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Abstract 

Background:  Due to its chemical composition and abundance, lignocellulosic biomass is an attractive feedstock 
source for global bioenergy production. However, chemical composition variations interfere with the success of 
any single methodology for efficient bioenergy extraction from diverse lignocellulosic biomass sources. Although 
chemical component distributions could guide process design, they are difficult to obtain and vary widely among 
lignocellulosic biomass types. Therefore, expensive and laborious “one-size-fits-all” processes are still widely used. 
Here, a non-destructive and rapid analytical technology, near-infrared spectroscopy (NIRS) coupled with multivari-
ate calibration, shows promise for addressing these challenges. Recent advances in molecular spectroscopy analysis 
have led to methodologies for dual-optimized NIRS using sample subset partitioning and variable selection, which 
could significantly enhance the robustness and accuracy of partial least squares (PLS) calibration models. Using this 
methodology, chemical components and theoretical ethanol yield (TEY) values were determined for 70 sweet and 77 
biomass sorghum samples from six sweet and six biomass sorghum varieties grown in 2013 and 2014 at two study 
sites in northern China.

Results:  Chemical components and TEY of the 147 bioenergy sorghum samples were initially analyzed and com-
pared using wet chemistry methods. Based on linear discriminant analysis, a correct classification assignment rate 
(either sweet or biomass type) of 99.3% was obtained using 20 principal components. Next, detailed statistical analysis 
demonstrated that partial optimization using sample set partitioning based on joint X–Y distances (SPXY) for sample 
subset partitioning enhanced the robustness and accuracy of PLS calibration models. Finally, comparisons between 
five dual-optimized strategies indicated that competitive adaptive reweighted sampling coupled with the SPXY 
(CARS-SPXY) was the most efficient and effective method for improving predictive performance of PLS multivariate 
calibrations.

Conclusions:  As a dual-optimized methodology, sample subset partitioning combined with variable selection is 
an efficient and straightforward strategy to enhance the accuracy and robustness of NIRS models. This knowledge 
should facilitate generation of improved lignocellulosic biomass feedstocks for bioethanol production. Moreover, 
methods described here should have wider applicability for use with feedstocks incorporating multispecies biomass 
resource streams.
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Background
Interest in biomass as an alternative energy resource has 
been increasing dramatically in step with increases in fos-
sil energy costs worldwide [1]. As a promising advanced 
biofuel, bioethanol has become one of the most practical 
solutions for carbon emission reduction and food secu-
rity in recent decades [2, 3]. Moreover, production of sec-
ond-generation bioethanol derived from lignocellulosic 
agricultural wastes offers farmers and rural communities 
more economic opportunities than did first-generation 
bioethanol production [4]. Consequently, optimization of 
lignocellulosic feedstocks for second-generation bioetha-
nol production is currently under intensive development 
globally [5]. Among candidate biofuel feedstocks, sor-
ghum (Sorghum bicolor L.) contains exceptional levels 
of soluble sugars (in the stem) and starch (in the grain), 
both of which are directly fermentable into bioethanol [1, 
6]. Meanwhile, a large amount of degradable lignocellu-
lose from stem is available for second-generation bioeth-
anol production after the harvest season. As a typical C4 
crop, sorghum offers several advantages: rapid growth 
rate, high tolerance to drought and saline/alkaline soil 
conditions, and worldwide adaptability. Nowadays, sor-
ghum is the fifth most widely produced cereal crop in the 
world and is grown not only for grain production but also 
for fiber, forage, and sugar production [7, 8]. For energy 
purposes, sorghum may be divided into two specific cat-
egories: sweet sorghum and biomass sorghum. Sweet 
sorghum accumulates high levels of sugar in the stem 
of the plant, while biomass sorghum contains abundant 
structural carbohydrates that are produced in sufficient 
quantities to meet future energy demands [8]. To date, 
the application of sorghum to bioethanol production has 
rarely been reported. Therefore, the first essential step 
would be to compare energy potentials between these 
two sorghum categories.

Bioenergy sorghum cell walls consist mainly of cel-
lulose, hemicellulose, lignin, and ash. Cellulose, which 
consists of β-1,4 linked linear glucans, is the most abun-
dant biopolymer and carbon sink on earth [9]. Hemicel-
lulose is a class of heterogeneous polysaccharides that 
constitutes between 15 and 35% of the total biomass of 
hardwoods and herbaceous plants [10]. Lignin is a hydro-
phobic polymer consisting of three major phenolic com-
ponents: hydroxyphenyl, guaiacyl, and syringyl units [11]. 
Ash-forming elements are often embedded in biomass 
and include potassium, calcium, magnesium, silicon, 

sodium, phosphorus, sulfur, and chlorine. Knowledge of 
both ash level and composition are prerequisites for effec-
tive industrial biomass process design [12, 13], but these 
parameters are difficult to determine. As a consequence, 
the diversity of chemical components and their varied 
proportions among lignocellulosic feedstocks frequently 
leads to the so-called “biomass recalcitrance,” requiring 
expensive and time-consuming bioenergy extraction pro-
cessing steps [14]. Therefore, high-throughput determi-
nations of chemical composition and theoretical ethanol 
yield (TEY) are increasingly necessary in order to screen 
large numbers of lignocellulosic feedstocks. Successful 
screening will guide development of plant breeding and 
genetic modification programs toward the ultimate goal 
of achieving high biofuel yields at low cost [4].

