
Samal et al. Biotechnol Biofuels  (2017) 10:225 
DOI 10.1186/s13068-017-0901-2

RESEARCH

Network reconstruction and systems 
analysis of plant cell wall deconstruction 
by Neurospora crassa
Areejit Samal1,2,3,4, James P. Craig2,5, Samuel T. Coradetti2,5†, J. Philipp Benz2,6†, James A. Eddy1, Nathan D. Price1* 
and N. Louise Glass2,5* 

Abstract 

Background:  Plant biomass degradation by fungal-derived enzymes is rapidly expanding in economic importance 
as a clean and efficient source for biofuels. The ability to rationally engineer filamentous fungi would facilitate biotech-
nological applications for degradation of plant cell wall polysaccharides. However, incomplete knowledge of biomo-
lecular networks responsible for plant cell wall deconstruction impedes experimental efforts in this direction.

Results:  To expand this knowledge base, a detailed network of reactions important for deconstruction of plant cell 
wall polysaccharides into simple sugars was constructed for the filamentous fungus Neurospora crassa. To reconstruct 
this network, information was integrated from five heterogeneous data types: functional genomics, transcriptom-
ics, proteomics, genetics, and biochemical characterizations. The combined information was encapsulated into a 
feature matrix and the evidence weighted to assign annotation confidence scores for each gene within the network. 
Comparative analyses of RNA-seq and ChIP-seq data shed light on the regulation of the plant cell wall degradation 
network, leading to a novel hypothesis for degradation of the hemicellulose mannan. The transcription factor CLR-2 
was subsequently experimentally shown to play a key role in the mannan degradation pathway of N. crassa.

Conclusions:  Here we built a network that serves as a scaffold for integration of diverse experimental datasets. This 
approach led to the elucidation of regulatory design principles for plant cell wall deconstruction by filamentous fungi 
and a novel function for the transcription factor CLR-2. This expanding network will aid in efforts to rationally engineer 
industrially relevant hyper-production strains.

Keywords:  Biofuels, Systems biology, Neurospora crassa, Network reconstruction, Plant cell wall degradation network, 
Transcriptional regulatory networks, CLR-2, Mannan
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Background
Plant biomass, primarily composed of lignocellulose, is a 
renewable and environmentally clean energy source, and 
a promising feedstock for the production of next-gener-
ation biofuels and specialty chemicals [1–3]. A principal 
barrier to economical production of biofuels is the high 
production cost of biomass depolymerization enzymes 

[4]. Filamentous fungi are among the most efficient 
degraders of lignocellulosic biomass in nature and play a 
key role in carbon recycling [5, 6]. Industrially relevant 
strains, such as Trichoderma reesei, were constructed 
through multiple rounds of random mutagenesis and can 
secrete over 100  g/L of protein [7, 8]. However, ration-
ally engineering strains of filamentous fungi to further 
enhance the secretion of enzymes is a major challenge 
in bioenergy research [9]. To meet this challenge and aid 
future experimental efforts, a system-level understanding 
of plant cell wall deconstruction by filamentous fungi is 
necessary [5, 10].
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The model filamentous fungus Neurospora crassa has 
well-developed genetics, biochemistry, molecular biol-
ogy, and a well-annotated genome [11–14]. In nature, N. 
crassa colonizes freshly burnt plant biomass and shows 
robust growth on lignocellulose [5, 15–19]. The suite of 
experimental resources available for N. crassa makes it 
an ideal model system for bioenergy-related research, 
particularly for the elucidation of plant cell wall decon-
struction mechanisms and nutrient sensing [5, 16–20]. 
Research on N. crassa contributed to the discovery 
of a new class of enzymes called lytic polysaccharide 
monooxygenases (LPMOs), which greatly increase syn-
ergy in cellulose degradation. In addition, novel cellodex-
trin transporters from N. crassa were utilized to engineer 
improved yeast strains for sugar fermentation [21–24]. 
A network reconstruction encompassing the present 
knowledge of metabolic reactions, enzymes, and associ-
ated genes in N. crassa dedicated to the deconstruction 
of plant cell wall polysaccharides into simple fermentable 
sugars will further expedite experimental efforts.

The availability of fully sequenced genomes and accu-
mulated wealth of biochemical evidence led to the 
reconstruction of genome-scale and manually curated 
metabolic networks for more than 50 organisms across 
the three domains of life [25, 26]. These genome-scale 
metabolic networks have been widely analyzed using 
constraint-based modeling methods to predict the 
response to environmental and genetic perturbations [27, 
28]. Notably, only a few curated genome-scale metabolic 
reconstructions have been built for filamentous fungi 
[29–34]. While a manually curated genome-scale meta-
bolic network for N. crassa exists [34], this reconstruc-
tion and those built for other ascomycete fungi [29–34] 
are limited by significant knowledge gaps, specifically 
pathways for the degradation and utilization of plant cell 
wall polysaccharides.

To overcome this limitation, we built a detailed net-
work of biochemical reactions important for the deg-
radation of plant cell wall polysaccharides into simple 
fermentable sugars in N. crassa (Fig. 1; Additional file 1). 
Plant cell walls are largely composed of complex polysac-
charides that include cellulose, hemicellulose, and pectin 
[5, 35–40]. Cellulose is the most abundant plant cell wall 
polysaccharide and is an unbranched structure com-
posed of linear chains of β-1,4-linked d-glucose residues. 

The second most abundant is the heterogeneous group of 
hemicelluloses, composed of several branched polymers, 
including xylan, xyloglucan, mannan, and mixed-linkage 
glucan. Pectin is a minor constituent of mature plant cell 
walls but the most complex heteropolysaccharide. Its 
main constituents are homogalacturonan, xylogalacturo-
nan, and rhamnogalacturonan I.

The plant cell wall degradation network (PCWDN) 
reconstruction and annotation pipeline described here 
involved the integration of five heterogeneous data types: 
functional genomics, transcriptomics, proteomics, genet-
ics, and biochemical information, along with extensive 
manual curation based on more than 130 research articles 
(Fig. 2; Additional file 1). The combined annotation infor-
mation was encapsulated in a feature matrix, which was 
used to assign annotation confidence scores to PCWDN 
genes. Comparative analysis of RNA sequencing (RNA-
seq)-based global transcriptome profiles underlined the 
importance of PCWDN genes for adaptations to differ-
ent plant cell wall polysaccharides. Subsequent analyses 
of RNA-seq and ChIP-seq data within the context of the 
N. crassa PCWDN provided novel insights into the roles 
of key transcription factors (TFs) in the deconstruction 
of plant biomass, which were tested here. The N. crassa 
PCWDN will serve as a scaffold for the integration and 
systems analyses of diverse experimental data, help-
ing elucidate the regulatory design principles underlying 
plant cell wall deconstruction by filamentous fungi.

