH), and acetyl-
CoA can be generated from acetate by ACS. Specifi-
cally, endogenous ALD6, and endogenous ACS1/ACS2 
or SeAcsL641P from Salmonella enteric have been used 
in PDH bypass buildup [6, 13]. In addition, other strate-
gies, such as overexpression of ADH2 (ADH2 converts 
ethanol into acetaldehyde) [6, 13], knockout of MLS1 
and CIT2 (encoding malate synthase and citrate syn-
thase, respectively) [6], and knockout of ADH1 to limit 
ethanol production from acetaldehyde [14], have been 
reported to enhance cytosolic acetyl-CoA supply in 
yeast. Combination of these approaches has been used 
to improve target product yield such as α-santalene [6]. 
But the combination may not always lead to significant 
increase in acetyl-CoA supply in yeast, for example, 
PDH bypass was introduced together with the over-
expression of exogenous ATP-dependent citrate lyase 
(ACL) or PDH complex (cytosol), but little improve-
ment was observed [7].

Previous studies on improving acetyl-CoA level in S. 
cerevisiae have been focused on engineering the “acetyl-” 
part of acetyl-CoA, but to the best of our knowledge, 
there have been no reports on engineering the “-CoA” 
part so far. Pantothenate kinase (PanK) is considered to 
be the rate-limiting enzyme for CoA synthesis, which 
catalyzes the phosphorylation of pantothenate [15] 
(Fig.  1). It was reported previously that the overexpres-
sion of mPanK1β (an isoform of PanK) in mammalian 
cells would trigger 13-fold increase in intracellular CoA 
content [16]. PanK overexpression in E. coli could also 
lead to tenfold increase in its intracellular CoA level 
and fivefold increase in its acetyl-CoA level [17]. There-
fore, in this work, we tried to overexpress PanK encod-
ing endogenous gene CAB1 to increase acetyl-CoA level 
in S. cerevisiae, together with PDH bypass introduc-
tion (ALD6 from S. cerevisiae and SeAcsL641P from S. 
enteric). In order to demonstrate cytosolic acetyl-CoA 
improvement in yeast, we had chosen naringenin as our 
model product, which takes acetyl-CoA as its precur-
sor (Fig.  1). A naringenin pathway of three genes, i.e., 
4-coumarate:CoA ligase (4CL), chalcone synthase (CHS), 
and flavanone isomerase (CHI), was integrated into yeast 
genome first. The introduction of PDH bypass alone led 
to 6.74-fold increase in naringenin titer in the presence of 
0.5 mM substrate. PanK overexpression further enhanced 

Fig. 1  Simplified overview of acetyl-CoA metabolism and associated naringenin synthesis pathway in S. cerevisiae. Acetyl-CoA is generated in differ-
ent compartments in yeast, including mitochondria (blue), cytosol [25], and peroxisome (not shown). Three genes (4CL, CHS, and CHI) for naringenin 
synthesis were introduced into yeast genome. In addition, the rate-limiting enzyme of CoA synthesis, pantothenate kinase (PanK), and PDH bypass 
(ALD6 and SeAcsL641P) were introduced into S. cerevisiae to improve its acetyl-CoA level in cytosol
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naringenin production by 24.4-fold as compared to the 
control. The supplement of PanK substrate pantothenate 
resulted in another 19% increase in naringenin produc-
tion. An independent acetyl-CoA assay also confirmed 
the enhancement in cytosolic acetyl-CoA level in the 
engineered yeast strains.

Methods
Plasmid and strain construction
PanK encoding gene CAB1 was amplified from S. cer-
evisiae BY4742 genome using primer pair 1&2 (Table 1) 
with KAPA HIFI polymerase (KAPA Biosystems, Wilm-
ington, MA, USA) and the PCR products were digested 
by SpeI and HindIII (all restriction enzymes in this study 
were from New England Biolab, Massachusetts, US) and 
inserted into the modified plasmid pRS426GAL1, which 
was reconstructed by removing its original XhoI and SalI 
sites (a pair of isocaudamer). The truncated HXT7 pro-
moter amplified from yeast genome using primer pair 3 
& 4 was digested by SacI and SpeI and inserted between 
SacI and SpeI sites to replace the original GAL1 pro-
moter. The new plasmid was named p426PanK.

