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Abstract 

Background:  The unicellular model cyanobacterium Synechocystis sp. PCC 6803 is considered a promising microbial 
chassis for biofuel production. However, its low tolerance to biofuel toxicity limits its potential application. Although 
recent studies showed that bacterial small RNAs (sRNAs) play important roles in regulating cellular processes in 
response to various stresses, the role of sRNAs in resisting exogenous biofuels is yet to be determined.

Results:  Based on genome-wide sRNA sequencing combined with systematic analysis of previous transcriptomic 
and proteomic data under the same biofuel or environmental perturbations, we report the identification of 133 trans-
encoded sRNA transcripts with high-resolution mapping of sRNAs in Synechocystis, including 23 novel sRNAs identi-
fied for the first time. In addition, according to quantitative expression analysis and sRNA regulatory network predic-
tion, sRNAs potentially involved in biofuel tolerance were identified and functionally confirmed by constructing sRNA 
overexpression or suppression strains of Synechocystis. Notably, overexpression of sRNA Nc117 revealed an improved 
tolerance to ethanol and butanol, while suppression of Nc117 led to increased sensitivity.

Conclusions:  The study provided the first comprehensive responses to exogenous biofuels at the sRNA level in 
Synechocystis and opens an avenue to engineering sRNA regulatory elements for improved biofuel tolerance in the 
cyanobacterium Synechocystis.
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Background
The production of biofuels using solar energy and CO2 in 
metabolically engineered photosynthetic cyanobacteria 
holds promise for replacing fossil fuel and generating sus-
tainable energy [1, 2]. However, current biofuel produc-
tivity in the cyanobacterial system is still several orders of 
magnitude lower than that of native producing microbes 
[3, 4]. This may be due to multiple reasons, such as low 
expression of foreign metabolic pathways and efficiency 
to direct metabolic flux to end-products in the cyano-
bacterial chassis, as well as high end-product toxicity to 

cyanobacterial hosts [5, 6]. Therefore, in addition to fur-
ther optimizing expression and functionality of foreign 
pathways, there is urgency to systematically understand 
the tolerance mechanism of the cyanobacterial chassis 
to biofuels, as well as various resistance mechanisms for 
surviving adverse environmental perturbations during 
fermentation.

Recent studies showed that small RNAs (sRNAs) 
between 50 and 300 nucleotides play key regulatory 
roles in prokaryotic cells at the post-transcriptional 
level [7]. These RNAs interfere with ribosome binding 
sites and block translation initiation by base-pairing or 
affecting mRNA secondary structure and consequently 
altering mRNA stability, or they interact with proteins 
directly to modulate their activity [8]. RNA sequencing 
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(RNA-seq) is a powerful analytical tool that provides 
insight into changes in gene expression and leads to the 
discovery of novel small and regulatory RNAs. RNA-
seq has recently been applied in research of sRNAs in 
the model cyanobacterium Synechocystis sp. PCC 6803 
(hereafter Synechocystis) [9–11], as well as in various 
groups of cyanobacteria, such as Prochlorococcus and 
Anabaena [12, 13]. Many identified sRNAs were shown 
to be involved in cellular responses to a variety of envi-
ronmental stresses and stimuli [9, 12, 13]. For example, 
both cis-acting antisense sRNA (e.g., IsrR, Asl_flv4) and 
trans-encoded sRNAs (e.g., PsrR1, NsiR4) in Synechocys-
tis participate in iron depletion, inorganic carbon sup-
ply, or photosynthetic and nitrogen assimilation control 
metabolism [14–17]. However, sRNAs involved in regu-
lating or improving biofuel tolerance have not yet been 
described in cyanobacteria.

Engineering of cyanobacteria for improved biofuel 
tolerance would require a level of understanding of the 
mode of action of sRNAs. As experimental investiga-
tion of multiple potential targets is often slow, numer-
ous bioinformatics tools have been developed to predict 
gene targets of sRNAs at a genomic scale [18, 19]. These 
tools are based on the phylogenetic conservation of 
either sRNA or target sequences. After an initial inter-
action energy-dependent target prediction within the 
individual whole genome, the CopraRNA algorithm uti-
lizes functional enrichment to achieve a list of potential 
target genes and performs further regulatory network 
analysis with the aim of uncovering a function for sRNA 
[18]. However, sRNA regulatory mechanisms in bacte-
ria are not limited to base-pairing regulation [7, 20]. In 
particular, some sRNAs interact with proteins that have 
regulatory roles in a pathway or biological process [8]. 
Therefore, identification and engineering of master reg-
ulatory sRNAs, particularly highly abundant and stable 
sRNAs that have predictable secondary structures, will 
lead to a novel strategy for Synechocystis to be adapted to 
a growth condition with higher biofuel concentrations.

With an ultimate goal to construct a robust and prod-
uct-tolerant photosynthetic chassis for synthesizing 
various renewable biofuels, we have previously applied 
various omics analytical tools to determine cellular 
responses of Synechocystis cells under exogenous bio-
fuel stress. The results showed that the cells tended to 
employ a combination of multiple resistance mechanisms 
in dealing with various stresses [21–27], which has cre-
ated challenges to improve tolerance by conventional 
sequential multi-gene modification approaches [3, 28]. 
To address the issue, approaches have been proposed to 
analyze regulatory systems for tolerance improvement 
[29]. For example, Song et  al. [30] and Chen et  al. [28] 
used quantitative iTRAQ LC–MS/MS proteomics to 

discover the two regulators Sll0794 and Slr1037, which 
participate in Synechocystis biofuel tolerance [28, 30]. 
Kaczmarzyk et  al. [31] overexpressed sigB to increase 
both temperature and butanol tolerance in Synechocys-
tis. Therefore, “transcriptional engineering” for toler-
ance improvement [29, 31], which includes systematic 
analysis and engineering of master regulatory sRNAs 
could be an applicable approach [32]. The sRNA engi-
neering approach could have many advantages, such as 
rapid response, flexible and precise control, ready resto-
ration, and low metabolic burden [32]. When the study 
was initiated, it was shown that increased sRNA expres-
sion in E. coli resulted in superior tolerance to acid and 
provided protection against oxidative stress [33]. In 
addition, a comprehensive RNA-seq study of all mRNAs 
and sRNAs under ten different growth or environmental 
stress conditions was also recently reported for Synecho-
cystis [10]. Here, we conducted a deep-sequencing analy-
sis of sRNAs in Synechocystis under various exogenous 
biofuel stresses including ethanol, butanol, and hexane, 
and proposed a multi-step approach for the identifica-
tion of sRNAs in Synechocystis. Because most current 
sRNA target prediction algorithms may have overlooked 
structured sRNAs that function with no short seed base-
pairing sequence, the potential secondary structures of 
sRNAs with top abundance in our list of sRNAs were 
also selected for analysis. To identify sRNAs specifically 
related to biofuel tolerance from a large number of candi-
dates, we further applied multivariate statistical analysis 
and sRNA regulatory network construction approaches 
via extensive target prediction [18], correlation analysis 
between sRNA and paired transcriptomic data [34], and 
functional enrichment analysis [35]. These efforts led to 
the identification of several sRNAs related to biofuel tol-
erance, among which a trans-encoded sRNA Nc117 was 
shown to improve cell tolerance against both ethanol and 
butanol when overexpressed in Synechocystis. In con-
trast, overexpression of three other sRNAs, whose pos-
sible targets were enriched in porphyrin and chlorophyll 
metabolism or photosynthesis, rendered the Synechocys-
tis cells more sensitive to ethanol and butanol.