Near-infrared spectroscopy (NIRS) technology is 
based on the absorption of electromagnetic radiation by 
chemical covalent bonds (primarily C–H, N–H, O–H, 
and S–H) combined with multivariate calibration [15]. 
As a non-destructive and rapid analytical method, NIRS 
has been widely used for qualitative analysis of various 
organic feedstocks and for physical and chemical quan-
titative analyses across the food, pharmaceutical, and 
agricultural industries [16, 17]. With regard to qualitative 
analysis, numerous promising techniques for necessary 
preprocessing of NIRS data have been developed dur-
ing the last few decades including principal component 
analysis, K-nearest neighbor analysis, genetic algorithms, 
partial least squares discriminant analysis, and others [5, 
18]. As part of these analyses, linear discriminant analysis 
is a well-known and frequently used computational tool 
[15, 19]. In general, bioenergy extraction processes are 
sensitive to defined distributions of physical and chemi-
cal characteristics, e.g., “Biomass Variability” or “Feed-
stock Quality,” that vary greatly among plant species 
impact biofuel conversion performance [20, 21]. As an 
ideal high-throughput biomass classification technique, 
NIRS qualitative analysis has been viewed as increasingly 
valuable to the bioenergy industry [5, 13, 22, 23]. How-
ever, very little research has yet been done to evaluate 
NIRS for lignocellulosic biomass feedstock classification 
in the preparation for bioenergy production from sor-
ghum [1, 4, 6, 23–26].

For quantitative analysis in the bioenergy sector, earlier 
research mainly focused on the development of spectral 
preprocessing steps and multivariate calibration algo-
rithms [22, 23]. As two crucial quantitative modeling 
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steps, sample subset partitioning and spectra variable 
selection have offered great advantages for improving 
the accuracy and robustness of prediction models [27–
30]. On one hand, the predictive performance of the 
NIRS model heavily depends on the internal connection 
between spectral features and various analytical prop-
erties of the sample subset [28, 30, 31]. In this context, 
several studies have addressed the problem of sample 
subset partitioning. Galvão et al. [32] reported a stepwise 
procedure for selecting samples according to their differ-
ences in both x (instrumental responses) and y (predicted 
parameter) spaces. Subsequently, the use of a method 
incorporating sample set partitioning based on joint X–Y 
distances (SPXY) has gained wide acceptance as an advan-
tageous alternative to existing sample subset partition-
ing strategies [28, 32]. On the other hand, the selection of 
spectral variables allows for the selection of the optimal 
variables subset that would greatly improve prediction 
performance by improving calibration reliability prior to 
inverse calibration (for primarily PLS). Because PLS does 
not completely solve the over-fitting problem observed 
in multivariate calibration and pattern recognition with-
out variable selection [29], the following efficient variable 
selection methods have been devised: competitive adap-
tive reweighted sampling, selectivity ratio, variable impor-
tance for projection, Monte Carlo-uninformative variable 
elimination, and uninformative variable elimination [33–
37]. Neither sample subset partitioning nor spectra vari-
able selection had exhibited enough promise in previous 
studies to encourage their use for the determination of lig-
nocellulosic properties [5, 13, 22, 23, 38]. Therefore, from 
a dual-optimization standpoint, it appears essential to 
identify the enhancement of both sample subset partition-
ing and variable selection that affects the performance of 
NIRS predictive models.

In the present study, we made comparisons between 
70 sweet sorghum and 77 biomass sorghum samples by 
focusing on the main chemical components and bioetha-
nol potentials of stem. Next, a reliable and accurate quali-
tative method was presented for lignocellulosic feedstock 
classification into sweet or biomass category using linear 
discriminant analysis. SPXY was then employed to parti-
tion calibration and validation subsets for 147 bioenergy 
sorghum samples. Next, six partial-optimized PLS mod-
els were developed for the prediction of chemical com-
ponents and TEY. Ultimately, the main objective of this 
study was to compare five dual-optimized strategies for 
improving the predictive performance of PLS multivari-
ate calibrations. In summary, this work provides pow-
erful qualitative and quantitative tools to guide future 
feedstock selection, bioenergy crop breeding, and genetic 
modification programs to achieve more efficient biofuel 
production from diverse lignocellulosic feedstocks.

Results and discussion
Diversity of soluble sugar, cell wall components, and TEY
Sample diversity was reflected by the levels of solu-
ble sugar, cellulose, hemicellulose, lignin, ash, and TEY 
shown in Fig.  1. In general, sweet sorghum samples 
exhibited much higher soluble sugar levels (10.8–47.6%) 
than did biomass sorghum samples (5.4–35.4%) (Fig. 1a; 
Additional file 1: Table A1). Conversely, biomass sorghum 
samples were relatively richer in cellulose, hemicellu-
lose, and lignin. However, both sorghum categories dis-
played almost the same ash level, averaging 3.8%, which 
was relatively lower than that observed in other bioen-
ergy crops [13]. To confirm the energy biofuel potential 
of bioenergy sorghum stem, we further carried out TEY 
originating from both hexose (C6) and pentose (C5) in 
this work (Fig. 1b; Additional file 1: Table A2). Due to the 
high levels of soluble sugar, sweet sorghum exhibited rel-
atively higher TEY from C6 than did biomass sorghum, 
with the average value of 255.3 g/kg. By contrast, biomass 
sorghum exhibited more TEY from C5, with the average 
value of 112.1 g/kg. As a consequence, the total TEY lev-
els of both sorghum categories were nearly the same. In 
particular, the total TEY of all 147 bioenergy sorghum 
samples ranged from 287.1 to 429.3 g/kg, with an average 
value of 340.9 g/kg. These results were similar to that of 
sorghum grain (312.0 g/kg) and show that bioenergy sor-
ghum stem is a viable biofuel feedstock [1].