TEF1p-ALD6-ADH1t expression cassette (TEF1p pro-
moter, ALD6 and ADH1t terminator were all amplified 
from S. cerevisiae BY4742 genome) was constructed by 
overlap PCR using primers 5, 6, 7, 8, 9, and 10. Restric-
tion endonuclease SacI, BamHI, XhoI, NheI, and NotI 
sites were introduced into the 5′-end of TEF1p using 
primer 5, while a SacI site was introduced into the 3′-end 
of ADH1t using primer 10. The cassette was digested 
with SacI and inserted into p426PanK to obtain plasmid 
p426PanK-Ald6. TDH3p-SeAcsL641P-PGIt expression cas-
sette, with TDH3p promoter and PGIt terminator from 
S. cerevisiae and SeAcsL641P from Salmonella enteric, was 
codon optimized and synthesized by GenScript (Piscata-
way, New Jersey, USA), which was digested by NheI and 
XhoI, and inserted into plasmid p426PanK-Ald6. The 
resulting plasmid was named p426PAA. The TEF1p-
ALD6-ADH1t and TDH3p-SeAcsL641P-PGIt expression 
cassettes were cut from plasmid p426PAA by SacI and 
XhoI and inserted into plasmid pRS426Gal1 to generate 
plasmid p426AA. All constructed plasmids (Table 2) had 
been sent to DNA sequencing for confirmation. 

To construct a naringenin-producing reporter strain, 
three genes involved in naringenin synthesis path-
way were introduced into S. cerevisiae genome, namely 
4-coumarate:CoA ligase (4CL) cDNA (GenBank: 
X13324) from Petroselinum crispum, chalcone syn-
thase (CHS) cDNA (GenBank: AF233638) from Petunia 
hybrida, and flavanone isomerase (CHI) cDNA (Gen-
Bank: Y00852) from Petunia hybrida. 4CL, CHI, and 
TEF1p-CHS-CYC1t expression cassettes were codon 

Table 1  Primers in this study

Primer 
no.

Sequence (5′–3′)