Results
sRNA deep‑sequencing and identification
To ensure that the sRNA sequence data obtained in this 
study were compatible with our previous transcriptomic 
and proteomic data, Synechocystis was grown under 
the same concentration treatments as in several previ-
ous studies [i.e., ethanol 1.5% (v/v), butanol 0.2% (v/v), 
hexane 0.8% (v/v), salt 4% (w/v), and nitrogen starva-
tion] [21–27], which led to an approximate 50% growth 
decrease at 48 h (Fig. 1). To identify the sRNAs of Syn-
echocystis that potentially participated in responses to 
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various stresses, sRNA isolation was performed with 
cultures prepared at 24, 48, and 72  h for further sRNA 
sequencing. This resulted in a total of 294.6-million raw 
sequencing reads from 18 samples, with an average of 
16.37 million reads per sample. After trimming the 3′ 

and 5′ adapter sequences and low-quality bases, all sam-
ples showed a mapping ratio greater than 50%, except 
for hexane-treated samples (Additional file 1: Table S1). 
Based on the read mapping and coverage statistics (Addi-
tional file 2: Figure S1), a total of 3378 and 131 small-size 
RNA genes were identified in the chromosomal DNA 
and four plasmids of Synechocystis, respectively, exclud-
ing 43 tRNA genes. Based on their location, these can-
didates were further classified into three categories: (1) 
133 trans-encoded sRNAs located in intergenic regions, 
which are the subjects of this study and referred to as 
sRNAs below, (2) 1824 cis-antisense sRNAs (asRNAs) 
inversely oriented within an annotated gene and (3) 1421 
sRNAs located in mRNA untranslated regions (UTRs) 
(100 nt upstream or 50 nt downstream of annotated 
genes) on the chromosome of Synechocystis (Additional 
file 3: Table S2).

Various strategies have been utilized for system-
atic genome-wide searching for sRNAs in Synechocys-
tis in the past. However, the results obtained by various 
experimental (i.e., sequencing platform, library construc-
tion) and bioinformatics approaches vary widely [9–11]. 
Therefore, a comparison was conducted for regulatory 
sRNAs identified in this study with those identified previ-
ously in Synechocystis [9–11] (Additional file 4: Table S3). 
The Venn diagram plots showed that only 11 sRNAs were 
identified by all four independent studies of Synechocystis 
sRNAs, while a majority of trans-encoded sRNAs were 
only identified by one or two approaches (Fig. 2a) [9–11]. 
In addition, the 11 sRNAs identified in all studies were 
defined with slightly different boundaries, indicating that 

WT
Ethanol 1.5% 
Butanol 0.2% 
Hexane 0.8%
Salt 4%
N starvation

3.2 

1.6 

0.8 

0.4 

0.2 

0.1 

0 12 24 36 48 60 72 84 96 108 120 132
Time (h) 

O
D

73
0 

Fig. 1  Effects of ethanol, butanol, hexane, salt, and nitrogen 
starvation on growth of Synechocystis. Growth curves of wild-type 
Synechocystis in BG11 medium control (WT), medium with biofuel 
at the indicated concentration (v/v), medium with 4% NaCl (w/v), 
or BG11 medium without nitrogen sources (N starvation). Error bars 
represent the calculated standard deviation of the measurements of 
three biological replicates
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Fig. 2  The trans-encoded sRNA gene distribution in Synechocystis. a Venn diagram of trans-encoded sRNA inventories identified in this study 
and previous studies—Study A [9], Study B [10], and Study C [11]—using different technical platforms. b Pie chart showing the number of trans-
encoded sRNAs identified in this study belonging to different categories: Nr, potential sRNAs identified by BLAST search in non-redundant protein 
sequence database with E value <1e−10; ORF, potential sRNAs with an open reading frame; Repeat, IS: potential sRNAs located in genome-inter-
spersed repeat region or identified as an insert sequence; ncRNA (Rfam), sRNAs identified in conserved non-coding RNA family in Rfam database
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sRNAs in Synechocystis have not been exhaustively inves-
tigated and well characterized. However, a few experi-
mentally validated sRNAs indeed appeared on our list, 
such as cis-antisense sRNAs such as IsrR [14] (As717) 
and As1_flv4 [15] (As59), and the trans-encoded sRNAs 
PsrR1 [16] (Nc57) and NsiR4 [17] (Nc42). Moreover, the 
expression level of PsrR1 and NsiR4 was up-regulated 
nine and threefold under nitrogen starvation conditions, 
as revealed by the deep-sequencing data and consistent 
with the previous experimental report [10]. Furthermore, 
the 4.5S RNA (Nc64), 6S RNA (Nc70) [36], and tmRNA 
(Nc121) were also identified in this study in high abun-
dance [37] (Additional file  5: Figure S2). Notably, the 
comparative analysis showed that 23 new trans-encoded 
sRNAs were identified by this study (Fig.  2a), some of 
which were found with relatively high read coverage 
depth, such as Nc7, Nc123, Nc66, Nc56, and Nc33. It is 
likely that expression of some sRNAs was only activated 
under specific stress-treated samples, consistent with 
previous reports that any single experimental condition 
could not accommodate identification of all sRNAs in a 
species [9–11].