Results and discussion
Network reconstruction and annotation pipeline
We assembled an initial list of biochemical reactions 
and associated genes in the PCWDN v0.0 of N. crassa 
by combining information on predicted enzymes and 
transporters involved in the degradation of plant cell wall 
polysaccharides from the following sources: the Carbo-
hydrate-Active enZYmes database (CAZY) [41], the N. 
crassa e-Compendium [42], the genome annotation for 
N. crassa OR74A [12, 13], and TransportDB [43] (“Meth-
ods”; Fig.  2). Specifically, 110 out of 231 CAZY genes 
predicted to encode carbohydrate-active enzymes in the 
genome were included in the PCWDN v0.0 (Additional 
file  2). The remaining 121 CAZY genes mainly belong 
to families of enzymes active on chitin and chitosan 
and thus are not likely to be involved in the PCWDN, 

(See figure on next page.) 
Fig. 1  Schematic illustration of the structure of different plant cell wall polysaccharides along with the associated reactions and genes in the 
PCWDN of N. crassa. Cellulose has an unbranched structure composed of linear chains of β-1,4-linked d-glucose residues. Hemicellulose comprises 
several branched polymers including xylan, xyloglucan (XG), mannan, and mixed-linkage glucan (MLG). Pectin is a family of several polymers includ-
ing homogalacturonan, xylogalacturonan, and rhamnogalacturonan I. Starch is a polymer composed of amylose and amylopectin. On the right, the 
number of reactions and genes involved in the degradation of cellulose, hemicelluloses, pectin, and starch are indicated that are captured in our 
PCWDN
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but rather in remodeling the fungal cell wall (Additional 
file 2).

The annotation of PCWDN genes in the above data-
bases has not been updated with data on plant cell 
wall deconstruction by N. crassa. For example, the cur-
rent OR74A genome annotation is unable to differenti-
ate between cellulolytic LPMOs, hemicellulose-active 
LPMOs, and starch-active LPMOs [44–50]. Thus, we 
performed extensive literature-based manual curation 
involving more than 130 research articles (Additional 
file  1) to fill the knowledge gaps in the initial PCWDN 
v0.0 and compiled multi-level supporting evidence as 
described below from five heterogeneous data types: 
functional genomics, transcriptomics, proteomics, genet-
ics, and biochemical characterizations, to annotate genes 
in the final PCWDN v1.0 of 202 reactions and 168 genes 
(Fig.  2; Additional file  1). The 202 reactions in the final 
PCWDN of N. crassa were further subdivided into 101 
extracellular reactions, 35 transport reactions, and 66 
intracellular reactions (Additional file 1).

Functional genomics‑based annotation
An important annotation feature of PCWDN enzymes 
is their predicted subcellular localization. For exam-
ple, the hydrolysis of cellodextrins into d-glucose by 
β-glucosidases can occur in the extracellular space or 
in the intracellular space (Additional file  1). Of the 168 
PCWDN genes, products of 103, 19, and 46 genes are 
associated with extracellular, transport, and intracel-
lular reactions, respectively. We used SignalP [51] and 
Phobius [52] to predict the presence of signal peptides 
in PCWDN proteins to determine if they were destined 
toward the secretory pathway (“Methods”). We found 
that 89 out of the 103 gene products (~86%) associated 
with extracellular reactions were predicted to have a sig-
nal peptide by at least one of the two tools, while no gene 
products associated with transport or intracellular reac-
tions were predicted to have a signal peptide by either of 
the two tools (Additional file 3). WoLF PSORT [53] and 
ProtComp were also used to predict subcellular localiza-
tion of proteins (“Methods”). Predictions from at least 
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Fig. 2  Schematic illustration of the pipeline for reconstruction and annotation of the PCWDN of N. crassa. An initial scaffold network, PCWDN 
v0.0, was assembled based on annotation information in several databases. Extensive literature-based manual curation was then performed to fill 
knowledge gaps in the initial PCWDN v0.0. Gene annotations in the final PCWDN v1.0 were refined based on multi-level supporting evidence from 
five heterogeneous data types
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one of the two tools matched the assigned localization 
for 90 out of the 103 gene products (~87%) associated 
with extracellular reactions, while the predictions from 
at least one of the two tools matched the assigned locali-
zation for all gene products associated with transport or 
intracellular reactions in the PCWDN (Additional file 3).

Using the compiled functional genomics-based infor-
mation (Additional file  3), we assessed the annotation 
support for the 168 PCWDN members. Specifically, 
functional genomics information was considered to sup-
port the annotation of a PCWDN enzyme if the following 
three conditions were satisfied (Fig.  3): (i) gene annota-
tion in CAZY database [41] or Broad OR74A genome 
[12, 13] or TransportDB [43] matches the assigned bio-
chemical function in the network; (ii) SignalP or Phobius 
predicts the presence of a signal peptide in extracellular 
(secreted) enzymes and the absence of a signal peptide 
in intracellular enzymes; (iii) subcellular localization 
predictions from WoLF PSORT or ProtComp match the 
assigned localization in the network. Based on this defini-
tion, we obtained functional genomics-based annotation 
support for 145 of the 168 PCWDN genes (Additional 
file 3).

Transcriptomics‑based annotation
To augment the annotation of PCWDN genes, we used 
RNA-seq data and compared the transcriptional profiles 
of N. crassa WT strain (FGSC 2489 [12]; “Methods”) 
grown under different carbon source regimes corre-
sponding to the different carbohydrates that make up the 
plant cell wall. Previous studies [16, 19] generated RNA-
seq data from shift experiments, in which a 16-h-old 
culture of N. crassa WT was shifted for 4 h to minimal 
media with no carbon (NoC) source or one of five carbon 
sources: sucrose, cellobiose (CB), Avicel (microcrystalline 
cellulose), xylan, pectin, or orange peel powder (OPP, a 
pectin-rich substrate) (“Methods”; Additional file 4). We 
replicated this experimental design, generating RNA-
seq data for four additional carbon sources: xyloglucan 
(XG), mannan, mixed-linkage glucan (MLG), and starch 
(“Methods”; Additional file  4). This approach ensured 
that a comparative analysis of transcriptional profiles 
could be performed between all tested plant cell wall pol-
ysaccharides. A pipeline consisting of standard software 

was used to analyze the RNA-seq data and identify dif-
ferentially expressed genes between the nine different 
conditions corresponding to different polysaccharides 
and the two controls corresponding to NoC and sucrose 
conditions (“Methods”; Additional file 4).