1 GTCAACTAGTATGCCGCGAATTACTCAAGAG

2 GTACAAGCTTCTACGTACTTGTTTTCTTAGTAG

3 GTCAGAGCTCACTTCTCGTAGGAACAATTTC

4 GTCAACTAGTTTTTTGATTAAAATTAAAAAAAC

5 ATCTGAGCTCGGATCCACTCGAGAGCTAGCAGCGGCCGC-
CACACACCATAGCTTCAA

6 GTGTAGCTTAGTCATTTTGTAATTAAAACTTAG

7 AGTTTTAATTACAAAATGACTAAGCTACACTTTGAC

8 TCATAAGAAATTCGCTTACAACTTAATTCTGACAGC

9 AGAATTAAGTTGTAAGCGAATTTCTTATGATTTATG

10 CTATGAGCTCGATCCGTGTGGAAGAACG

11 TTGTAATCGTTCTTCCACACGGATCTGGGGCCGTATACTTACATAT

12 TGGAGCAACACAATCACCCATGTTTAGTTAATTATAGTTCGT

13 ACGAACTATAATTAACTAAACATGGGTGATTGTGTTGCTCCA

14 GTAAAGACATAAGAGATCCGCTTACTTTGGCAAATCACCAGA

15 TCTGGTGATTTGCCAAAGTAAGCGGATCTCTTATGTCTTTAC

16 AAACATTTTGAAGCTATGGTGTGTGGGCATGCGAAGGAAAAT-
GAGA

17 GATGATAGTTGATTTCTATTCCAACAGTGAGTAAGGAAAGAGT-
GAGGAAC

18 AACAGAAACTGGTGGAGACATTGTTTTATATTTGTTGTAAAAAG

19 CTTTTTACAACAAATATAAAACAATGTCTCCACCAGTTTCTGTT

20 CATAAATCATAAGAAATTCGCTTAAACACCAATAACTGGAAT

21 ATTCCAGTTATTGGTGTTTAAGCGAATTTCTTATGATTTATG

22 TACTATATGTAAGTATACGGCCCCAGGATCCGTGTGGAAGAACGAT

23 TCTCATTTTCCTTCGCATGCCCACACACCATAGCTTCAAAATG

24 AAGGGTTGTCGACCTGCAGCGTAGCAAATTAAAGCCTTCGAGC

25 TGGGACGCTCGAAGGCTTTAATTTGCTACGCTGCAGGTCGACAAC

26 CAACAACACCTGCTTCATCAGCTGTTACGACTCACTATAGGGA-
GACCG

27 CTCGAGGGATATAGGAATCCTC

28 GTTCCTCACTCTTTCCTTACTCACTGTTGGAATAGAAATCAACTAT-
CATC

29 CCGGTCTCCCTATAGTGAGTCGTAACAGCTGATGAAGCAGGTGT

30 GAGAACTTCTAGTATATTCTGTATACCTAATATT

Table 2  Plasmids in this study

Name Description Source

pRS426GAL1 (2μ URA3) [13]

pUG6 Contains loxP-KanMX-loxP cassette for 
knockout in yeast

[37]

p426PanK PHXT7-CAB1 (2μ URA3) This study

p426PanK-Ald6 PHXT7-CAB1 PTEF1-ALD6 (2μ URA3) This study

p426AA PTEF1-ALD6 PTDH3-SeAcsL641P (2μ URA3) This study

p426PAA PHXT7-CAB1 PTEF1-ALD6 PTDH3-SeAcsL641P (2μ 
URA3)

This study
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optimized and synthesized by GenScript (an additional 
file shows this in more detail, see Additional file  1). 
TEF2p-4CL-ADH2t and PGK1p-CHI-ADH1t expression 
cassettes were constructed by overlap PCR using primers 
11–16 and 17–22. TEF1p-CHS-CYC1t expression cas-
sette was amplified by primer 23 & 24. To facilitate the 
integration, three additional DNA fragments were also 
obtained: KanMX (selective marker) was amplified from 
plasmid pUG6 using primer 25 & 26, δ1 (248 bp in the 
5′-end of δ sequence) and δ2 fragments (239  bp in the 
3′-end of δ sequence) were amplified from yeast genome 
using primer 27 & 28 and primer 29 & 30, respectively. 
These six DNA fragments were assembled into the δ 
sites of S. cerevisiae CEN.PK2-1C chrome (MATa; ura3-
52; trp1-289; leu2-3,112; his3 Δ1; MAL2-8C; SUC2) by a 
DNA assembler method [18]. The successfully assembled 
strain (CENF09) was confirmed by PCR with aforemen-
tioned primers (Table  3). Plasmid p426PanK was trans-
formed into strain CEN.PK2-1C and CENF09 to create 
CENP01 and CENFP01, respectively, using the LiAc/SS 
carrier DNA/PEG method [19]. The same approach was 
used to transform plasmid p426AA into strain CEN.PK2-
1C and CENF09 to generate CENAA01 and CENFAA01, 
respectively. Plasmid p426PAA was also transformed into 
strain CEN.PK2-1C and CENF09 to obtain CENPAA01 
and CENFPAA01, respectively. In order to identify posi-
tive clones, plasmids were extracted with Zymoprep 
Yeast Plasmid Miniprep II Kit (Zymo Research, Irvine, 
CA) and transformed into E. coli for verification by both 
restriction enzyme digestion and PCR.

Media and growth conditions
Escherichia coli DH5α was used for cloning and cultured 
in Luria–Bertani [20] broth with 100  μg/mL ampicillin 
at 37 °C. Yeast cells were cultured in YPD media (20 g/L 
peptone, 10  g/L yeast extract, and 20  g/L glucose) at 

30  °C. Recombinant yeast strains were screened and 
grown in YPD containing 200  μg/mL G418, or auxo-
trophic Complete Minimal medium (CM, 6.7  g/L yeast 
nitrogen base without amino acids, 20  g/L glucose, 
150 mg/L valine, 20 mg/L adenine hemisulfate, 20 mg/L 
arginine-HCl, 30 mg/L lycine-HCl, 20 mg/L methionine, 
200 mg/L threonine, 30 mg/L tyrosine, 50 mg/L phenyla-
lanine, optionally supplemented with 100  mg/L leucine, 
20  mg/L histidine, 20  mg/L uracile, and 20  mg/L tryp-
tophane) at 30 °C.