Previous transcriptomic sequencing showed that reads 
that can map to multiple locations due to close paralogs 
can lead to inaccurate estimation of expression level in 
genes that reside in repetitive regions [38]. Although we 
did not discard reads that could map to multiple loca-
tions, it was necessary to classify sRNAs located in repet-
itive regions as potential false positives [39]. For example, 
nine trans-encoded sRNAs were identified from the 
pSYSA plasmid of Synechocystis, among which six were 
located in three CRISPR sequence regions of the plas-
mid [8, 40]. Although no CRISPR sequences were found 
in the Synechocystis genome, a number of interspersed 
repeat sequences (IRSs) were widely distributed in the 
Synechocystis chromosome. One type of IRS, the retro-
transposon, is a major class of transposable elements that 
can duplicate through RNA intermediates and would 
bring interference to sRNA-library construction [41]. In 
addition, some Synechocystis sRNAs may contain uORFs 
that are in fact short mRNAs or dual-function RNAs 
[42]. Therefore, all identified sRNA sequences were sub-
jected to BLAST searches against a non-redundant pro-
tein sequence database (Nr) and potential open reading 
frame (ORF) and ribosomal binding site (RBS) predic-
tion, respectively, for further confirmation (Fig.  2b). 
The results showed that 14 trans-encoded sRNAs were 
located in repetitive regions of the genome, and four of 
these were identified as insert sequence (IS) elements. 
Approximately 16 trans-encoded sRNAs matched to 
sequences encoding hypothetical proteins in the Nr 
database with an E value less than 1e−10, and 39 trans-
encoded sRNAs potentially encoded ORFs. Interestingly, 

beyond trans-encoded sRNA genes, eight sRNAs identi-
fied here had records in Rfam database [43], such as 6S 
and tmRNA. Finally, 56 of the remaining trans-encoded 
sRNAs identified in this study could potentially be 
authentic small non-coding RNAs (small ncRNAs) in 
Synechocystis. Notably, 16 trans-encoded sRNAs located 
near Rho-independent transcription terminators have 
been reported for numerous bacterial sRNAs [44]. 
Detailed classification and annotation results for trans-
encoded sRNA are provided in Additional file 4: Table S3.

Stress response analysis for top abundant sRNAs 
in Synechocystis
Great advances have been made in the computational 
prediction of sRNA targets, and current target prediction 
algorithms typically start with single short seed base-
pairing sequences, which assume a regulatory mecha-
nism involving sRNA–mRNA interaction. However, this 
sequence-based prediction can be problematic, especially 
for sRNAs that have complex secondary and tertiary 
structures that confer potential to interact with other bio-
molecules such as proteins (e.g., CsrB/RsmZ) [7]. Due to 
the structures and potential binding to proteins, sRNAs 
must be relatively stable through the course of cultivation 
and become a constitutive component of cell physiol-
ogy when Synechocystis is adapted to biofuels. One way 
to identify these sRNAs is to examine the abundance 
of sRNA candidates [42]. The abundance of 133 sRNAs 
listed in Additional file 3: Table S2 was thus determined. 
Although the sRNAs with top abundance in the small 
RNA sequencing (sRNA-seq) data for biofuel-treated 
cells were somewhat different from the highly abundant 
sRNAs identified in other studies [42], commonly known 
sRNAs such as 4.5S RNA (Nc64), tmRNA (Nc121) [37], 
and 6S RNA (Nc70) [36] were highly ranked in the list 
(1st, 4th, and 9th, respectively) (Fig. 3a, details in legend), 
suggesting the consistency of sRNA sequencing com-
pared to conventional RNA blotting methods.

Two-step RT-PCR analysis was also performed to esti-
mate the abundance and determine the transcriptional 
orientation of the 12 most abundant sRNAs selected 
from the sRNA-seq data list (Additional file  6: Figure 
S3). The result showed that the expression of almost all 
sRNAs could be confirmed, and the abundance of sev-
eral sRNAs, such as Nc18, Nc41, Nc110 and Nc122, 
was nearly as high as the three positive control sRNAs. 
The orientation of sRNA except nc81, located in the 
genome repeat region with a 60% high GC content was 
also determined in relation to the adjacent genes for all 
sRNAs, and the results were in good agreement with 
either Rfam annotation or previous reports [9–11]. Many 
of these sRNAs are located in genetically less character-
ized regions of the genome. Interestingly, the proximal 
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genes of nc7 and nc122 (ncr1650) seem to be related to 
photosynthesis. Furthermore, analysis using the RNAfold 
program [45] showed that these highly abundant sRNAs 
could fold into complex secondary structures, implying 
their stable nature and possibly important physiological 
roles (Additional file  7: Figure S4). These sRNAs were 
found to be Synechocystis-specific and most of the sRNA 
abundance appeared to not be affected by the biofuels 
(except Nc81), as revealed by the sRNA-seq data. How-
ever, more data are still needed to define possible func-
tions of the abundant Synechocystis sRNAs with stable 
structure.

Quantification analysis for stress responsive trans‑encoded 
sRNAs
To investigate sRNAs potentially involved in stress 
responses, a systematic presentation of the related 
information for the identified trans-encoded sRNAs is 
shown in Fig.  3a, including location, absolute expres-
sion abundance, and expression response change to dif-
ferent stresses in the sRNAs. In addition, a multivariate 