Based on the compiled RNA-seq data, we gener-
ated transcriptomics-based annotation support for the 
PCWDN genes (Fig.  3; Additional file  4). We consid-
ered RNA-seq data to support the annotation of a gene 
involved in the degradation of a specific polysaccharide 
if its transcript was significantly differentially expressed 
and upregulated in the relevant carbon source as com-
pared to the NoC control. For example, RNA-seq data 
supported the annotation of the gene gh6-3 (NCU07190), 
predicted to encode an exo-β-1,4-glucanase (cellobiohy-
drolase) involved in cellulose degradation, as this gene is 
upregulated on Avicel in comparison to the NoC control 
(Additional file  4). We obtained transcriptomics-based 
annotation support for 106 of the 168 PCWDN genes 
(Additional file 4).

Proteomics‑based annotation
To further enrich the PCWDN and provide an added 
layer of confidence in the annotation, we compiled 
proteomics data from previous N. crassa studies [15, 
17–19, 54–57] (Additional file  5). In these studies, the 
secretomes from N. crassa grown on sucrose, Avicel, 
xylan, pectin, OPP, and NoC had been characterized 
using a shotgun proteomics approach [15, 17–19, 54, 55] 
or by quantitative proteomics [57] (Additional file 5). The 
compiled data were used to generate proteomics-based 
support for the annotation of PCWDN genes. Proteom-
ics data supported the annotation of an enzyme if the 
protein was detected in the secretome or displayed an 
increased abundance in a carbon source as compared 
to the NoC control (Fig.  3). For example, proteom-
ics data further supported the annotation of gh6-3, as 
the encoded protein was detected in the secretome and 
also increased in abundance on Avicel compared to the 
NoC control (Additional file 5). In this way, we obtained 
proteomics-based annotation support for 68 of the 168 
PCWDN genes (Additional file  5). In cases where an 
enzyme in the PCWDN was detected in a secretome, 
but was not predicted to be secreted using functional 

(See figure on next page.) 
Fig. 3  Feature matrix and annotation confidence scores for genes encoding AA9 LPMOs in N. crassa. Combined annotation information from the 
five different data types was captured in a feature matrix, and a method was devised to assign annotation confidence scores to PCWDN genes. A 
differential weighting system was used to account for the different levels of confidence associated with the information from each data type. The 
majority of genes encoding AA9 LPMOs of class 1 (3 out of 5 genes) and class 2 (2 out of 3 genes) are well characterized, while only 1 out of 6 genes 
encoding AA9 LPMOs of class 3 is well characterized. NoC no carbon, CB cellobiose, XG xyloglucan, MLG mixed-linkage glucan, OPP orange peel 
powder
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genomics tools, the proteomics-based evidence was con-
sidered more reliable and given priority. This approach 
led to the re-annotation of 4 PCWDN genes: gla-
1(NCU01517), gh6-3 (NCU07190), gh5-7 (NCU08412), 
and ce5-2 (NCU09663).

Genetics‑based annotation
Next, we mined published literature to compile an exper-
imentally verified dataset of N. crassa deletion strains 
for PCWDN genes with a growth-deficient phenotype 
as compared to the parental WT strain (FGSC 2489) 
(Additional file 6). This dataset was used to assign genet-
ics-based annotation support to PCWDN enzymes. For 
example, the genetics-based dataset supported the anno-
tation of the gene gh10-2 (NCU08189) as an endo-β-1,4-
xylanase involved in xylan degradation, since the deletion 
strain for this gene exhibited a growth-deficient pheno-
type on xylan [17] (Additional file  6). Overall, genetics-
based information supported the annotation of 19 out of 
the 168 PCWDN genes (Additional file 6).

Biochemical characterization of enzymes
Lastly, we mined the literature for biochemical data to 
support the annotation of PCWDN enzymes (Fig.  2). 
Gene products for 33 out of the 168 PCWDN genes have 
been biochemically characterized in N. crassa [20–24, 
46–50, 58–68] (Additional file 7). An additional extensive 
literature search was performed to determine if ortholog/
paralogs of N. crassa PCWDN genes had been biochemi-
cally characterized in other filamentous fungi [39, 69, 70] 
(Additional file 7). We used OrthoMCL [71, 72] to deter-
mine the orthology/paralogy of PCWDN genes in other 
filamentous fungi (“Methods”). In this way, biochemical-
based annotation support was obtained for 113 out of the 
168 PCWDN genes (Additional file 7).

Feature matrix and annotation confidence score
The combined annotation information for PCWDN 
genes from the five different data types was captured in a 
feature matrix (Fig. 3; Additional file 1). We next devised 
a simple method based on the feature matrix to assign 
annotation confidence scores to PCWDN genes. A dif-
ferential weighting system was used to account for the 
different levels of confidence associated with the annota-
tion information for each of the five heterogeneous data 
types with each annotation level superseded by the next 
(Fig. 3). Annotation support from biochemical character-
izations was given the highest level of confidence (factor 
of 16), followed by published mutant phenotypes (factor 
of 8), proteomic data (factor of 4), transcriptomic data 
(factor of 2), and functional genomics-based predictions 
(factor of 1). To obtain an overall annotation confidence 
score in the range of 0–1, the weighted sum of evidence 

support from the five data types was normalized by divid-
ing by the maximal possible score of 31 (Fig. 3). Note that 
the chosen factors in the differential weighting system are 
the simplest possible that enable mathematical mapping 
from diverse evidence support values to a unique annota-
tion confidence score. Moreover, the chosen factors are 
such that the contribution from a given data type to the 
confidence score is always more than the combined con-
tribution from all other data types with less confidence. 
That is, a gene with annotation support from only bio-
chemical characterization has a higher confidence score 
than a gene with combined annotation support from 
genetics, proteomics, transcriptomics, and functional 
genomics-based information. Additional file  1 lists the 
annotation confidence scores for the 168 PCWDN genes, 
and Fig.  3 presents the confidence scores for the genes 
belonging to CAZY class AA9 (Auxiliary Activity Fam-
ily 9) encoding LPMOs involved in cellulose degradation 
[44, 47, 50]. For this particular case, the majority of genes 
encoding AA9 LPMOs within class 1 (3 out of 5 genes) 
and class 2 (2 out of 3 genes) are well characterized, while 
this is true for only 1 out of 6 genes encoding class 3 AA9 
LPMOs.