Because representative bioenergy sorghum samples 
displayed large population variability and broad distri-
butions of sample characteristics, we further performed 
correlation analyses between chemical components and 
TEY values (Fig.  1c, d). Notably, a significantly posi-
tive correlation was observed between soluble sugar 
and TEY in both sweet sorghum and biomass sorghum 
samples (p < 0.01), indicating that soluble sugar greatly 
contributes to TEY in bioenergy sorghum. A high level 
of cellulose also exhibited a significantly positive correla-
tion (p < 0.01) with TEY. Conversely, the hemicellulose 
level negatively correlated with TEY in the present work. 
Meanwhile, it was found that lignin and ash, known to 
contribute to biomass recalcitrance, strongly and nega-
tively were correlated with TEY. Generally speaking, a 
higher hemicellulose level could generate more bioetha-
nol. However, it exhibited significantly positive correla-
tions with bioconversion barriers (e.g., ash and lignin) 
and negative correlations with soluble and insoluble 
carbohydrates in bioenergy sorghum. Therefore, reduc-
tion in lignin and/or ash contents could greatly enhance 
bioethanol potential. Moreover, it indicated to select 
ideal bioenergy sorghum varieties with relatively lower 
hemicellulose level, which could lead to higher cellu-
lose and soluble sugar levels for producing a higher TEY 
level.
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Diversity of NIRS and qualitative classification of bioenergy 
sorghum samples
A briefly step-by-step flowchart for understanding the 
high-throughput qualitative and quantitative methodol-
ogy is available in Fig.  2. Firstly, NIRS of 147 bioenergy 
sorghum samples was performed using wave numbers 
from 4000 to 10,000 with a resolution of 8 cm−1 (Fig. 3a). 
The main absorption band peaks occurred in the range 
from 4000 to 7400  cm−1 (Table  1). In previous stud-
ies, the strong peak at approximately 5150–5195  cm−1 
was primarily attributed to O–H asymmetric stretch-
ing and O–H deformation bands of water [4, 6, 24]. For 
soluble sugar, the most important spectral regions were 
5150–5195, 5776–5796, and 6775–6822  cm−1 [4]. The 
band deformation (O–H, C–H, and C–H2), band stretch-
ing vibration (O–H, C–H, C–H2, C–O, and C–C), and 
first overtone stretching (O–H) of cellulose greatly con-
tributed to the absorption band peaks around 4015–
4022, 4392–4412, 4760–4780, 5776–5796, 6329–6336, 
6775–6822, and 7305–7328  cm−1 [4, 38]. The C–H and 
C–H2 deformation and stretching vibration, and the first 

overtone O–H stretching band of hemicellulose were 
indicated by spectral changes within wavenumber ranges 
of 4285–4296, 4392–4412, and 6775–6822 cm−1 [4, 38]. 
Lignin could be identified at 4015–4022, 4392–4412, and 
5776–5796 cm−1 by its stretching vibration (O–H, C–H, 
C–O, and C–C) and the overtone stretching band of 
O–H [24, 38]. Ash, an inorganic component, could not 
be detected directly using NIRS, but could be determined 
from its association with the organic component of bio-
energy sorghum [13, 39]. Finally, as previously reported, 
TEY could be calibrated and predicted using absorption 
band peaks at around 7060, 5230, 4440, and 4330 cm−1 
[4].  

Based on representative reconstructed spectra vari-
ables, principal component analysis was primarily 
developed to identify outliers, as well as for sample 
comparison and classification [5]. As shown in Fig.  3b, 
we initially constructed a principal component analysis 
model whereby the 3D score plot of NIRS from 147 bio-
energy sorghum samples displayed a relatively diverse 
and symmetrical distribution. The score points of sweet 
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sorghum and biomass sorghum samples were not dis-
tinctly separated using three principal components 
(accounting for 95.9% of spectra variance), consistent 
with a previous bamboo compositional prediction study 
[24]. Using further qualitative analysis, linear discrimi-
nant analysis, which is based on principal component 
analysis and Mahalanobis distances, was employed to 
differentiate between the two categories of bioenergy 
sorghum samples in this study. Figure 3c shows the cor-
rect classification rate and variance of the total sample 
set after considering a maximum number of 40 prin-
cipal components. Generally, both correct classifica-
tion rate and variance increased sharply in step with 
increases observed for principal components (from 0 
to 20), before reaching peaks at 99.3 and 100%, respec-
tively. Meanwhile, Fig.  3d demonstrates the Mahalano-
bis distance from each sample to the models for sweet 
sorghum and biomass sorghum. It was obvious that only 
one sample was mismatched while 20 principal com-
ponents were taken into account. Therefore, the results 
demonstrate that linear discriminant analysis could be a 
powerful and efficient tool for biomass feedstock classi-
fication for optimization of bioenergy processing [15]. In 
addition, the broad range of high absorbance and sym-
metrical distribution of score points indicated that the 
spectra of bioenergy sorghum samples possessed good 
sample representation and functioned well during cali-
bration and prediction.