statistics approach called correspondence analysis (CA) 
focuses on the relationships between samples and sRNA 
expression. This method was applied to determine pos-
sible biofuel-specific sRNAs in Synechocystis. The score 
plot of CA in Fig.  3b shows that: (i) samples under the 
same treatment condition were clearly clustered together 
on the CA plot, suggesting that the stress condition is a 
significant factor determining the expression of sRNAs; 
(ii) significantly different responses between the wild 
type (WT) and samples treated with environmental 
perturbations (i.e., salt and nitrogen starvation) were 
observed, while the samples stressed by several biofuels 
tended to be similar to the WT, suggesting a relatively 
high degree of similarity between all biofuel-stressed 
samples. The responses resulting from biofuel stress are 
less significant than the high salt and nitrogen starvation 
at the sRNA level; (iii) notably, the sRNA Nc72 was found 
to be specifically expressed under high salt conditions, 
and was nearest to the sample treated with high salt on 
the CA score plot. Similarly, several sRNAs including 
Nc11, Nc57 (PsrR1), Nc86, Nc107, Nc130 and Nc132 
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Fig. 3  Circular representation and correspondence analysis of expression of trans-encoded sRNAs in Synechocystis under control and five stress 
conditions. a From outside to inside: (1) Whole chromosome and four plasmids (pSYSM, pSYSA, pSYSG, and pSYSX) of Synechocystis with color order 
orange, yellow, green, blue, and purple, respectively. Numbers in blue labeled outside the circle reflect the scale, and each unit corresponds to 0.01 M 
of the genome; (2) Location of sRNAs in the Synechocystis genome. Several key sRNAs were labeled in the outer circle: biofuel-responsive sRNAs are 
in black; names of the top abundant sRNAs are marked in red; (3) Circular boxplot presentation for the range of sRNA absolute expression levels 
under various conditions (recorded as the log10-transformed maximum, upper quartile, median, lower quartile, and minimum expression values of 
sRNA in 18 different samples). Higher sRNA expression is correlated with a further outside boxplot position; (4) Circular heatmap presentation for 
sRNA log2-transformed expression changes under five stress conditions at 24, 48, and 72 h. From outside to inside, the order is E24, E48, E72, B24, 
B48, B72, H24, H48, H72, S24, S48, S72, N24, N48, and N72. The color scale is in the top-left corner of the figure. Several biofuel-responsive sRNAs or 
stress-specific responsive sRNAs are marked by black framed lines; b Correspondence analysis of sRNA expression under 18 experimental condi-
tions. Samples in control, ethanol, butanol, hexane, salt, or nitrogen starvation conditions are labeled black, red, orange, yellow, green, and blue, 
respectively. Each gray number represents one of the 133 identified trans-encoded sRNAs. The x-axis and y-axis represent the first dimension and the 
second dimension, respectively, for correspondence analysis
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were identified as possible sRNAs whose expression spe-
cifically responded to nitrogen starvation conditions. In 
contrast, there was no significant difference in CA score 
plot between the WT and biofuel-treated samples, sug-
gesting that no sRNA was uniquely regulated by any spe-
cific type of the exogenous biofuel.

To further investigate biofuel-responsive sRNA, differ-
ential expression profiling analysis between the WT and 
stress-treated conditions was performed using DESeq 
software [46] (Additional file  3: Table S2). Using criteria 
of fold change greater than 1.5 and adjusted p values less 
than 0.05, only six, nine, and ten sRNAs were found dif-
ferentially expressed under the ethanol, butanol, or hex-
ane stress conditions, respectively (Fig.  4). This number 
is far less than the high salt (30) and nitrogen starvation 
conditions (57), consistent with overall trends revealed 
by the CA analysis. To capture the early responses at the 
transcriptional level, we also performed a differential 
expression profiling analysis for sRNAs at early stages (i.e., 
24 and 48 h) (details in Additional file 3: Table S2). Similar 
results were obtained to those from the CA analysis.

Identification of biofuel‑related sRNAs by construction 
of an sRNA regulatory network and experimental 
confirmation
Recently, a network approach combined with global 
omics datasets has been proposed as a useful tool to 
identify responses under multiple growth conditions 
[47]. A functional sRNA regulatory network in Synecho-
cystis was constructed with the aid of the CopraRNA 
tool [18] integrated with paired transcriptomic analysis 
(Additional file 8: Figure S5). The results showed that the 
potential targets of Nc57 (PsrR1) were enriched in pho-
tosynthesis targets, consistent with the results of recently 

published verification experiments [16]. This example 
demonstrated that the network approach implemented in 
this study could provide reliable identification of sRNAs 
involved in regulating key biological processes that might 
be associated with biofuel tolerance of Synechocystis.

According to our previously weighted gene co-expression 
network analysis (WGCNA) with the Synechocystis pro-
teomic data [48], photosynthesis antenna proteins, por-
phyrin and chlorophyll metabolism and photosynthesis 
were identified as the top three significant biofuel-specific 
responsive pathways after cells were treated with exog-
enous biofuels [48]. Therefore, considering the association 
of responsive sRNA with these three pathways (Fig. 5) and 
the fold change of responsive sRNAs, a total of 20 sRNAs 
were chosen for quantitative real time polymerase chain 
reaction (qRT-PCR) validation. To quantitatively confirm 
results from the sRNA analysis, all samples were collected 
in the same manner as previous studies [21–27] and were 
used for qRT-PCR analysis (sRNA and primer sequences 
in Additional file  9: Table S4). The qRT-PCR results con-
firmed that a majority of sRNAs were significantly down- or 
up-regulated under specific stress conditions. Overall, com-
parative qRT-PCR and deep-sequencing analysis of sRNAs 
suggested a positive correlation with Pearson correlation 
coefficients of 0.57–0.81 (Additional file  10: Figure S6), 
demonstrating the high reliability of the sRNA-seq analysis.

Validation of putative sRNAs involved in biofuels tolerance
Based on the bioinformatics analysis combined with qRT-
PCR validation, a total of 18 sRNAs were selected for con-
structing overexpression and suppression strains for further 
functional and phenotypic confirmation. As the sRNA-seq 
in this study provided no information on the orientation 
of sRNA gene candidates, the constructed strains with a 
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Fig. 4  Number of differentially regulated sRNAs in the genome of Synechocystis under five conditions
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selected sRNA expressed in either the positive (named 
as WT/pJA2-sRNA+) or negative (named as WT/pJA2-
sRNA−) strand direction were constructed, correspond-
ing to an overexpression or suppression strain, respectively 
(sRNA and primer sequences provided in Additional file 11: 
Table S5). All mutants and the wild-type Synechocystis were 
monitored for growth under the biofuel stress conditions 
in shake flasks. The results showed that only four of the 18 
constructs had visible differential growth phenotypes under 
biofuel conditions: pJA2-nc33−, pJA2-nc65+, pJA2-nc85+, 
and pJA2-nc117+. In addition, the constructed strains car-
rying the four sRNAs caused no change in growth pheno-
type under the control growth condition. To validate that 
these sRNAs were indeed stably overexpressed, RT-PCR 
verification was conducted between wild-type and pJA2-
ncRNA mutants (Additional file 12: Figure S7). Moreover, a 
two-step RT-PCR procedure that can differentially amplify 
the target sRNA transcript from one direction in compari-
son to potential transcription from the opposite direction 
was applied to determine the transcriptional direction of 
the four sRNAs (Fig. 6a). Reproducible results showed that 
Nc33 was on the negative strand, while the other three 
sRNAs were on the positive strand.