Comparative global transcriptome analysis
To better define the genome-wide response of N. crassa 
to plant cell wall substrates, we analyzed combined RNA-
seq data for possible correlations between the response 
patterns for various carbon sources. Figure 4a shows the 
level of correlation across the whole transcriptome for 
each pair of growth conditions. Hierarchical clustering 
of the pairwise correlation matrix across carbon sources 
revealed four main clusters. Avicel (cellulose) and MLG 
(a hemicellulose component) were in the first cluster with 
highly correlated gene expression patterns, likely due 
to the fact that both polysaccharides have a backbone 
that is rich in β-1,4-linked d-glucose residues. Similarly, 
sucrose and starch conditions fell into a second cluster, 
while xylan and pectin conditions were in a third clus-
ter. This analysis also identified a fourth cluster where 
the gene expression in two hemicellulose components, 
mannan and XG, were very similar to the NoC starva-
tion condition. In support of these observations, the N. 
crassa WT strain was observed to grow poorly on both 
mannan and XG. Principal component analysis of expres-
sion data under the different conditions gave a similar 
result (Fig. 4b), where the first two principal components 
together explained more than 79% of the total variance.

For a more detailed comparison of the N. crassa tran-
scriptional response upon exposure to different plant cell 
wall polysaccharides, we identified the regulons for each 
polysaccharide using the NoC and sucrose conditions 
as controls. Following Benz et  al. [19], the regulon (or 
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up-regulon) for a given growth condition was defined as 
genes that were upregulated and differentially expressed 
in relation to both controls. Based on this definition, the 
regulons for Avicel, xylan, XG, mannan, MLG, pectin, 

and starch were determined to contain 153, 180, 138, 112, 
188, 323, and 363 genes, respectively (horizontal bar plot 
in Fig. 4c; Additional file 4; for the corresponding down-
regulons, see Additional files 4, 8). Although starch was 
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Page 9 of 21Samal et al. Biotechnol Biofuels  (2017) 10:225 

determined to have the largest regulon with 363 genes, 
it was fairly distinct among the regulons with 294 unique 
genes (81%). By comparison, mannan was 47% unique, 
followed by pectin (39%), MLG (28%), xylan (16%), XG 
(15%), and Avicel (11%). The overlap between each of the 
seven regulons was determined, and the vertical plot in 
Fig. 4c shows all regulon comparisons with an overlap of 
5 or more genes. Interestingly, XG and pectin regulons 
contained the highest overlap with 27 genes in common, 
followed by the Avicel regulon that overlapped most 
highly with MLG (24 genes), xylan with pectin (21 genes), 
and mannan with starch (14 genes). All 26 intersection 
sets from this analysis were subjected to functional cat-
egory analysis based on gene annotations in FunCatDB 
[73] (Additional file  9). Most of the intersection sets 
involving either Avicel, xylan, XG, mannan, MLG, or pec-
tin regulons were enriched in metabolic genes (“Metabo-
lism and Energy”).

We next computed the relative abundance of the 168 
PCWDN genes within each of the seven polysaccharide 
regulons and the probability of their enrichment. For 
Avicel, 66 PCWDN genes were represented in the regu-
lon of 153 genes, a 43% enrichment (p < 10−78). The xylan 
regulon contained 68 PCWDN genes (37% enrichment; 
p  <  10−76), the mannan regulon contained 13 PCWDN 
genes (29%; p  <  10−7), the XG regulon contained 41 
PCWDN genes (43%; p < 10−39), the MLG regulon con-
tained 62 PCWDN genes (32%; p  <  10−64), the pectin 
regulon contained 74 PCWDN genes (22%; p  <  10−65), 
and the starch regulon contained 14 PCWDN genes 
(3.8%; p < 10−2) (Fig. 4c). The observed overlap between 
PCWDN genes and regulons was statistically highly sig-
nificant, since the PCWDN genes account for only 1.7% 
of genes (168 out of 9758) within the N. crassa genome. 
Thus, our PCWDN genes capture a substantial (and rel-
evant) part of the transcriptional response of N. crassa 
upon exposure to Avicel (cellulose), xylan, mannan, XG, 
MLG, and pectin.

Clustering of transcriptome profiles within the context 
of the PCWDN
Comparative global transcriptional analyses underlined 
the importance of PCWDN genes for adaptation to dif-
ferent plant cell wall polysaccharides. We next performed 
hierarchical clustering [74] of the RNA-seq data for the 
168 PCWDN genes in all nine conditions (Avicel, xylan, 
XG, mannan, MLG, pectin, starch, sucrose, and NoC). 
The conditions (x-axis in Fig.  5) clustered similarly to 
what was obtained from correlation and principal com-
ponent analysis of the genome-wide transcriptome pro-
files presented in Fig.  4a, b. The genes (y-axis in Fig.  5) 
were grouped into six major clusters (“Methods”; 

Additional file  10). The 33 genes in the largest cluster 
were highly expressed under Avicel and MLG as com-
pared to other conditions. Notably, this cluster contains 
most of the endo-β-1,4-glucanases, exo-β-1,4-glucanases, 
β-glucosidases, AA9 LPMOs, and the identified cellodex-
trin transporters. The second cluster contained 15 genes, 
showed the highest expression on xylan, and consisted 
of genes encoding endo-xylanases, β-xylosidases, acetyl 
xylan esterases, xylose reductase, xylulokinase, and xylitol 
dehydrogenase. The 10 genes in the third cluster were 
most strongly expressed on pectin and included genes 
encoding pectin methyl esterases, a rhamnogalacturonan 
lyase, a rhamnogalacturonan acetyl esterase, an endo-β-
1,4-galactanase, and a β-galactosidase. The fourth cluster 
composed of 27 genes showed transcriptional activity 
on both xylan and pectin and consisted mainly of genes 
encoding β-xylosidases, exo- and endo-arabinanases, 
α-arabinosidases, β-galactosidases, and genes involved 
in l-rhamnose and d-galacturonic acid metabolism. The 
fifth cluster composed of 6 genes with broader expression 
pattern contained four sugar transporters, and the final 
cluster composed of 29 genes contained those factors 
most strongly induced during starvation (excluding man-
nan and XG).

The AA9 LPMOs, previously annotated as CAZY class 
GH61, degrade cellulose by oxidative cleavage [44, 46, 47, 
49]. Most AA9 LMPOs were highly expressed on Avi-
cel and MLG and their expression was correlated across 
the two conditions (Additional file 11). In comparison to 
Avicel and MLG, the expression of 10 of the 14 LPMOs 
was much lower on XG and negligible on starch. Based 
on these observations, we concluded that these genes are 
specifically induced by non-substituted β-d-glucans and 
hypothesize that LPMOs in AA9 CAZY class also act on 
MLG, which is now included in the PCWDN of N. crassa 
(Additional file 1).