Optimization of calibration and validation subset 
partitioning by SPXY
It is well known that the accuracy and robustness of NIRS 
quantitative analysis models rely heavily on calibration 
and validation subsets [30]. In this case, a representative 
calibration subset must be selected on the basis of NIRS 
and analytical properties that were extracted from a pool 
of real samples [32]. Meanwhile, representative external 
validation samples should also be selected to assess the 
quality of the quantitative analysis model [13]. None-
theless, studies of sample subset partitioning have been 
largely overlooked in the bioenergy sector [5, 22, 23, 38]. 
In recent years, many strategies have been developed to 
address this problem from an optimization perspective, 
such as random sampling and Kennard–Stone. Random 
sampling is a popular technique because of its simplicity. 
But it does not guarantee the representativity of the sam-
ple subset, nor does it prevent extrapolation problems. 
To solve these problems, Kennard–Stone was developed 
to cover the multidimensional space in a uniform man-
ner by maximizing the Euclidean distances between the 
instrumental response vectors (x) of the selected samples. 
However, the predictive performance of the NIRS model 
heavily depends on the internal connection between 
instrumental response vectors (x) and various analyti-
cal properties (y) of the sample subset. Hence, a uniquely 
advantageous method, designated SPXY, was initially 
employed to sort 147 bioenergy sorghum samples into 
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Fig. 2  Flowchart of NIRS qualitative and quantitative analyses. PCA principal component analysis, LDA linear discriminant analysis, SPXY sample set 
partitioning based on joint X–Y distances, CARS competitive adaptive reweighted sampling, SR selectivity ratio, VIP variable importance for projec-
tion, UVE uninformative variable elimination, MC-UVE UVE couple with the principle of Monte Carlo, PLS partial least squares
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calibration and validation subsets for multivariate cali-
bration in the present paper. Notably, this method 
extends the Kennard–Stone algorithm by encompassing 

the variability in both the x and y dimensions for the 
calculation of inter-sample distances [31]. As a conse-
quence, based on the value of predicted objects, one of 
every four samples was included in the validation subset, 
while the remaining samples were used for the calibra-
tion subset.

As shown in Fig.  4, histograms of calibration and 
validation subsets for soluble sugar, cellulose, hemicel-
lulose, lignin, ash, and TEY are presented. The dashed 
lines overlaid upon each histogram represent normal 
distributions and were used to embody the discrepancy 
between each histogram and normality. In general, all 
subsets optimized using SPXY displayed a relatively 
wide and symmetrical distribution. Despite the fact that 
the 147 bioenergy sorghum samples originated from a 
multispecies feedstock population that included vari-
ous genotypes and phenotypes, almost all the calibration 
and validation subsets for each property exhibited rela-
tively wide and symmetrical distributions in the present 
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Table 1  The main absorption band peak location of chemi-
cal components in bioenergy sorghum

C cellulose, H hemicellulose, L lignin, S soluble sugar, W water

Wavenumber (cm−1) Component Bond vibration

4015–4022 C, L C–Hstr, C–Cstr

4285–4296 H C–Hstr, C–Hdef

4392–4412 C, H, L C–Hstr, C–H2str, O–Hstr, C–Ostr, 
C–Hdef, C–H2def

4760–4780 C O–Hdef, C–Hdef, O–Hstr

5150–5195 W, S O–Hasym, O–Hstr, O–Hdef

5776–5796 S, C, L 1st OT C–Hstr

6329–6336 C 1st OT C–Hstr

6775–6822 S, C, H 1st OT C–Hstr

7305–7328 C 1st OT C–Hstr, C–Hdef



Page 7 of 16Li et al. Biotechnol Biofuels  (2017) 10:206 

study (Figs. 3a, b, 4). Additionally, each calibration subset 
represented nearly the same distributions as that of the 
corresponding validation subset; no distinct bimodal, 
skewed, or uniform distributions were observed (Fig. 4). 
In order to further demonstrate the effect of optimiza-
tion of SPXY on calibration and validation subset parti-
tioning, six principal component analysis models were 
established for soluble sugar, cellulose, hemicellulose, 
lignin, ash, and TEY (Fig. 5). Similarly, the 3D score plots 
of NIRS from both calibration and validation subsets 
were well mixed and displayed relatively symmetrical dis-
tributions. Hence, these results indicate that the SPXY 
method could efficiently optimize NIRS results as well 
as the analytical properties of both the calibration subset 
and related validation subset. These optimizations thus 
led to an accurate and robust NIRS quantitative analysis 
model.

Partial‑optimized PLS models
Based on the SPXY-optimized calibration and validation 
subsets, six partial-optimized PLS models were devel-
oped using full spectra for the prediction of soluble sugar, 
cellulose, hemicellulose, lignin, ash, and TEY. To reduce 
any multiplicative and additive effects resulting from 
instrument settings or variations stemming from sample 

and environmental conditions, the spectra averaged from 
64 scans were subjected stepwise to multiplicative scat-
ter correction, then Norris derivative filtering, then first 
derivative analysis. In addition, all six models were fully 
cross-validated using the “leave-one-out” method and 
the optimal number of principal components (from 6 to 
9) for each model was determined using the root mean 
square error of calibration (RMSEC) and the root mean 
square error of cross-validation (RMSECV) [13]. The 
numbers of samples for each of the previously described 
calibration and validation subsets used for chemical com-
ponents and TEY determinations were further reduced 
by the removal of sample outliers, as described by Xu 
et al. [26].

Summary statistics of the partial-optimized PLS model 
are shown in Table 2. Based on the data pretreatment dis-
cussed above, a fair prediction of the soluble sugar, cellulose, 
hemicellulose, lignin, ash, and TEY was obtained using the 
strongest model, which exhibited low RMSEC (0.65–12.95) 
and RMSECV (0.74–14.18) relative to the other models. 
The coefficients of determination for calibration (R2

C) and 
cross validation (R2

CV) were each within the high ranges of 
0.72–0.95 and 0.61–0.94, respectively. These results dem-
onstrate the effect of SPXY enhancement on calibration of 
relevant bioenergy sorghum sample properties. In addition, 
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a summary of published literature using the ratio of perfor-
mance to deviation (RPD) suggested that excellent calibra-
tion models must exhibit a RPD value greater than 3, while 
RPD values between 2.4 and 1.5 are considered accept-
able [4, 24]. Moreover, the American Association of Cereal 
Chemists Method 39-00 demonstrated that any model that 
has a range error ratio (RER) ≥10 is acceptable for quality 
control; if the RER of a model is greater than 15, the model 
is considered very good for research quantification [24]. 