Characterization of the overexpression strain of Nc117 
sRNA
The WT/pJA2-nc117+ strain overexpressing nc117, 
located between slr0550 and slr0551, grew faster than 

the WT under 1.5–2.0% (v/v) ethanol and 0.20–0.25% 
(v/v) butanol conditions. No difference was observed 
when they both grew in normal BG11 medium (Fig. 7a, 
b). In addition, the cell aggregation commonly seen in 
WT under biofuel stress was significantly alleviated in 
the pJA2-nc117+ strain (data not shown). However, no 
visible growth difference was observed when the strain 
grew under hexane (0.6–0.8%), high salt (3–4%), or 
nitrogen starvation conditions (data not shown). These 
results were consistent with the up-regulation of Nc117 
only under ethanol and butanol conditions revealed by 
sRNA deep-sequencing and qRT-PCR analysis (Addi-
tional file 9: Table S4) and suggested that nc117 overex-
pression could confer Synechocystis-specific resistance to 
both ethanol and butanol. Two-step RT-PCR analysis for 
Nc117 under ethanol and butanol conditions further con-
firmed these results (Fig.  6b). To further confirm these, 
the WT/pJA2-nc117− (Nc117 suppression) strain was 
constructed and validated by two-step RT-PCR (Addi-
tional file 13: Figure S8). In accordance with our expec-
tation, the pJA2-nc117− showed a reverse phenotype 
(Fig.  7a, b) that is more sensitive to ethanol or butanol 
stress, demonstrating exclusively that Nc117 played an 
important role in biofuel tolerance in Synechocystis.

The sRNA homologs from six strains of Synechocys-
tis were subject to CopraRNA for prediction of poten-
tial target genes, as no homolog of nc117 was found in 
other species of cyanobacteria. Based on the integrated 

Photosynthesis - antenna 
proteins 

Porphyrin and chlorophyll 
metabolism 

Photosynthesis 

Nc72

Nc21 Nc65

Nc85 Nc105

Nc35 Nc33

Nc109

Nc106

Nc42 Nc57

Nc14

Nc119

Nc22

Nc82Nc61

Nc114

Nc115

Nc104

Nc69

Nc93

Nc74

Nc10

Fig. 5  Representation of the top three biofuel-related pathways in the trans-encoded sRNA regulatory network of Synechocystis. A pink node 
represents an sRNA and a turquoise rectangle represents a metabolic pathway. An arrow between an sRNA and a metabolic pathway represents the 
predicted target gene for an sRNA on the positive strand, while a dotted line between an sRNA and a metabolic pathway represents the predicted 
target gene for an sRNA on the negative strand



Page 8 of 17Pei et al. Biotechnol Biofuels  (2017) 10:57 

analysis with transcriptomic datasets, the potential target 
genes of Nc117 were predicted and listed in Additional 
file 14: Table S6. The results showed that although most 
potential targets were annotated as hypothetical pro-
teins, some targets were involved in pathways related to 
biofuel response, including transporter proteins and cell 
wall/membrane modifications [6]. In addition, functional 
categorization of the predicted target genes for Nc117 
showed that the peptidoglycan biosynthesis pathway was 
significantly enriched. As previous analyses reported, 
changes in membrane composition or membrane-asso-
ciated proteins could improve the viability of E. coli and 
cyanobacteria under fatty acid and alcohol stress condi-
tions [49, 50]. The increase in the degree of cross-linking 
between constituents of the cell wall and modifications 
of the cell wall hydrophobicity protected cells against 
the toxic effects of lipophilic compounds [6, 51, 52]. 
Peptidoglycan as an important component of cell wall 

in Synechocystis cells could be modified at the cell sur-
face as a mechanism for improving tolerance to biofuels 
[6]. Moreover, Nc117 was also found significantly up-
regulated under cold stress condition (15 °C for 30 min) 
(“Ncr1600” in the study) [10]. It is widely accepted that 
low temperature can affect the fluidity and function of 
cellular membranes, suggesting possible roles for Nc117 
targets in fatty acid or membrane modification and 
metabolism. Further experimental validation of Nc117 
sRNA target genes, including the generation of a deletion 
mutant, is still needed.

Characterization of overexpression strains 
of photosynthesis‑related sRNAs
Growth analysis showed that three sRNA overexpression 
strains, including pJA2-nc33−, pJA2-nc65+, and pJA2-
nc85+, grew poorly in BG11 medium supplemented 
with ethanol or butanol, suggesting that overexpression 

6M 1 2 3 4 M 5 7 8 M 

200 bp 

1: Nc33- 
2: Nc33+ 

3: Nc65- 
4: Nc65+ 

5: Nc85- 
6: Nc85+ 

7: Nc117- 
8: Nc117+ 

300 bp 

300 bp 

1: WT-Control (Nc117-)  
2: WT-Ethanol (Nc117-)  
3: WT-Butanol (Nc117-)  

7: Background (Primer-free) 
8: Background (RNA-free) 

7M 1 2 3 4 5 6 M 

16S rRNA 

Nc117 

4: WT-Control (Nc117+)  
5: WT-Ethanol (Nc117+)  
6: WT-Butanol (Nc117+)  

M 8 

a

b

Fig. 6  Experimental determination of transcriptional orientation by two-step RT-PCR and verification of biofuel-responsive sRNA. a Four biofuel-
response sRNA orientations by two-step RT-PCR. “+” denotes the orientation of sRNA on the positive genome strand, “−” denotes the orientation 
of sRNA on the negative genome strand. The bold and underlined names indicate the determined orientation of an sRNA. b Ethanol- and butanol-
responsive expression of Nc117 validation using two-step RT-PCR. The upper part indicates Nc117 validation, the control background primer-free 
or RNA-free for Nc117 were conducted with no primers or reverse transcriptase added during first step reverse transcription. The lower part shows 
16S rRNA indicates an internal control, all samples with random primers during reverse transcription, except for lane 8 RNA-free without reverse 
transcriptase. All samples were collected in the logarithmic growth phase
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of sRNAs led to increased sensitivity to biofuels, which 
could be negatively involved in biofuel tolerance (Fig. 7a, 
b). The genetic locations of nc33, nc65, and nc85 sRNA 
genes are provided in Table 1. Interestingly, target enrich-
ment analysis showed that Nc65 and Nc85 were enriched 
in porphyrin and chlorophyll metabolism and Nc33 in 
photosynthesis; both metabolic pathways were identified 
as biofuel-specific responsive pathways in our previous 
study [48]. This was consistent with a previous study that 
showed that proteins related to photosynthesis and chlo-
rophyll concentration were up-regulated upon ethanol 
exposure in Synechocystis cells [23], indicating that the 
responses of sRNAs and protein to biofuels could point 
to similar mechanisms. However, suppression of the 
three sRNAs (i.e., pJA2-nc33+, pJA2-nc65− and pJA2-
nc85−) did not improve Synechocystis biofuel tolerance 
(data not shown), suggesting that indirect mechanisms 
may be involved.