A recent study [49] suggested that the product of AA9 
LPMO gene NCU02916 can also act on XG. However, 
NCU02916 was not induced when grown on XG, and the 
N. crassa WT strain (FGSC 2489) grew poorly on XG, 
with the transcriptome profile highly correlated with that 
of the NoC control (Fig.  4a). Thus, it is difficult to rule 
out the possibility that the AA9 LPMOs also act on XG, 
and we therefore included such reactions in the PCWDN 
of N. crassa (Additional file 1). However, another recent 
study [50] characterized a starch-specific LPMO, 
NCU08746, and this gene is classified in the new CAZY 
class AA13 [41]. Consistent with this finding, NCU08746 
was differentially upregulated under starch conditions 
(Additional file 4), and thus NCU08746 was assigned to 
starch-specific LPMO reaction in the PCWDN (Addi-
tional file 1).
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Regulation of the PCWDN by key transcription factors
Previous research [16, 17] on plant cell wall deconstruc-
tion by N. crassa led to the identification of two essen-
tial transcription factors (TFs), CLR-1 (NCU07705) and 
CLR-2 (NCU08042), for cellulose utilization, and one 
essential TF, XLR-1 (NCU06971), for utilization of xylan. 
All three TFs are conserved across ascomycete fungi 
[16, 75–80]. Using next-generation sequencing of chro-
matin-immunoprecipitated DNA (ChIP-seq), a recent 
study [81] identified binding regions for CLR-1, CLR-2, 
and XLR-1 across the N. crassa genome under sucrose, 
Avicel, xylan, and NoC conditions. CLR-1, CLR-2, and 
XLR-1 bound to the regulatory regions of 293, 164, and 
84 genes, respectively, in the N. crassa genome [81]. 
Integrating this information, we determined that CLR-
1, CLR-2, and XLR-1 bound the promoter regions of 
27 (p < 10−12), 37 (p < 10−30), and 20 (p < 10−17) genes, 
respectively, within the 168 PCWDN genes (Fig.  6). 
Of the 27 PCWDN genes regulated by CLR-1, 21 are 
involved in cellulose utilization, including endo-β-
1,4-glucanases, AA9 LPMOs, exo-β-1,4-glucanases, 
β-glucosidases, or cellodextrin transporters, while 17 out 
of 20 PCWDN genes regulated by XLR-1 are involved 
in xylan utilization including endo-β-1,4-xylanases, 
β-xylosidases, β-arabinofuranosidases, or xylodextrin 
transporters [81] (Fig.  6). However, in the case of CLR-
2, only 23 out of 37 PCWDN genes directly regulated by 
the TF are involved in cellulose utilization, while 12 other 
PCWDN genes are involved in xylan or mannan utiliza-
tion [81] (Fig. 6). These observations suggest that CLR-2, 
unlike CLR-1 or XLR-1, has a broader regulatory role in 
plant cell wall deconstruction, and which is not limited to 
cellulose utilization.

CLR-1 is known to directly regulate clr-2 [81]. Intrigu-
ingly, we found that 19 out of 27 PCWDN genes directly 
regulated by CLR-1 are also directly regulated by CLR-2 
(Fig.  6). These observations indicate that CLR-1 and 
CLR-2 predominantly employ feed-forward loops (FFLs) 
[82–86] to regulate the cellulose utilization pathway 
within the PCWDN of N. crassa.

clr‑2, clr‑1, and gh5‑7 are important for mannan 
degradation
Our comparative transcriptome analysis revealed that 
the pattern of gene expression of N. crassa WT exposed 
to mannan was highly correlated to the NoC starvation 

condition. In contrast to the cellulose and xylan utiliza-
tion pathways, the N. crassa genome has a mostly non-
redundant mannan utilization pathway, with just one 
predicted endomannanase, gh5-7 (NCU08412), and one 
intracellular β-mannosidase, gh2-1 (NCU00890) (Fig. 7a; 
Additional file  1). Note that a novel β-1,4-mannanase 
belonging to the CAZY family GH134 recently found 
in Aspergillus nidulans [87] has no close homolog in N. 
crassa. Based on ChIP-seq data [81], CLR-2 directly regu-
lates both genes, while CLR-1 directly regulates only gh5-
7 and XLR-1 does not directly regulate any genes in the 
mannan pathway (Fig.  6). Additionally, gh5-7 and gh2-1 
were induced on mannan, albeit to a much lower extent 
than on Avicel or MLG, a context where these enzymes 
should not be directly required (Fig. 7b). By contrast, the 
clr-1 and clr-2 genes were highly expressed in Avicel and 
MLG conditions, but not induced by mannan (Fig.  7b). 
These observations led us to hypothesize that CLR-1 and 
CLR-2 may be important for the induction of gh5-7, con-
stituting the first step in the mannan utilization pathway.

To test this hypothesis, we first designed experiments 
to confirm that GH5-7, as the only predicted endoman-
nanase in N. crassa, is critical for mannan utilization. 
As the deletion strain for gh5-7 was not available, we 
constructed a Δgh5-7 strain (ΔNCU08412) following 
standard procedures ([88]; “Methods”). Since pure man-
nan acts as a poor inducer (Fig. 8d), we used Konjac glu-
comannan instead of pure mannan to test our hypothesis. 
As predicted, the Δgh5-7 mutant was found to have a 
strong growth phenotype, accumulating only 50–60% of 
WT biomass when grown on glucomannan as a sole car-
bon source (Fig. 8a, b). Additionally, both the Δclr-1 and 
Δclr-2 strains also grew poorly on glucomannan, accu-
mulating only 10–20% of WT biomass, while the Δxlr-1 
strain showed no significant growth phenotype (Fig. 8a, 
b).

The results presented above showed that clr-1, clr-2, and 
the endomannanase gene gh5-7 are important for man-
nan utilization by N. crassa. Together with the observa-
tion that CLR-2 directly regulates gh5-7 and gh2-1, and 
that the expression of clr-2 was negligible in the WT strain 
under pure mannan conditions (Fig. 7b), we hypothesized 
that an engineered strain mis-expressing clr-2 would show 
enhanced growth on mannan. A clr-2 mis-expression 
strain (Pc2) constructed in a previous study [76] results in 
a strain that constitutively expresses clr-2 and cellulases. 