In the present study, almost all RPD and RER values were 
greater than 3 and 15, respectively (except for the RER of 
ash) (Table 2). As a consequence, Fig. 6 illustrates that good 
coefficients were obtained using the square of the correla-
tions between predicted and reference values for soluble 
sugar, cellulose, hemicellulose, lignin, ash, and TEY after 
external validation (R2

V  > 0.839). All validation subsets were 
well predicted using the model with a relatively low root 
mean square error of prediction (RMSEP), which further 

Fig. 5  Principal component analysis plots distribution of chemical components and theoretical ethanol yield. Soluble sugar (a), cellulose (b), 
hemicellulose (c), lignin (d), ash (e), and theoretical ethanol yield (f) for calibration and external validation subsets that partitioned by sample set 
partitioning based on joint X–Y distances

Table 2  Summary statistics of  partial-optimized partial least squares models for  chemical components and  theoretical 
ethanol yield (TEY) of bioenergy sorghum

PCs principal components

Parameter Calibration Cross validation External validation

Number PCs RMSEC R
2

C
RMSECV R

2

CV
Number RMSEP R

2

V
RPD RER

Soluble sugar 108 7 2.27 0.95 2.66 0.93 37 2.57 0.91 3.39 16.42

Cellulose 108 9 0.93 0.95 1.26 0.91 37 1.18 0.91 3.46 16.30

Hemicellulose 108 7 0.75 0.95 0.85 0.94 37 0.64 0.95 4.33 25.15

Lignin 107 8 0.65 0.95 0.74 0.94 37 0.65 0.92 3.66 19.72

Ash 108 7 0.68 0.72 0.82 0.61 37 0.49 0.90 3.25 12.58

TEY 108 6 12.95 0.76 14.18 0.72 37 8.08 0.84 3.42 17.61
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demonstrates the utility of sample subsets optimization 
for prediction of multispecies feedstock properties. For the 
predictions for sorghum samples, partial-optimized PLS 
models were better than previous models for soluble sugar 
predication [6, 26, 40] and were superior to a series of stud-
ies that focused on cell wall components [4, 25, 26, 41] and 
TEY prediction [4]. In addition, a review of NIRS research 
published in recent years suggested that in most cases, 
partial-optimized PLS models are also effective for study-
ing cellulose (glucan), hemicellulose (mainly xylan), lignin, 
and ash from multispecies feedstock when comparing val-
ues of R2

V, RMSEP, RPD, and RER [5, 13, 16, 23, 24, 39, 42]. 
Therefore, past results coupled with the results of this study 
collectively indicate that sample subsets optimization can 
enhance the accuracy and robustness of NIRS quantitative 
analysis models for study of multispecies biomass resource 
streams. 

Optimization of the variable selection by CARS, SR, VIP, 
MC‑UVE, and UVE
Due to its potential for extracting chemical information 
from overdetermined systems, multivariate calibration 
has been extensively used for applications in the analy-
sis of multi-component spectroscopic data, especially in 
the NIRS field [33]. Additionally, recent approaches have 

shown that proper spectral variable selection has proved 
to be a critical step for multivariate spectroscopic cali-
bration; many strategies have been developed to address 
this problem from an optimization perspective in recent 
years [29, 37, 43]. Competitive adaptive reweighted sam-
pling (CARS) was proposed in 2009 by Li et al. [33]. This 
specialized strategy for variable selection allows for the 
selection of an optimal variable subset existing in the full 
spectra coupled with PLS regression using the simple but 
effective principle “survival of the fittest,” upon which 
Darwin’s Evolution Theory is based [33]. The selectivity 
ratio (SR) method, proposed first for biomarker discov-
ery, is obtained by calculating the ratio of explained to 
residual variance of the X variables upon the Y target-
projected component [34]. The variable importance for 
projection (VIP) method selected those X variables that 
contribute most to the underlying variation in the X vari-
ables [35]. Currently, one of the most general variable 
selection methods is the uninformative variable elimi-
nation (UVE) method, which evaluates the reliability of 
each variable in the model using stability criteria and 
eliminates uninformative variables. Moreover, Cai et  al. 
[44] in 2008 reported a modified method combining UVE 
with Monte Carlo principles (MC-UVE) to achieve sat-
isfactory prediction results in comparison to many other 
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methods of wavelengths selection (MC-UVE). Although 
the methods listed above have been applied widely in 
analytical chemistry, none has yet been used to optimize 
the multivariate calibration model of lignocellulosic com-
ponents analysis, especially for bioenergy sorghum sam-
ples. Therefore, it would be worthwhile to apply variable 
selection to biomass multivariate calibration modeling 
and conduct a comparison of five standard methods for 
NIRS model optimization.

As shown in Fig.  7, the optimal variable subsets of 
soluble sugar, cellulose, hemicellulose, lignin, ash, and 
TEY were selected using algorithms mentioned above. 
First, it was possible to demonstrate that the variable 
numbers selected by each method could be ranked in the 
order CARS < SR < VIP < MU-UVE < UVE for soluble 
sugar, cellulose, hemicellulose, and lignin (Fig.  7a–d). 
Meanwhile, the order of variable numbers for both ash 
and TEY was SR  <  CARS  <  VIP  <  MU-UVE  <  UVE 
(Fig.  7e, f ). As a result, CARS and SR exhibited higher 
efficiency, as measured using “informative variables” 
selection, than did the other algorithms. Additionally, it 
could be observed that the spectral range of about 4000–
7400 cm−1 was most effective for variable selection, con-
sistent with our previous finding showing that to be a 
strong absorbance region (Figs. 3a, 7).