To evaluate whether biofuel tolerance of Synechocys-
tis related to photosynthesis and chlorophyll contents, 
cells of WT, pJA2-nc33−, pJA2-nc65+, pJA2-nc85+, and 
pJA2-nc117+ grown under normal BG11, 2.0% (v/v) eth-
anol, and 0.25% (v/v) butanol at the exponential growth 
phase were also collected for flow cytometric analysis. 
The result showed that the cell morphology and chlo-
rophyll content of five tested strains were similar under 
normal conditions (Additional file 15: Figure S9A, B). In 
addition, the main peak of FL3-H that indicates chloro-
phyll intensity per active cell did not change in the WT 

and the mutants under ethanol or butanol stress condi-
tions (Additional file 15: Figure S9C, D).

Conclusions
Recent progress in metabolic engineering and synthetic 
biology has demonstrated great potential in the use of 
photosynthetic cyanobacteria for biofuel production. 
However, the highest production of biofuels in renewable 
cyanobacterial systems still largely lags behind yeast or 
other native (heterotrophic) systems [53]. Previous stud-
ies suggested that low tolerance to biofuel toxicity could 
be one reason for the low productivity in the cyanobacte-
rial chassis [3], which prompted us to initiate the rational 
construction of a highly tolerant chassis. Among vari-
ous promising approaches, sRNAs, especially those with 
global regulatory effects, have been proposed as powerful 
tools for chassis engineering [29]. However, very limited 
information is currently available for sRNAs related to 
biofuel tolerance in cyanobacteria.

To identify the sRNAs involved in the adaptation of 
model cyanobacterial Synechocystis sp. PCC 6803 to 
biofuel growth conditions, samples from five growth 
conditions were collected for sRNA sequencing. Bio-
informatics analysis and experimental validation led to 
the identification of the first sRNA (Nc117) that could 
improve the tolerance of Synechocystis to both exog-
enous ethanol and butanol. In contrast, overexpression 
of three other sRNAs with predicted functions related 
to photosynthesis made cells more sensitive to ethanol 
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and butanol. A few highly abundant and structure-stable 
sRNAs of Synechocystis, which can function by interact-
ing with other biomolecules to enable cell fitness, were 
studied. Although the individual function of sRNAs at 
the molecular level must be elucidated in the future, our 
results provide important knowledge of potential sRNA 
targets and demonstrate a new strategy of engineer-
ing adaptive sRNAs to improve tolerance to biofuels in 
Synechocystis.

Finally, the potential limitations of developing a toler-
ant chassis alone should be acknowledged. For example, 
some studies have shown that simply increasing toler-
ance does not necessarily correlate with increased yield 
[6]. Tolerance mechanisms identified under exogenous 
biofuel stress may not be identical to those caused by 
biofuels synthesized internally [54]. In the future, further 
advances may target other important aspects, such as 
improving metabolic flux and enhancing reductive forces 
for the cyanobacterial chassis. This research will eventu-
ally lead economically feasible cyanobacterial cell facto-
ries in the future.

Methods
Strains, culture, and stress conditions for sRNA samples
Synechocystis sp. PCC 6803 was grown in BG11 medium 
(pH 7.5) under a light intensity of approximately 50 μmol 
photons/m2  s1 in an illuminating incubator (HNY-211B 
Illuminating Shaker, Honour, China) at 130  rpm and 
30  °C with a starting cell density of OD730  =  0.1 [21, 
23–27]. Cell density was measured with a UV-1750 spec-
trophotometer (Shimadzu, Japan). For growth and stress 
treatment, 10  mL fresh cells at OD730 approximately 
0.5 was collected by centrifugation and inoculated into 
50  mL BG11 liquid medium in a 250-mL flask. Ethanol 
1.5% (v/v), butanol 0.2% (v/v), hexane 0.8% (v/v), and salt 
4% (w/v) were added at the beginning of cultivation. The 
nitrogen starvation condition was established by exclud-
ing NaNO3 from the BG11 medium. Two milliliter of 
culture was sampled and measured at OD730 every 12 h. 
Finally, a total of 18 culture samples including six condi-
tions at three time points (i.e., 24, 48, and 72 h) were col-
lected for RNA preparation.

RNA preparation and cDNA synthesis
Approximately 10  mg of cell pellets were frozen in liq-
uid nitrogen immediately after centrifugation at 8000×g 
for 10 min at 4  °C, and cell walls were broken by liquid 
nitrogen mortar grinding. Cell pellets were re-suspended 
in TRIzol reagent (Ambion, Austin, TX) and mixed well 
by vortexing. Total RNA extraction was achieved using 
a miRNeasy Mini Kit (Qiagen, Valencia, CA). Contami-
nating DNA in RNA samples was removed with DNase 
I according to the instructions for the miRNeasy Mini 

Kit (Qiagen, Valencia, CA). The RNA quality and quan-
tity were determined using an Agilent 2100 Bioanalyzer 
(Agilent, Santa Clara, CA) and subjected to complemen-
tary DNA (cDNA) synthesis. The RNA integrity number 
(RIN) of every RNA sample used for sequencing was 
more than 7.0. To enrich small RNA for the sRNA-seq 
analysis, the pool of total RNAs was size-selected, and 
transcripts smaller than 250 nucleotides (nt) was used 
to prepare cDNA libraries. For each sample, 500 ng size-
fractionated sRNAs were subjected to cDNA synthesis 
using a NuGEN OvationW Prokaryotic sRNA-Seq Sys-
tem according to the manufacturer’s protocol (NuGEN, 
San Carlos, CA). The resulting double-stranded cDNA 
was purified using the MinElute Reaction Cleanup Kit 
(Qiagen, Valencia, CA).

Library preparation for sRNA and sequencing
The double-stranded cDNA was subjected to library 
preparation using the Illumina TruSeq™ RNA Sample 
Preparation Kit (Illumina, San Diego, CA), through a 
four-step protocol including end repairing, addition of 
adenylate 3′ ends, adapter ligation, and cDNA template 
enrichment. The amplification program were: 98 °C 30 s; 
98 °C 10 s, 60 °C 30 s, 72 °C 30 s for 15 cycles; 72 °C for 
5 min, and hold at 4 °C. To determine the quality of the 
libraries, a QubitW 2.0 Fluorometer and Qubit™ dsDNA 
HS (Invitrogen, Grand Island, NY) were first used to 
determine the DNA concentration of the libraries, and a 
FlashGel DNA Cassette (Lonza, USA) or Agilent Tech-
nologies 2100 Bioanalyzer (Agilent, Santa Clara, CA) 
was used to determine the product size of the libraries, 
with good libraries typically 250–300  bp. The product 
was used directly for cluster generation using an Illu-
mina Solexa Sequencer according to the manufacturer’s 
instructions.