(See figure on previous page.) 
Fig. 5  Hierarchical clustering of transcriptome profiles within the context of the PCWDN of N. crassa. The heatmap shows the result of two-dimen-
sional clustering of the RNA-seq data for all 168 PCWDN genes in nine conditions corresponding to Avicel, xylan, XG, mannan, MLG, pectin, starch, 
sucrose, and NoC, which led to the identification of six major clusters. Note that the clustering of conditions was similar to that obtained from cor-
relation and principal component analysis of the global transcriptome profiles (Fig. 4a, b)
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We evaluated the growth of the Pc2 strain on glucoman-
nan as compared to the WT strain and determined that 
the Pc2 strain accumulated 90–100% more fungal biomass 
than WT on glucomannan, while secreting 7 times as 
much protein (Fig. 8a–c). Similarly, a clr-1 mis-expression 

strain (Pc1) accumulated 90–100% more fungal biomass 
than WT on glucomannan, albeit exhibiting a similar pro-
tein secretion level (Fig.  8a–c). In contrast, a xlr-1 mis-
expression strain (Px1) accumulated fungal biomass at a 
similar level to WT on glucomannan (Fig. 8a–c).
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Fig. 6  Direct regulation of the PCWDN genes by key transcription factors for cellulose and xylan utilization. The PCWDN genes have been grouped 
based on their biochemical function and participation in degradation pathways of different plant cell wall polysaccharides. It is observed that CLR-1 
directly regulates mostly genes involved in cellulose utilization, XLR-1 directly regulates mostly genes involved in xylan utilization, while CLR-2 has a 
much broader role in the regulation of genes involved in plant cell wall deconstruction
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We next used Pc2, Pc1, and Px1 strains to test their 
growth on pure mannan as a sole carbon source. Remark-
ably, the Pc2 strain exhibited a robust growth phenotype 
on pure mannan (Fig.  8d) and secreted 14 times more 
protein than the WT strain. However, both Pc1 and 
Px1 strains showed a poor growth phenotype similar to 
WT in pure mannan (Fig. 8d). Thus, these experimental 

results validated our hypothesis that mis-expression 
of clr-2, and thus induction of gh5-7 and gh2-1, would 
restore growth on mannan. Furthermore, the Pc2 strain 
also exhibited robust growth on XG, while the Pc1 and 
Px1 strains showed growth characteristics that were sim-
ilar to WT on XG as a sole carbon source (Fig. 8e). These 
novel insights into the regulation of the mannan and XG 
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Fig. 7  a Schematic diagram of the mannan degradation pathway. b Expression of genes encoding enzymes in the mannan degradation pathway 
and key transcription factors for cellulose and hemicellulose utilization across different conditions. Expression values for genes with more than two 
fold up-regulation relative to the starvation condition (NoC) are shaded in pink, while those with more than two fold down-regulation are shaded in 
blue. XG xyloglucan, MLG mixed-linkage glucan

(See figure on next page.) 
Fig. 8  clr-2 plays a major role in mannan and xyloglucan (XG) degradation. a–c Growth phenotypes of WT, Δgh5-7, Δclr-1, Δclr-2, Δxlr-1, Pc1 (Pccg-
1-clr-1), Pc2 (Pccg-1-clr-2), and Px1 (Pccg-1-xlr-1) strains of N. crassa in the medium containing glucomannan as the sole carbon source after growth 
for 4 days. a Photograph of 3 mL cultures with replicates in 24-well deep-well plates. b Fungal dry weights after 4 days. Bars represent standard 
deviations. The asterisk indicates a significant difference from WT with an unadjusted p value of <0.003 using one-way ANOVA. c Secreted protein 
in culture supernatants (SN) relative to WT. Bars represent standard deviations. The concentration of secreted protein is shown relative to WT, which 
was set to 100%. d Growth phenotypes of WT, Pc1, Pc2, and Px1 strains of N. crassa in the medium containing pure mannan as the sole carbon 
source after growth for 4 days. e Growth phenotypes of WT, Pc1, Pc2, and Px1 strains of N. crassa in the medium containing XG as the sole carbon 
source after growth for 4 days
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degradation pathway by CLR-2 will aid future efforts to 
engineer improved strains for degradation of lignocellu-
losic biomass.

Comparison of the PCWDN with genome‑scale metabolic 
networks of other fungi
A genome-scale metabolic model (iJDZ836) containing 
836 metabolic genes that encode 1027 unique enzymatic 
activities was previously published for N. crassa [34] and 
captures biochemical reactions for catabolism of simple 
nutrients, central and energy metabolism, and biosynthe-
sis of biomass precursors. By comparing reactions and 
genes in our PCWDN with those in iJDZ836, we found 
that 167 out of 202 PCWDN reactions (>82%) and 105 
out of 168 PCWDN genes (>62%) were not contained in 
the model (Additional file  12). Additionally, among the 
63 common genes, 23 PCWDN genes (>36%) had incor-
rect or outdated annotations (Additional file 12).

Apart from N. crassa, genome-scale metabolic models 
have also been reconstructed for a few other ascomycetes 
species, including A. nidulans [29], Aspergillus niger 
[30], Aspergillus oryzae [31], Aspergillus terreus [32], and 

Penicillium chrysogenum [33]. Using OrthoMCL [71, 72], 
we searched the genomes of these species for ortholog/
paralogs of the 168 N. crassa PCWDN genes, and found 
178 (A. nidulans), 160 (A. niger), 197 (A. oryzae), 192 (A. 
terreus), and 164 (P. chrysogenum) orthologous/paralo-
gous genes (“Methods”; Additional file 12). To assess the 
coverage of polysaccharide degradation pathways in the 
reconstructed metabolic models for these species [29–
33], the overlap between genes in other fungal metabolic 
models and ortholog/paralogs of the PCWDN genes was 
determined. Of the PCWDN ortholog/paralogs, 40–70% 
were not accounted for in the other filamentous fungal 
metabolic models (Additional file  12). These analyses 
highlight the significant knowledge gaps specific to path-
ways for degradation and utilization of plant cell wall 
polysaccharides in published genome-scale metabolic 
models for other ascomycete species.

Conclusions
Here, we have taken a comprehensive approach, using 
diverse datasets, to define genes in filamentous fungi 
involved in the deconstruction of plant biomass, using 
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N. crassa as a model (Fig.  9). From these analyses, we 
developed hypotheses regarding the regulation of man-
nan degradation in N. crassa and experimentally tested 
the hypothesis that the transcription factor CLR-2, pre-
viously characterized to regulate cellulose utilization [16, 
17], also plays a role in mannan degradation. Interest-
ingly, clr-2 is the ortholog of the transcriptional regulator 
ManR, which regulates mannan utilization in A. oryzae 
[89]. These data support the view that the role of clr-2 
orthologs in the regulation of genes involved in mannan 
utilization is conserved among filamentous fungi.