In order to perform a thorough analysis, we designated 
the characteristic variables that were selected using 5, 4, 
3, 2, 1, or 0 methods as follows: “most important,” “very 
important,” “important,” “normal,” “less important,” and 
“uninformative” variables, respectively. Summary statis-
tics for the characteristic variables of soluble sugar, cel-
lulose, hemicellulose, lignin, ash, and TEY are provided 
in Table  3. Due to the basic principles that generally 
apply to characteristic variables, “most important” vari-
ables and “very important” variables could be considered 
to be the most important informative variables within 
the full spectra. In the present study, organic properties 
(soluble sugar, cellulose, hemicellulose, lignin, and TEY) 
achieved large numbers of “most important” variable 
and “very important” variable, ranging from 4 to 7 and 
from 37 to 64, respectively. By contrast, the number of 
them from ash were much lower than those of the other 
five properties. This might be due to the fact that ash, 
an inorganic mixture, is not easily or directly measur-
able by NIRS, as are organic properties [13, 39]. As pre-
vious studies have confirmed, the stability and accuracy 
of the multivariate calibration model relied heavily on 
strong informative variables [28]. Although the “most 
important” variable and “very important” variable make 
up only a small proportion of the full spectra, numbers 
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of these variables unquestionably could affect the pre-
dictive performance of each property for multivariate 
calibration. On the other hand, judicious elimination of 
uninformative variables can also bolster the effectiveness 
of the calibration model and improve its predictive per-
formance [45]. In this study, the “less important” variable 
and “uninformative” variable numbers for each property 
ranged from 166 to 248 and from 132 to 269, account-
ing for 10.7–15.9% and 8.5–17.3% of the total 1557 varia-
bles observed, respectively (Table 3). Therefore, variable 
selection, an effective optimization strategy, could be an 
indispensable step for NIRS modeling of lignocellulosic 
feedstock. Furthermore, the five optimal variable subsets 
selected here provide very useful information to facili-
tate further biomass components prediction (Fig. 7).

Dual‑optimized PLS models
Coupled with SPXY-optimized sample subsets, five 
methods for variable selection were employed to develop 
30 dual-optimized PLS models for quantitative analysis 
of soluble sugar, cellulose, hemicellulose, lignin, ash, and 
TEY. Meanwhile, the six partial-optimized PLS models 
described above served as controls. Summary statistics 
for a total of 36 defined models are presented in Table 2 
and Additional file  1: Tables A3–A7. Compared with 
other dual-optimized models, CARS-SPXY exhibited the 
greatest positive impact upon the stability of PLS models 
when comparing values of principal components (5–8), 
R
2
C (0.73–0.96), RMSEC (0.65–11.50), R2

CV (0.69–0.95), 
and RMSECV (0.68–13.20) (Fig. 8 and Additional file 1: 
Table A3). Furthermore, lower RMSEP (0.48–7.41) and 
higher RPD (3.34–4.73) and RER (12.94–27.45) values 
were obtained using the robust CARS-SPXY dual-opti-
mized PLS models, which were significantly better than 
those of four other dual-optimized models for the most 
relevant properties. Notably, the use of one in four sam-
ples for external validation led to strong correlations 
between predicted and reference values (Additional file 2: 
Fig. A1). These results demonstrate that CARS-SPXY was 
the best method to clearly improve upon the accuracies 

of the prediction performance of the PLS model among 
these five dual-optimized methods. These results are 
consistent with our previously stated results that CARS 
displayed relatively higher efficiency over other meth-
ods in the selection of informative variables as well as for 
judicious elimination of uninformative variables (Fig. 7).

Meanwhile, the sample subsets and spectral variable 
subsets were optimized using VIP-SPXY, MC-UVE-SPXY, 
and UVE-SPXY models using the following parameters: 
a low number of principal components; high R2

C, R2
CV , R2

V;  
low RMSEC, RMSECV, RMSEP; and high RPD, RER 
(Additional file  1: Tables A5–A7). Additional file  2: Fig-
ures A3–A5 demonstrate that all relevant properties were 
successfully predicted by the three models mentioned 
above, which generally displayed relatively higher correla-
tions between predicted and reference values than controls 
(Fig. 6). These results indicated that VIP-SPXY, MC-UVE-
SPXY, and UVE-SPXY models could achieve higher perfor-
mance for predicting soluble sugar, cellulose, hemicellulose, 
lignin, ash, and TEY (Fig. 8). Conversely, it was found that 
SR-SPXY significantly decreased the stability of the cali-
bration models because the RMSEC and RMSECV for 
each property sharply increased. Meanwhile, significant 
decreases in R2

C and R2
CV were observed in the present study 

which were generally lower than controls (Table  2; Addi-
tional file  1: Table A4). As a consequence, RPD and RER 
decreased significantly and relatively lower R2

V values were 
obtained for the validation set of each relevant property. 
These results probably stem from the inability of the SR 
method to achieve informative variable selection and unin-
formative variables elimination (Figs. 7, 8; Additional file 1: 
Table A4 and Additional file 2: Figure A2).

In summary, dual-optimized PLS models generally dis-
play significantly higher robustness and accuracy than 
partial-optimized PLS models for the prediction of rel-
evant properties by utilizing dual optimization of sample 
subset partitioning and variable selection. Additionally, 
CARS-SPXY was the most effective dual-optimization 
method for improving the predictive performance of the 
PLS model in this study (Fig. 8).