RNA 2  ×  100  bp paired-end sequencing was per-
formed using the standard protocol for the Illumina 
Genome Analyzer IIx. The cDNA library for each sample 
was loaded onto a single lane of an Illumina flow cell. The 
image deconvolution and calculation of quality values 
were performed using a Goat module (Firecrest v.1.4.0 
and Bustard v.1.4.0 programs) with Illumina pipeline 
v.1.4. Sequenced reads were generated by base calling 
using the Illumina standard pipeline.

sRNA data analysis
Genome sequence and annotation information for Syn-
echocystis were downloaded from NCBI (ftp://ftp.ncbi.
nlm.nih.gov/genomes). The sRNA sequence reads were 
pre-processed using an NGS QC Toolkit (v. 2.3) to 
remove low-quality bases and adapter sequences [55]. 
Reads after QC were aligned to the Synechocystis genome 
using the Burrows-Wheeler Alignment tool software (v. 
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0.7.10) [56] with perfect match parameters. As the length 
of some small RNAs might be shorter than 100 nucleo-
tides, we applied a strategy of 50 cycles of read trimming 
and re-mapping to detect bacterial sRNAs between 50 
and 100 bp [7]. Briefly, we re-extracted the reads that did 
not match the Synechocystis genome from the aligned 
SAM files and trimmed one low-quality base from 3′ or 
5′ end of these reads (observed by FastQC software). We 
then re-mapped these trimmed reads to the Synechocys-
tis genome. If reads still did not match, the entire process 
was repeated until the reads matched the Synechocys-
tis genome. Reads shorter than 50  bp that could align 
were discarded. Finally, we use Samtools [57] software 
(v. 0.1.19) to merge all original SAM files from the same 
sample.

After sRNA pair-end reads were mapped to the Syn-
echocystis genome, Bedtools (v. 2.20.1) [58] was used to 
calculate read mapping statistics for each sample from 
BAM files generated with Samtools. The coverage of each 
nucleotide was calculated by counting the number of 
reads mapped at corresponding nucleotide positions in 
the genome. To normalize the sRNA expression level in 
different samples, we removed nucleotide coverage deep 
in the rRNA operon and tRNA gene regions, summed 
all the nucleotide coverage in the remaining genome 
regions as total mapped bases, and normalized them 
to 100,000,000 bases. This created a reads base for all 
samples, which corresponded to an approximately 25× 
sequence depth for the whole Synechocystis genome.

The sRNAs were identified using a multi-tiered 
approach. We first searched for enriched regions of 
sRNA expression and then estimated their 3′ and 5′ 
positions through a manual correction. For highly tran-
scribed sRNA, we defined si as the coverage depth at 
nucleotide i in the Synechocystis genome and then set a 
real expression level for a given sRNA at each nucleotide 
of at least 50× sequencing depth. We looked for the first 
location in si > 50 representing the start site of an sRNA 
and then determined whether si+1 > 50, until si+j < 50 is 
the end site of a sRNA. For low-transcribed sRNAs, we 
used previously reported sRNA gene candidates as ref-
erences and only retained sRNA with an obvious reads 
coverage reduction 50 bp upstream or downstream of the 
adjacent region. To obtain a robust sRNA mapping with a 
low false positive rate, especially for the induced sRNAs, 
we retained the sRNAs that were repeatedly observed in 
at least in three samples across all 18 samples. Finally, 
manual correction of sRNA boundaries was conducted 
to identify a point of max rapid coverage decline, consid-
ered as the end of the sRNA. We used an R script based 
on the core code from Kopf [10] to produce a PDF file 
to display distribution of sRNA reads in the Synechocystis 
genome (Additional file 2: Figure S1) and four plasmids 

including pSYSM, pSYSA, pSYSG, and pSYSMX (Addi-
tional file  16: Figure S10, Additional file  17: Figure S11, 
Additional file  18: Figure S12, Additional file  19: Figure 
S13, respectively). Two adjacent sRNAs located on the 
same strand shorter than 50 bp with the same expression 
trend were merged as a single sRNA. The sRNAs shorter 
than 50 bp were discarded. By determining the 5′ and 3′ 
ends and inspecting the locations, these potential sRNA 
genes were classified into trans-encoded sRNAs, cis-anti-
sense sRNAs and UTRs of mRNAs based on their loca-
tion and were annotated as ncRNA (nc), asRNA (as) and 
UTR (U), respectively.

To overcome challenge that potential identified sRNAs 
due to reads matched to multiple locations [59], repeti-
tive regions in the Synechocystis genome were searching 
by BLAST software. Fragments with identity >80%, E 
value <1e−5 and length >50 bp were considered a repeat 
region. The IS was predict using Isfinder software [60]. 
The sRNA-seq data was compared with the Nr database 
and Rfam database with a 1e−10 cut-off. Candidate ORFs 
and RBSs were predicted by Glimmer [61] and RBSfinder 
[62], respectively. Rho-independent terminators in Syn-
echocystis were searched for using TransTermHP [63] 
with standard settings. RNA secondary structure and ∆G 
analyses of sRNAs were performed using RNAfold soft-
ware [45].

Quantification and statistical analysis of sRNAs
For all comparisons, the aligned total base counts were 
normalized to obtain relative levels of expression. We 
defined si as the coverage depth at nucleotide i in an 
sRNA, summed coverage depth at each nucleotide for 
an sRNA and divided by its length. The sRNA expression 
level was calculated as: 

∑i+j
i si

/

j. Differentially expressed 
sRNAs were identified using the R package from DESeq 
software [46] with identified sRNAs as input. For com-
parison, the resulting p values were adjusted using Ben-
jamini and Hochberg’s approach for controlling the false 
discovery rate. The sRNAs with fold change >1.5 and 
adjusted p values <0.05 were assigned as significantly 
differentially expressed. Correspondence analysis was 
conducted using R software. The annular heatmap repre-
sentation was conducted using the OmicCircos package 
[64] in R software.