Naringenin fermentation and HPLC analysis
Yeast colonies of CENF09, CENFP01, CENFAA01, and 
CENFPAA01 were pre-cultured in 5-mL CM medium in 
50-mL tubes overnight at 30  °C, 225  rpm, respectively. 
The pre-culture was then diluted into fresh 20-mL CM 
medium in 250-mL flasks to a final OD600 of 0.05, respec-
tively. Fermentation was carried out at 30 °C, 225 rpm for 
96 h, with substrate p-coumaric acid (Sigma-Aldrich, St. 
Louis, MO, USA) concentration at 0.5 mM. In addition, 
the best acetyl-CoA-producing strain was also tested at 
a series of p-coumaric acid concentration: 0.05, 0.1, 0.2, 
0.3, 0.4, and 0.5 mM.

The fermentation broth was centrifuged at 12,000 rpm 
for 10  min. Samples from each supernatant were taken 
for HPLC analysis on a XDB-C18 column (Agilent, Santa 
Clara, USA). Compounds were separated by elution with 
acetonitrile–water gradient at 1.0  ml/min as described 
previously [21]. Naringenin standard (ACROS organics, 
New Jersey, USA) and naringenin from the samples were 
detected by its UV absorbance at 290 nm.

Acetyl‑CoA measurement
Acetyl-CoA was analyzed according to a previously 
described method [7]. Yeast colonies of CENP01, 
CENAA01, and CENPAA01 and wild-type CEN.PK2-
1C were pre-cultured in 5-mL CM medium in 50-mL 
tubes overnight at 30 °C, 225 rpm. The pre-cultures were 
diluted into fresh 50-mL CM medium to a final OD600 of 
0.05. Cells were harvested during mid-log phase by cen-
trifugation at 12,000  rpm for 5  min. 10-mL pre-chilled 
(−80  °C) methanol was added to quench cell metabo-
lism and centrifuged at 12,000 rpm for 5 min to remove 
the supernatant. 2  mL boiling ethanol was added to 
cell pellets and the mixture was treated thoroughly by 
glass beads for 5  min (vortex) to release intracellular 
metabolites. The supernatant was vacuum dried after 
centrifugation and re-suspended in 200  μL ddH2O. The 
resulting solution containing acetyl-CoA was analyzed 
by an Acetyl-CoA Assay Kit (Sigma-Aldrich, St. Louis, 
MO, USA). Acetyl-CoA concentration obtained was an 
average of biological duplicates, normalized by dry cell 
weight.

Table 3  Strains in this study

Name Description Source

CEN.PK2-1C MATa; ura3-52; trp1-289; leu2-3,112; his3 Δ1; 
MAL2-8C; SUC2

EUROSCARF

CENF09 CEN.PK2-1C with naringenin synthesis 
pathway (PTEF2-4CL PTEF1-CHS PPGK1-CHI) 
integrated into δ sites in chromosome, 
using KanMX for selection

This study

CENP01 CEN.PK2-1C + p426PanK This study

CENFP01 CENF09 + p426PanK This study

CENAA01 CEN.PK2-1C + p426AA This study

CENFAA01 CENF09 + p426AA This study

CENPAA01 CEN.PK2-1C + p426PAA This study

CENFPAA01 CENF09 + p426PAA This study
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Pantothenate effect on naringenin production
CENFPAA01 was pre-cultured in 5  mL CM medium 
in 50-mL tubes overnight at 30  °C, 225  rpm. The pre-
cultures were diluted into fresh 20  mL CM medium 
containing 0.5  mM p-coumaric acid substrate to a final 
OD600 of 0.05. 50  mM pantothenate (Sigma-Aldrich, St. 
Louis, MO, USA) stock solution was added to the liquid 
medium to achieve a final pantothenate concentration of 
10, 20, and 50 μM, respectively. Fermentation was carried 
out at 30 °C, 225 rpm for 96 h. Samples were taken from 
each fermentation broth for naringenin measurement.