Table 3  The statistics of characteristic variables for chemical components and theoretical ethanol yield (TEY)

MIV most important variable, VIV very important variable, IV important variable, NV normal variable, LIV less important variable, UIV uninformative variable, N number 
of selected variables, P the proportion of selected variables in total variables

Parameter MIV VIV IV NV LIV UIV

N P (%) N P (%) N P (%) N P (%) N P (%) N P (%)

Soluble sugar 4 0.3 64 4.1 230 14.8 908 58.3 215 13.8 136 8.7

Cellulose 5 0.3 56 3.6 240 15.4 824 52.9 248 15.9 184 11.8

Hemicellulose 4 0.3 37 2.4 251 16.1 918 59.0 166 10.7 181 11.6

Lignin 7 0.5 62 4.0 276 17.7 826 53.1 233 15.0 153 9.8

Ash 1 0.1 14 1.0 269 17.3 796 51.1 208 13.4 269 17.3

TEY 4 0.3 55 3.5 234 15.0 921 59.2 211 13.6 132 8.5
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Conclusions
A large number of bioenergy sorghum samples, 
including 70 sweet sorghum and 77 biomass sorghum 
samples, exhibited diverse chemical components 
and high potential for bioethanol production. Using 
the NIRS of total 147 samples, a qualitative analysis 
between sweet sorghum and biomass sorghum was 
conducted via the linear discriminant analysis model 
and 99.3% of samples were correctly classified using 
a set of 20 principal components. Meanwhile, sam-
ple subset partitioning and variable selection could 
substantially enhance the predictive performance of 
a PLS model for determination of chemical compo-
nents and TEY. These dual-optimized models gener-
ally achieved high R2

C, R2
CV, R2

V, RPD, and RER values 
and low RESEC, RESECV, and RMSEP values relative 
to partial-optimized models, demonstrating relatively 
higher enhancement of both robustness and accuracy 
of prediction models. Finally, comparative analyses 
of five dual-optimized methods indicate that CARS-
SPXY was the most efficient method for improving 
the  predictive performance of PLS multivariate cali-
bration. Therefore, high-throughput dual-optimized 
NIRS models could facilitate feedstock selection, bio-
energy crop breeding, and genetic modification for 
efficient biofuel production.

Methods
Sample selection and preparation
To select bioenergy sorghum samples with diverse 
genetic, environment, and cultivation background is of 
importance for accuracy and robustness model building. 
Since 2006, National Energy R&D Center for Non-food 
Biomass (NECB) has collected nationwide sorghum germ-
plasm resources to make hybrid breeding for a bioetha-
nol purpose. Till 2013, the most representative six sweet 
type and six biomass type hybrids have been developed 
by NECB for commercial scale production. To evaluate 
the yield performance and energy potential, we planted 
these twelve bioenergy sorghum varieties under different 
cultivation treatments including plant spacing and ferti-
lizer rate, in Zhuozhou, Hebei and Uxin, Inner Mongolia 
in 2013 and 2014. The two study sites were some 800 km 
apart in northern China. A total of 147 representative 
samples were taken at the two sites for the high-through-
put NIRS models building in this study.

All sorghum samples were harvested on their dates of 
physiological maturity after a growth period of between 
110 and 150 days. Preparation of samples was performed 
according to the process described by Li et  al. [3] with 
minor modifications. In this study, stem samples were 
ground using a crusher mill into particles 1–2  cm in 
size. The particles were first dried at 45  °C for 48  h after 
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inactivation at 105 °C for 20 min. Next, the dried particles 
were ground into powders and passed through a combined 
−40/+80 mesh screen. A total of 147 mesh-screened sam-
ples (as dry matter) were stored in a dry container until use.

Biomass compositional analysis and TEY calculation
The soluble sugar was extracted with distilled water and 
determined by the anthrone/H2SO4 method using a UV–
VIS spectrometer (TU-1901, Beijing Purkinje Instruments 
Co. Ltd., Beijing, China) according to Li et  al. [3] The 
standard curve was plotted using d-glucose as the stand-
ard (purchased from Xilong Scientific Co., Ltd., China).

The structural carbohydrates (i.e., glucose, xylose, 
and arabinose) and lignin (acid-soluble lignin and acid-
insoluble lignin) were extracted using a two-step sulfuric 
acid hydrolysis process. Sample quantity and composi-
tion were measured using an HPLC system (1260 series, 
Agilent Technologies, Santa Clara, CA, USA) equipped 
with an Aminex HPX-87H chromatography column 
(300 × 7.8 mm, particle size 9 µm, Bio-Rad Laboratories, 
Hercules, CA, USA), a UV–VIS spectrometer (TU-1901, 
Beijing Purkinje Instruments Co. Ltd.) and a muffle fur-
nace (VULCAN 3-550, Densply International Inc., York, 
PA, USA) according to the Laboratory Analytical Pro-
cedures from National Renewable Energy Laboratory 
[46]. Dry matter (2 g per sample) was added to ceramic 
crucibles (30 mL volume) to determine ash content after 
incineration in the muffle furnace. Cellulose content was 
calculated from the glucose content. Hemicellulose was 
calculated from the sum of xylose and arabinose con-
tents. Lignin was calculated from the sum of acid-soluble 
lignin and acid-insoluble lignin contents.

Theoretical ethanol yield (TEY), as reported by Zhao 
et  al. [47], was calculated from the C6 sugar (soluble 
sugar and cellulose), C5 sugar (hemicellulose), and total 
sugar (C6 sugar and C5 sugar) in the dry matter, with 
minor modifications. In order to obtain the TEY results 
in g/kg, the equation below was modified and the term 
dry biomass (t/ha) was removed.