Current metabolic models for N. crassa [34] and other 
filamentous fungi [29–33] have significant knowledge 
gaps in the degradation pathways for most plant cell 
wall polysaccharides. For example, the N. crassa meta-
bolic model iJDZ836 [34] has significant knowledge 
gaps regarding the pathways for degradation and utili-
zation of plant cell wall polysaccharides. The iJDZ836 
model contains neither the pectin degradation nor the 
d-galacturonic acid utilization pathway (Additional 
file 12) and lacks degradation pathways for most hemicel-
lulosic polysaccharides including mannan, XG, and MLG 
(Additional file  12). Additionally, degradation pathways 
for cellulose and xylan were not captured in detail. For 
example, the AA9 LPMOs were incorrectly annotated 
as endo-β-1,4-glucanases and therefore do not contain 
reactions describing the oxidative cleavage of cellulose 
by LPMOs (Additional file  12). Likewise, the metabolic 
models for other filamentous fungi do not capture the 
LPMO-associated reactions and pectin degradation path-
way. These limitations render the available genome-scale 
metabolic models for filamentous fungi not well suited 
for the investigation of plant cell wall deconstruction, 
while our PCWDN will serve as a valuable resource to 
fill this gap. In the future, our reconstructed network is 
expected to play a central role in the systems analysis of 
complex experimental datasets and will yield many more 
novel insights into plant cell wall deconstruction by fila-
mentous fungi.

Methods
Databases and functional genomics tools
A list of predicted carbohydrate-active enzymes in the 
N. crassa genome was compiled from two databases, 
the CAZY [41, 90] and the N. crassa e-Compendium 
[42, 91]. Following manual curation, we generated an 
updated list of predicted carbohydrate-active enzymes 
in N. crassa (Additional file 2). TransportDB [43, 92] was 
used to obtain a list of predicted transporters in the N. 
crassa genome. Proteins destined for the secretory path-
way are likely to have a signal peptide sequence in their 
N terminus, and we used two prediction tools, SignalP 
[51, 93] and Phobius [52, 94], to predict the presence 

of signal peptides in amino acid sequences of PCWDN 
enzymes (Additional file  3). In order to assign the sub-
cellular localization of enzymes, we used WoLF PSORT 
[53, 95] and ProtComp [96] (Additional file 3). The myco-
CLAP database [70, 97] was used extensively to compile 
the list of biochemically characterized lignocellulose-
active proteins of fungal origin. OrthoMCL [71, 72, 98] 
is a tool to identify orthologous gene pairs across eukary-
otic genomes. We have used OrthoMCL to determine the 
ortholog/paralogs of N. crassa PCWDN genes in more 
than 40 fungal genomes.

Strains and culture conditions
The N. crassa WT reference strain was OR74A (FGSC 
2489), which was the background for all mutant strains 
[12, 88]. The deletion strains for clr-1 (FGSC 11029), clr-2 
(FGSC 15835), and xlr-1 (FGSC 11066 and 11067) were 
obtained from the Fungal Genetics Stock Center (FGSC) 
[99]. The mis-expression strains for clr-1 (Pc1), clr-2 
(Pc2), and xlr-1 (Px1) were obtained from a previous 
study [76]. The deletion strain for gh5-7 (NCU08412) was 
not available in the FGSC collection and was constructed 
following standard procedures (Δgh5-7; ΔNCU08412) 
[12, 88]. Briefly, the 5′ upstream and 3′ downstream 
genomic regions surrounding NCU08412 were PCR 
amplified from WT genomic DNA and joined through 
fusion PCR with the hygromycin phosphotransferase 
(hph) knockout cassette [88]. The resulting amplicon was 
transformed into FGSC 9718 (Δmus-51) and selected on 
hygromycin slants. A homokaryotic strain was obtained 
through microconidia selection on water agar plates 
yielding the strain (Δgh5-7::hygR; Δmus-51).

All N. crassa strains were pre-grown for 24 h on 3 mL 
agar slants of Vogel’s minimal media (VMM) [100] with 
2% sucrose at 30  °C under dark conditions. The slants 
were placed under constant light at 25  °C to stimulate 
conidia production. For flask cultures, conidia were col-
lected and inoculated (106 conidia/mL) into 100 mL liq-
uid VMM (2% sucrose) at 25 °C under constant light and 
shaking (200 rpm).

Media shift experiments
Media shift experiments were performed in triplicate and 
followed the procedure described earlier in Coradetti 
et  al. [16] and Znameroski et  al. [18] to ensure optimal 
comparability with the previously published RNA-seq 
datasets. First, using shake flasks (200  rpm), N. crassa 
cultures were pre-grown from conidia for 16 h in 100 mL 
of VMM [100] with 2% sucrose. Next, the mycelia were 
passed over a Whatman glass microfiber filter and 
washed three times with VMM without a carbon source 
(NoC). The mycelial mass was then transferred to new 
shake flasks with 100 mL of VMM containing a specific 
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carbon source [2% XG (P-XYGLN, Megazyme) or 2% 
mannan (P-MANCB, Megazyme) or 2% MLG (P-BGBM, 
Megazyme) or 2% Starch]. After 4  h in the new carbon 
source, the mycelia were harvested over a filter, flash fro-
zen in liquid nitrogen, and stored at −80 °C. Total RNA 
was extracted for library generation using the standard 
procedures as described in Tian et al. [15].

RNA sequencing and data analyses
Single-end libraries were prepared for RNA sequencing 
(RNA-seq) using an Illumina kit (RS-100-0801) follow-
ing standard protocols as described in Coradetti et  al. 
[16]. The cDNA libraries were sequenced on the Illumina 
HiSeq 2000 platform at the Vincent J. Coates Genomic 
Sequencing Laboratory, University of California, Berke-
ley. Three independent biological replicates of media shift 
cultures were sampled for N. crassa WT strains grown on 
VMM [100] with one of four carbon sources: XG, man-
nan, MLG, or starch. Profiling data for each of these car-
bon sources are contained in Additional file  4 and have 
also been deposited to the Gene Expression Omnibus 
(GEO) database [101] (Accession No. GSE90611). Previ-
ous studies [16, 19] generated profiling data for N. crassa 
WT strain grown in VMM with one of six carbon sources 
[sucrose, cellobiose (CB), Avicel, xylan, pectin, and OPP] 
or No Carbon (NoC) source, and these libraries were 
downloaded from the GEO database (Additional file 4).

Sequenced libraries were mapped to the current ver-
sion of the N. crassa OR74A genome (v12) using Tophat 
v2.0.5 [102–104]. Transcript abundance was estimated in 
FPKM (fragments per kilobase of transcript per million 
mapped reads) using Cufflinks v2.0.2 [102, 103, 105] with 
options of upper quartile normalization and mapping 
against reference isoforms. Differential expression analy-
sis was conducted using Cuffdiff v2.0.2 [102, 103]. Genes 
with a multiple-hypothesis adjusted p value below 0.05 
and at least twofold induction were determined to be sig-
nificantly differentially expressed between conditions.