Results
Construction of naringenin‑producing reporter strain
The amount of acetyl-CoA, an important precursor, is 
under dynamic changes due to continuous generation 
and consumption processes, and hence it is difficult 
to measure accurately [22, 23]. Since acetyl-CoA is an 
important precursor for naringenin, naringenin path-
way was introduced into S. cerevisiae as a reporter of 
its cytosolic acetyl-CoA level. Naringenin can be syn-
thesized from p-coumaric acid in plants, which is cata-
lyzed by three enzymes, 4CL, CHS, and CHI (Fig.  1). 
4CL catalyzes the ligation of CoA and p-coumaric acid 
to generate p-coumaroyl-CoA. CHS is responsible for the 
condensation of three molecules of malonyl-CoA, which 
are generated from 3 molecules acetyl-CoA, and p-cou-
maroyl-CoA to produce chalcone. Lastly, CHI catalyzes 
the isomerization of chalcone to generate naringenin. 
Three molecules of acetyl-CoA are consumed in total for 
one molecule of naringenin generated. In this work, in 
order to construct a stable reporter strain, 4CL gene from 
P. crispum, CHS and CHI genes from P. hybrida were 
codon optimized and synthesized for DNA assembly. All 
three genes were integrated into yeast genome by a single 
transformation step to generate strain CENF09. Consti-
tutive promoters TEF1p, TEF2p, and PGK1p were cho-
sen for CHS, 4CL, and CHI transcription, respectively. As 
a result, strain CENF09 could generate 0.43 mg/L narin-
genin with 0.5 mM p-coumaric acid present (Fig. 2).

Enhancing CoA/acetyl‑CoA supply with PanK 
overexpression
CoA was synthesized from pantothente, cysteine and 
ATP. For the first step, pantothenate is phosphorylated to 
4′-phosphopantetheine by an ATP-dependent pantoth-
enate kinase (Pank). 4′-phosphopantetheine reacts with 
cysteine to form 4′-phosphopantothenoylcysteine, which 
is subsequently decarboxylated to generate 4′-phospho-
pantetheine, which is changed into dephospho-CoA that 
is finally phosphorylated into CoA. The reaction cata-
lyzed by pantothenate kinase is the key and rate-limiting 
step. PanK is encoded by CAB1 in S. cerevisiae, which is 

reported to be transcribed at low level [15]. To improve 
CoA synthesis, CAB1 was overexpressed under a strong 
constitutive promoter (truncated HXT7 promoter) 
in CENF09 to create strain CENFP01, and the narin-
genin titer was found to be 0.88  mg/L in the presence 
of 0.5  mM substrate, about two-fold that of the control 
CENF09 (Fig. 2).

Introduction of PDH bypass to further improve acetyl‑CoA 
level
A PDH bypass, which generates acetyl-CoA from acet-
aldehydes via Ald6 from S. cerevisiae and mutant ACS 
from S. enteric (SeAcsL641P), was reported previously to 
enhance acetyl-CoA supply for amorphadiene [13] and 
α-santalene [6]. Due to the difficulty to overexpress PDC 
complex, ALD6 gene (S. cerevisiae) and SeAcsL641P (S. 
enteric) were overexpressed in this study for PDH bypass 
construction, under constitutive TEF1 and TDH3 pro-
moter in plasmid p426AA, which was introduced into 
yeast to create strain CENFAA01. It had demonstrated 
better naringenin production—2.90  mg/L naringenin 
with 0.5 mM p-coumaric acid present, 6.74-fold increase 
as compared to that of the control CENF09 (Fig. 2).

In order to further improve intercellular acetyl-CoA 
level in yeast, PDH bypass and PanK were both introduced 
into CENF09 to generate strain CENFPAA01. A signifi-
cant enhancement in naringenin titer was observed in 
CENFPAA01, 10.51 mg/L, which was 24.44-fold increase 
as compared to that of the control CENF09, 11.94-fold of 
CENFP01, and 3.63-fold of CENFAA01 (Fig. 2).

We had also tracked cell growth of CENF09, CENFP01, 
CENFAA01, and CENFPAA0 during naringenin produc-
tion. As shown in Fig.  3a, there is no significant differ-
ences on the growth after 120 h culture in CM medium 
among strain CENF09, CENFP01, and CENFAA01, 

Fig. 2  Naringenin titer in the engineered yeast strain CENF09 (the 
control), CENFP01, CENFAA01, and CENFPAA01 after 96 h fermenta-
tion in CM medium at 30 °C. Error bars represent the standard errors 
of at least three replicates
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whereas CENFPAA01 showed much less biomass accu-
mulation, which means the introduction of PanK or PDH 
bypass alone did not affect cell growth very much, but 
the co-expression of PanK and PDH bypass had caused 
heavy metabolic burden to yeast cells. Substrate p-cou-
maric acid itself also demonstrated inhibitory effects 
on cell growth during the first 24 h as shown in Fig. 3b. 
p-coumaric acid almost did not change the final biomass 
of CENF09 and CENFP01 after 120 h, while CENFAA01 
grew slower than without p-coumaric acid. Especially, 
CENFPAA01 in CM with 0.5 mM p-coumaric acid grew 
much slower than that of without p-coumaric acid. 
Moreover, if taking cell growth into account, naringenin 
titer in the best acetyl-CoA-producing strain CENF-
PAA01 was 54-fold that of CENF09, 30-fold of CENFP01, 
and sevenfold of CENFAA01, in the presence of 0.5 mM 
p-coumaric acid.