TEY-C6
(

g/kg
)

=
[

soluble sugar (%)+ cellulose (%)× 1.11
(

conversion factor of sugar from cellulose
)]

× 0.51
(

conversion factor of ethanol from sugar
)

× 0.85
(

process efficiency of ethanol from sugar
)

× 1000/0.79
(

specific gravity of ethanol, gmL−1
)

TEY-C5
(

g/kg
)

= hemicellulose(%)× 1.11
(

conversion factor of sugar from hemicellulose
)

× 0.51
(

conversion factor of ethanol from sugar
)

× 0.85
(

process efficiency of ethanol from sugar
)

× 1000/0.79
(

specific gravity of ethanol, gmL−1
)

The results of TEY values could be found in Additional 
file 1: Table A2.

NIRS measurement and pretreatments
All dry matter was scanned and recorded from three 
separate samplings using a Thermo Antaris II FT-NIR 
(Thermo Scientific Inc., Madison, WI, USA) equipped 
with a diffuse reflectance accessory. Each spectrum 
was averaged from 64  scans at a resolution of 8  cm−1 
in the wavenumber range of 4000–10,000 cm−1, includ-
ing 1557 spectral variables. The spectrometer was 
controlled and data were acquired using TQ Analyst 
software (ver. 9.3.107, Thermo Scientific Inc.). Spec-
tra were first adjusted using multiplicative scatter cor-
rection to correct spectra for scatter. Next, a Norris 
derivative filter was used to reduce random noise. The 
first derivative was used to resolve spectra peak overlap 
and eliminate linear baseline drift [26]. The purpose of 
the corrections above was to remove multiplicative and 
additive effects stemming from instrument settings or 
variations caused by sample and environmental condi-
tions [25].

Qualitative analysis
A principal component analysis model was calculated 
using TQ Analyst 9.3 to evaluate the spectral distribu-
tion of bioenergy sorghum samples based on 3D plots 
(Fig.  3b). The principal component analysis models 
included 147  samples and incorporated a maximum 
number of 40 principal components. As a well-known 
and frequently used technique, linear discriminant 
analysis was employed for data classification in this 
study. The Mahalanobis distance was determined 
between the samples and each sorghum class center. 
Meanwhile, the correct classification rate was calcu-
lated to obtain a classification result according to He 
et al. [15].

TEY(g/kg) = TEY-C6 (g/kg)+ TEY-C5 (g/kg)
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Quantitative analysis
In the present study, a stepwise procedure reported 
by Galvão et  al. [32] was employed to select samples 
according to their differences in both measured proper-
ties and NIRS. Based on this method, one of every four 
samples was sorted into external validation subsets using 
ChemDataSolution, ver. 2.0 (Dalian ChemData Solution 
Technology Co. Ltd., Dalian, China) to obtain a fair mul-
tivariate prediction [48] and the remaining samples were 
used for the calibration subsets.

The previously described NIRS variables were selected 
using the software ChemDataSolution ver. 2.0. Before 
determination of quantitative chemical components and 
TEY, CARS, SR, VIP, MC-UVE, and UVE models were 
employed for NIRS optimization in this study.

A total of 36 PLS multivariate calibrations were devel-
oped using TQ Analyst software (ver. 9.3.107) [49], which 
predicted one property at a time based on partial optimiza-
tion or dual optimization in the present study. The “leave-
one-out” method was recommended for cross-validation 
when developing PLS models, in order to select the opti-
mal number of factors and to avoid over-fitting [13, 25]. 
The performance of multivariate calibrations was evaluated 
using RMSEC, RMSECV, RMSEP, and R2

C , R2
CV , and R2

V. 
Furthermore, the RPD and the RER were also calculated to 
ascertain the potential of the NIRS models for application 
to breeding or industry screening [1, 24, 25, 50].

Statistical analysis
All chemical assays were conducted in triplicate and the 
average values are presented as percentage of dry weight. 
Correlation coefficients were calculated by perform-
ing Pearson’s rank correlation analysis using IBM SPSS 
Statistics V.22. This analysis used mean values and coef-
ficient coefficients of variation were calculated from all 
original determinations and defined as the ratio of the 
standard deviation to the mean value.
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V
 represents the 

square of the correlation coefficients of the external validation subsets. 
Figure A2. Plots of predicted versus measured value of parameters. 
Soluble sugar (a), cellulose (b), hemicellulose (c), lignin (d), ash (e), and 
theoretical ethanol yield (f ) for the external validation subsets based on 
SR-SPXY dual-optimized PLS models. The R2

V
 represents the square of the 

correlation coefficients of the external validation subsets. Figure A3. Plots 
of predicted versus measured value of parameters. Soluble sugar (a), cel-
lulose (b), hemicellulose (c), lignin (d), ash (e), and theoretical ethanol yield 
(f ) for the external validation subsets based on VIP-SPXY dual-optimized 
PLS models. The R2

V
 represents the square of the correlation coefficients 

of the external validation subsets. Figure A4. Plots of predicted versus 
measured value of parameters. Soluble sugar (a), cellulose (b), hemicellu-
lose (c), lignin (d), ash (e), and theoretical ethanol yield (f ) for the external 
validation subsets based on MC-UVE-SPXY dual-optimized PLS models. 
The R2

V
 represents the square of the correlation coefficients of the external 

validation subsets. Figure A5. Plots of predicted versus measured value 
of parameters. Soluble sugar (a), cellulose (b), hemicellulose (c), lignin (d), 
ash (e), and theoretical ethanol yield (f ) for the external validation subsets 
based on UVE-SPXY dual-optimized PLS models. The R2

V
 represents the 

square of the correlation coefficients of the external validation subsets.
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