Starting from average FPKM of genes across RNA-seq 
library replicates for a condition, hierarchical clustering 
was performed using Cluster 3.0 software suite [74, 106]. 
Before clustering, genes were filtered out that displayed 
consistently low expression (<10 FPKM) in all conditions. 
FPKM were log-transformed, normalized across condi-
tions, and centered on the geometric mean across con-
ditions on a per-gene basis. The average linkage method 
was used for cluster generation, with Pearson’s correla-
tion as a similarity measure. Visualization of clusters was 
performed using GENE-E software suite [107].

Growth assays
Growth assays on cell wall substrates were performed 
in 3  mL liquid cultures in 24-well plate format (GE 

Healthcare Life Sciences 7701-5102) with breathable 
sealing tape (Fisher Scientific 1256705). 106 conidia/mL 
were inoculated into VMM with 0.5% wt/vol 1,4-β-D-
mannan from carob (Megazyme P-MANCB), Konjac glu-
comannan (Megazyme P-GLCML), or xyloglucan from 
tamarind (Megazyme P-XYGLN) as the carbon source. 
Cultures were grown for 48 h at 25 °C with constant light 
and shaking at 250  rpm. At the end of the incubation, 
mycelia were concentrated by centrifugation at 3000 RCF 
for 10  min. Culture supernatants were then assayed for 
soluble protein with Bio-Rad protein assay dye reagent 
(Bio-Rad 500-0006), using bovine serum albumin (NEB 
9001S) as the protein standard. Mycelia were washed 
twice in water and lyophilized before weighing for bio-
mass determination.

Additional files

Additional file 1. List of reactions, compounds and genes in the plant 
cell wall degradation network (PCWDN) of N. crassa. The first, second 
and third sheets contain the list of reactions, genes and compounds, 
respectively, in the PCWDN. The fourth sheet gives the participation of the 
PCWDN genes in the cellulose, hemicellulose, pectin and starch degrada-
tion pathways. The fifth and sixth sheets contain the feature matrix and 
annotation confidence scores, respectively, for genes in the PCWDN of 
N. crassa based on functional genomics, transcriptomics, proteomics and 
genetics data as well as biochemical characterizations. The seventh sheet 
contains a list of research articles utilized to reconstruct the PCWDN. The 
eighth sheet contains information on the structural units comprising 
the backbone and side chains of different plant cell wall polysaccharides 
such as cellulose, xylan, xyloglucan, mannan, galactomannan, glucoman-
nan, galactoglucomannan, mixed-linkage glucan, homogalacturonan, 
xylogalacturonan, rhamnogalacturonan I, amylose and amylopectin. NoC 
no carbon, CB cellobiose, XG xyloglucan, MLG mixed-linkage glucan, OPP 
orange peel powder.

Additional file 2. List of predicted genes coding for carbohydrate-active 
enzymes (CAZY) in N. crassa and the plant cell wall degradation network 
(PCWDN). List of CAZY genes in N. crassa was obtained from two sources: 
CAZY database [41] and the N. crassa e-Compendium [42]. The first sheet 
contains the consensus list of predicted CAZY genes in N. crassa. The 
second sheet contains the list of predicted CAZY genes in N. crassa from 
CAZY database. The third sheet contains the list of predicted glycoside 
hydrolase (GH) genes in N. crassa from e-Compendium [42]. The fourth 
sheet contains the list of CAZY classes known to be involved in native 
cell wall remodelling. NoC no carbon, CB cellobiose, XG xyloglucan, MLG 
mixed-linkage glucan, OPP orange peel powder.

Additional file 3. Functional genomics-based annotation support for 
genes in the plant cell wall degradation network (PCWDN) of N. crassa. 
The table contains information from following sources: CAZY, BROAD, 
TransportDB, SignalP, Phobius, WoLF PSORT and ProtComp.

Additional file 4. Transcriptomics-based annotation support for genes 
in the plant cell wall degradation network (PCWDN) of N. crassa. The first 
sheet contains information on the transcriptomics-based annotation 
support for each gene in the PCWDN. The second sheet contains a table 
with the list of RNA-seq libraries for N. crassa WT strain grown in different 
conditions along with their GEO [101] accession numbers and references 
for the profiling data. The third sheet contains a table with the expression 
of genes in different conditions, separately, for replicate RNA-seq libraries. 
The fourth sheet contains a table with the average expression (Mean 
FPKM) of genes in each condition across replicate RNA-seq libraries. The 
fifth sheet contains a table with information on differential expression 
of genes in each condition compared to the No Carbon control. The 
sixth sheet contains a table with information on differential expression 
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and 8 out of 30 genes in the mannan down-regulon, have no overlap 
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4 genes between xylan and XG down-regulons, 4 genes between man-
nan and pectin down-regulons, and 4 genes between pectin and starch 
down-regulons. b Functional category analysis [73] of the 11 intersection 
sets among the down-regulons for seven conditions with four or more 
genes. Information on the functional category of N. crassa genes was 
obtained from Munich Information Center for Protein Sequence (MIPS) 
database [73, 109]. The ‘Others’ category includes genes with functional 
categorization different from the 10 categories listed in the legend. 
The ‘Unknown function’ category includes genes with unclassified or 
unknown function. The relative contribution of a functional category to 
each set of genes is depicted with the total number of genes in each pool 
equal to 100%.

Additional file 9. Functional category analysis of the 26 intersec-
tion sets among the up-regulons for seven conditions with 5 or more 
genes (shown in Fig. 4c). Information on the functional category of N. 
crassa genes was obtained from Munich Information Center for Protein 
Sequence (MIPS) database [73, 109]. The ‘Others’ category includes genes 
with functional categorization different from the 10 categories listed 
in the legend. The ‘Unknown function’ category includes genes with 
unclassified or unknown function. The relative contribution of a functional 
category to each set of genes is depicted with the total number of genes 
in each pool equal to 100%.

Additional file 10. Hierarchical clustering of genes in the plant cell 
wall degradation network (PCWDN) of N. crassa based on RNA-seq data 
obtained in nine different conditions. The first sheet lists the different 
clusters in the same order as shown in Fig. 5.

Additional file 11. Expression of characterized and predicted AA9 
LPMOs in N. crassa grown on four plant cell wall polysaccharides with 
d-glucose backbone: Avicel, xyloglucan (XG), mixed-linkage glucan (MLG) 

and starch. In comparison to Avicel and MLG, the expression of LPMOs 
was much lower on XG and negligible on starch.

Additional file 12. Comparative analysis of the plant cell wall degra-
dation network (PCWDN) with the genome-scale metabolic models 
of N. crassa and other filamentous fungi. The first and second sheets 
compare the list of reactions and genes, respectively, in the PCWDN and 
genome-scale metabolic model iJDZ836 of N. crassa. The third sheet gives 
the occurrence of orthologs or paralogs of N. crassa PCWDN genes in 
genome-scale metabolic models of other filamentous fungi.
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