Since CENFPAA01 was the best naringenin- and 
acetyl-CoA-producing strain obtained, it was utilized for 
substrate optimization. As shown in Fig.  4, naringenin 
production increased with p-coumaric acid concentra-
tion and reached its optimum (~10.50  mg/L) at 0.4–
0.5 mM p-coumaric acid. As other research groups had 
also reported their naringenin production with 0.5  mM 
p-coumaric acid [21, 24, 25], we set substrate concentra-
tion at 0.5 mM in this work.

Acetyl‑CoA assay
To further confirm that the rise in naringenin production 
was due to acetyl-CoA increase in yeast, we had deter-
mined acetyl-CoA concentration in native strain CEN.
PK2-1C and three non-naringenin-producing strains 
(CENP01, CENAA01, and CENPAA01) with Acetyl-CoA 
Assay Kit, of which a CoA quencher would help remove 

free CoA background. As displayed by Fig. 5, the overex-
pression of PanK (CENP01) or PDH bypass (CENAA01) 
alone did not show significant acetyl-CoA level improve-
ment as compared to native strain CEN.PK2-1C. How-
ever, when PanK and PDH bypass were co-expressed 
in CENPAA01, acetyl-CoA level was greatly enhanced 
by ~threefold as compared to CEN.PK2-1C, which was in 
agreement with aforementioned findings on naringenin 
generation (Fig. 2).

Pantothenate effect on intracellular acetyl‑CoA level
Pantothenate, the substrate for PanK and precursor for 
CoA, is directly related with acetyl-CoA biosynthesis in 
S. cerevisiae. Since PanK is the rate-limiting step for CoA 
synthesis and previous reports have shown that pantoth-
enate supplement could help increase CoA/acetyl-CoA 
level in mammalian and E. coli cells [16, 17], pantothen-
ate concentration in the fermentation broth was opti-
mized in this work for naringenin production. As shown 
in Fig. 6, the titer rose with pantothenate addition when 
pantothenate concentration increased from 10 to 50 μM. 
Naringenin titer was at its maximum in the presence of 
50 μM pantothenate (12.49 mg/L), just a bit higher than 
that of 20 μM (12.22 mg/L), ~19% increase as compared 
to the case without (10.51  mg/L), which also suggests 
that increasing CoA supply is crucial for improving cyto-
solic acetyl-CoA level in yeast.

Discussion
In this work, PDH bypass and PanK, the rate-limiting 
enzyme for CoA synthesis, were both introduced into a 
naringenin-producing reporter strain to demonstrate 
its cytosolic acetyl-CoA level improvement. The best 
engineered strain CENFPAA01 showed naringenin titer 

Fig. 3  Growth profile of naringenin-producing strains in CM medium (a) without p-coumaric acid; b with 0.5 mM p-coumaric acid. Error bars repre-
sent standard errors of at least three replicates
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at 10.51  mg/L in the presence of 0.5  mM p-coumaric 
acid, which was 24.4-fold increase of that of the control 
CENF09. PanK substrate, pantothenate supplement has 
led to another 19% increase in naringenin production, 
and the final titer was further increased to 12.49  mg/L, 
which suggests that enhancing CoA supply could help 
improve acetyl-CoA level in yeast.