Construction of sRNA regulatory networks
For construction of sRNA regulatory networks, each 
trans-encoded sRNA target prediction was first per-
formed with CopraRNA software [65] using sRNA 
homologs from six strains of Synechocystis 6803 genomes 
(NC_000911, NC_017038, NC_017039, NC_017052, 
NC_017277, and NC_020286) as inputs. The top 100 
predictions obtained from CopraRNA with a free-energy 
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cut-off of −10 kcal/mol were retained to remove poten-
tial false positive targets [34]. Later, a Pearson cor-
relation analysis with a set of paired RNA samples in 
previous studies was used to further improve the accu-
racy of target prediction. Only correlation <−0.4 or >0.4 
and p values <0.05 by Fisher’s exact test in two-sided 
analysis were kept to reduce false positive target predic-
tion. The approach is a modification of previous reports 
where only anti-correlated relationships were retained 
for sRNA regulatory network construction [66] as posi-
tive regulation of sRNA also found in Synechocystis [67]. 
To assess sRNAs-regulated metabolic pathways, we per-
formed functional enrichment analyses for each trans-
encoded sRNA (see “Functional enrichment analysis” 
section). Only pathways containing at least two target 
genes with hypergeometric test p values <0.05 were con-
sidered enriched metabolic pathways potentially regu-
lated by sRNAs (Additional file 20: Table S7). Finally, we 
generated an sRNA regulatory network after assembling 
all significantly enriched target results. A display of the 
sRNA regulatory network was conducted with Cytoscape 
software [68].

Functional enrichment analysis
The metabolic pathway enrichment analysis of genes was 
conducted according to the KEGG (Kyoto Encyclopedia 
of Genes and Genomes) pathway database using the fol-
lowing hypergeometric test formula:

N is the total number of genes with KEGG pathway 
annotation information, M is the number of genes with 
a given KEGG pathway annotation, n is the number of 
sRNA target genes with all KEGG pathway annotation 
information and m is the number of the sRNA target 
genes with a given KEGG pathway annotation. KEGG 
pathways with p values less than 0.05 were considered 
enriched response pathways.

qRT‑PCR analysis and two‑step RT‑PCR analysis
The RNA samples used in sRNA sequencing and qRT-
PCR were prepared from identical cultures, and qRT-
PCR analysis was performed as previously described 
[21]. Quantification of sRNA expression was determined 
according to a standard process of qRT-PCR that used 
serial dilutions of known concentrations of chromosomal 
DNA as a template to construct a standard curve. A total 
of 20 sRNAs were selected for verification and 16S rRNA 
was used as an internal control. Three technical replicates 

P = 1−

m−1
∑

i=0

(

M
i

)(

N −M
n− i

)

(

N
n

)

and three biological replicates were analyzed for each 
sRNA. The data analysis was carried out using the StepO-
nePlus analytical software (Applied Biosystems, Foster 
City, CA). Briefly, the amount of relative gene transcript 
was normalized by that of 16S rRNA in each sample, and 
the data presented were ratios of the amount of normal-
ized transcripts in the treatment between the stress-
treated and normal conditions.

In two-step RT-PCR analysis, a specific set of primer 
pairs located in the inner boundary of sRNA was 
designed for each sRNA (Additional file 9: Table S4). As 
Additional file  21: Figure S14 shows, two opposite RT 
primers that sit inside the sRNA region were separately 
added to approximately 200 ng of total RNA from first-
strand cDNA synthesis at 40 °C for 1 h using the Rever-
tAid™ First Strand Synthesis Kit (Fermentas, USA). Both 
nested primers of the sRNAs were added to 1 μL of the 
two separate first-strand cDNA products for amplifica-
tion using Dream Taq Green PCR Master Mix (Thermo 
Scientific). The PCR cycling was as follows: 95 °C 2 min, 
then 95 °C 30 s, 55 °C 30 s or 57 °C 30 s, 72 °C 15 s for 35 
cycles, followed by a 5-min final extension at 72 °C. The 
PCR products were separated on 3.0% agarose gels.

Construction and analysis of sRNA mutant strains
Gene expression vector pJA2, kindly provided by Prof. 
Paul Hudson (KTH Royal Institute of Technology of Swe-
den), was used to overexpress the sRNAs. All sRNAs were 
cloned under the control of the psbA2 promoter. Briefly, 
the pJA2 backbone was amplified by PCR, treated with 
DpnI and digested with BamHI and XbaI to create cohe-
sive ends. The sRNA sequence was PCR-amplified using 
primers pJA2-sRNA-F and pJA2-sRNA-R and cloned into 
the BamHI/XbaI sites of pJA2, resulting in the recombi-
nant plasmid pJA2-sRNA (details in Additional file  22: 
Figure S15). The plasmid was introduced into the WT 
by electro-transformation as previously described [69]. 
Positive clones grew on BG-11 agar plates with 10 μg/mL 
kanamycin and were confirmed by colony PCR analysis. 
The sRNA overexpression strains were designated WT/
pJA2-sRNA.

Phenotypic analysis
Synechocystis and sRNA mutant strains were grown 
under the same culture condition with sRNA sampling 
starting at a cell density of OD730 = 0.1. For biofuel treat-
ment, 2.0–2.5% (v/v) ethanol, 0.20–0.25% (v/v) butanol, 
or 0.8–1.0% (v/v) hexane was added at the beginning of 
the cultivation. For salt treatment, BG11 with 5% NaCl 
(w/v) was prepared and sterilized. Next, 3–4% (w/v) NaCl 
of BG11 was prepared by adjusting the ratio between 
normal and 5% NaCl (w/v) BG11 at the beginning of cul-
tivation. For nitrogen starvation treatment, fresh cells at 
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the same (logarithmic) phase were collected by centrifu-
gation at 1500×g at 4  °C and washed twice with nitro-
gen depletion BG11 medium. Cells were inoculated into 
nitrogen-depleted BG11 liquid medium in flasks. Cell 
density was measured on a UV-1750 spectrophotometer 
(Shimadzu, Japan) at OD730. Growth experiments were 
repeated at least five times to confirm growth patterns.

Flow cytometric analysis
Flow cytometric analysis was performed using a fluores-
cence-activated cell sorting (FACS) Calibur cytometer 
(Becton–Dickinson) equipped with a 488-nm blue laser 
with the following settings: forward scatter (FSC), E00 
log; side scatter, 400  V. Control and stress-treated cells 
were harvested at 48  h, washed twice with phosphate 
buffer (pH 7.2), and re-suspended in the same buffer to a 
final OD580 of 0.3 (approximately 1.5 × 107 cells/mL1). A 
total of 5 × 104 cells were used for each analysis accord-
ing to the published method [70]. Chlorophyll fluores-
cence was detected by the FL3 channel with a 670/LP 
filter. The data analysis was conducted using CellQuest 
software, version 3.1 (Becton–Dickinson).
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