We found that to greatly enhance acetyl-CoA level in 
yeast cytosol, both the “acetyl-” part and the “-CoA” part 
have to be engineered simultaneously. The introduction 
of PanK or PDH bypass alone only showed moderate 
enhancement in naringenin production, namely twofold 
and 6.74-fold, respectively. However, when both were 
introduced into strain CENFPAA01, naringenin titer was 
dramatically improved by 24.4-fold as compared to the 
control CENF09. These findings were double confirmed 
by an independent acetyl-CoA assay (Fig.  5). Previous 
studies on ACL and PDH complex overexpression have 
successfully improved target products with acetyl-CoA as 
precursors [26, 27]. However, ACL catalyzes the forma-
tion of acetyl-CoA and oxaloacetate from citrate and CoA 
in the presence of ATP in cytoplasm. PDH complex over-
expression mainly focuses on increasing the acetyl- part. 
Thus, the supply of CoA might affect the final acetyl-CoA 
production. The idea is in agreement with previous find-
ings that the introduction of PDH bypass alone could 
not improve cytosolic acetyl-CoA level greatly in yeast. 
Chen et al. showed that PDH bypass could only enhance 
α-santalene titer by 50% in S. cerevisiae [6, 11]. Compared 
with above methods, our method is to ensure the balance 
between CoA and acetyl- part and maximize the acetyl-
CoA production. The “-CoA” engineering approach via 
PanK overexpression discussed here probably can also 
be combined with other “acetyl-” engineering methods 
to further help increase cytosolic acetyl-CoA supply in 
yeast.

The maximum naringenin titer reported here is 
12.49 mg/L, better than the titer from a previous report 
of introducing phenylalanine ammonia lyase [28] for de 
novo synthesis of naringenin (5.8  mg/L) [29]. Our titer 
was still lower than the naringenin titer (28.3  mg/L) 
reported by Koffas group, which was achieved by add-
ing substrate p-coumaric acid every 13  h to the culture 
in five equal doses [30]. To the best of our knowledge, 
all studies on flavonoid production in yeast used expres-
sion plasmids containing GAL1 or GAL10 promoter 
[29–31]. However, the repetitive homologous sequence 
of promoters may cause high possibility of gene deletion 
after rounds of subcultures [32, 33]. In this work, we had 
constructed a stable naringenin-producing strain for the 
evaluation of acetyl-CoA level in yeast—4CL, CHS, and 
CHI for naringenin synthesis were regulated by constitu-
tive promoters and integrated into yeast genome.

Fig. 4  Naringenin production in CENFPAA01 with various substrate 
p-coumaric acid concentration, 96 h fermentation in CM medium 
at 30 °C. Error bars represent the standard errors of at least three 
replicates

Fig. 5  Acetyl-CoA level in the engineered yeast strain CENP01, 
CENAA01, and CENPAA01 after 96 h culture in CM medium at 30 °C, 
with native strain CEN.PK2-1C as control. Acetyl-CoA level was nor-
malized by dry cell weight

Fig. 6  Pantothenate effect on naringenin production in CENFPAA01, 
96 h fermentation in CM medium at 30 °C. Error bars represent the 
standard errors of at least three repeats. PA pantothenate
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Yan et  al. [34] added substrate p-coumaric acid every 
13  h to avoid its toxicity to yeast cells. Interestingly, we 
had also found that the control CENF09 had higher nar-
ingenin production at low p-coumaric acid concentration, 
namely 3.55 mg/L with 0.1 mM substrate and 0.43 mg/L 
with 0.5 mM. One possible explanation for this phenom-
enon could be the insufficient acetyl-CoA supply when 
p-coumaric acid concentration increased from 0.1 to 
0.5 mM. CHS was reported to be the rate-limiting enzyme 
for flavonoid synthesis in oat primary leaves [34], and the 
flavonoid production could be regulated by CHS expres-
sion in Juglans nigra and cucumber plants [35, 36]. As 
such, if acetyl-CoA supply is insufficient, CHS reaction 
would slow down and less naringenin would be generated. 
At the same time, larger amount of CoA is consumed to 
produce p-coumaroyl-CoA with p-coumaric acid concen-
tration increases from 0.1 to 0.5 mM. Hence, insufficient 
CoA supply might aggravate acetyl-CoA shortage for the 
CHS step and led to lower naringenin titer.

Conclusions
In this study, we have demonstrated that the combination 
of PDH bypass and PanK overexpression would greatly 
enhance acetyl-CoA level in S. cerevisiae cytosol. It is the 
first report to engineer both the “acetyl-” part and the 
“-CoA” part simultaneously in yeast to improve acetyl-
CoA production. Taking naringenin as sample product, 
the acetyl-CoA increase has led to 24.4-fold increase in 
its titer. We hope this approach could also help improve 
other chemical production in yeast, which takes acetyl-
CoA as its precursor.
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