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Abstract 

Background:  Aspergillus niger fermentation has provided the chief source of industrial citric acid for over 50 years. 
Traditional strain development of this organism was achieved through random mutagenesis, but advances in genom‑
ics have enabled the development of genome-scale metabolic modelling that can be used to make predictive 
improvements in fermentation performance. The parent citric acid-producing strain of A. niger, ATCC 1015, has been 
described previously by a genome-scale metabolic model that encapsulates its response to ambient pH. Here, we 
report the development of a novel double optimisation modelling approach that generates time-dependent citric 
acid fermentation using dynamic flux balance analysis.

Results:  The output from this model shows a good match with empirical fermentation data. Our studies suggest 
that citric acid production commences upon a switch to phosphate-limited growth and this is validated by fitting to 
empirical data, which confirms the diauxic growth behaviour and the role of phosphate storage as polyphosphate.

Conclusions:  The calibrated time-course model reflects observed metabolic events and generates reliable in silico 
data for industrially relevant fermentative time series, and for the behaviour of engineered strains suggesting that our 
approach can be used as a powerful tool for predictive metabolic engineering.
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Background
Due to its natural ability to secrete organic acids and 
proteins, the filamentous fungus Aspergillus niger is an 
established organism for the industrial production of cit-
ric acid and enzymes. A. niger is metabolically highly ver-
satile, a feature that has made it useful for a wide range 
of biotechnological biotransformations [1]. A. niger also 
produces a wide range of secondary metabolites, with 
over 100 reported to date [2]. A. niger is a saprotroph 
and its natural habitat is soil, although it can be found in 
wide-ranging habitats, such as rotting fruit, plant debris, 
and indoor environments. This fast-growing fungus is 
both acid- and thermo-tolerant, able to grow in the pH 
range 1.4–9.8 and in the temperature range 6–47  °C 

[3]. This versatility and its ease of culture has helped it 
become an established industrial organism. Its haploid 
genome is around 35 Mb in size with eight chromosomes 
which contain about 12,000  genes, 57% of which have 
functional assignments [4]. Aspergilli are an important 
and diverse group, which in addition to A. niger, include 
well-studied species such as the model genetic organism 
A. nidulans, the pathogen A. fumigatus and the domes-
ticated A. oryzae. Full genome sequences are currently 
available for 18 species of the Aspergilli group [5] and 
some of these have been subject to extensive systems 
biology studies [6].

With global production of 2 million tonnes a year, cit-
ric acid is an industrial chemical with many applications 
[7]. Its main use is in the food and drinks industry, but 
is also used in cleaning agents, pharmaceuticals, animal 
feed, and metal cleaning [8]. Industries using A. niger fer-
mentation are dependent on sucrose-based feedstocks, 
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but with rising costs and increasing concerns over food 
security, a switch to more sustainable and lower cost 
feedstocks is desirable [9]. A. niger can assimilate a wide 
range of carbon sources, and therefore has great potential 
for exploiting underused resource streams such as pen-
tose sugars from lignocellulose.

The best industrial strains are capable of produc-
ing over 70% of the theoretical yield of citric acid [10]. 
Such strains have been developed over many decades 
by time-consuming random mutagenesis. The geno-
type of resulting strains remains unknown, and random 
mutagenesis can lead to genetic instability of developed 
strains. Rational engineering of A. niger is now feasi-
ble, particularly with advances in genomics over recent 
years that have paved the way for genome-scale meta-
bolic modelling [5, 11]. Industrially, A. niger is utilised 
via large-scale batch fermentations rather than continu-
ous culture methods, typically in reactors in excess of 
100,000  L [12]. In order for genome-scale models to 
accurately capture the behaviour of these cultures, tech-
niques which model the batch growth, rather than simple 
chemostat-like cultures, are required.

The genome of the parent citric acid-producing strain 
of A. niger, ATCC 1015, has been sequenced [4]. This 
enabled development of the genome-scale metabolic 
model for A. niger, iMA871, which reflects ATCC 1015 
metabolism [13]. The model was further developed to 
reflect the well-known behaviour of A. niger to acidify its 
surroundings in response to ambient pH [14]. This was 
achieved by incorporating acid-dissociation reactions 
for seven organic acids reportedly secreted by A. niger. 
Each reaction gives the number of protons released by a 
particular acid as a function of ambient pH. Citric acid 
production was modelled statically using flux balance 
analysis (FBA). The objective function was either set to 

proton production at a fixed growth rate or proton pro-
duction was incorporated into the biomass equation. The 
nature of organic acid production in response to ambi-
ent pH is, however, a dynamic one, with acid-dissociation 
reactions changing as protons are produced.

In this article, we further develop the A. niger meta-
bolic model to take into account the dynamic nature of 
organic acid production. By designing a novel modelling 
approach that employs dynamic flux balance analysis 
(dFBA), we demonstrate a model that gives time-course 
fermentative series of citric acid production. We validate 
the new model by fitting to empirical data from ATCC 
1015 citric acid fermentations, and demonstrate how the 
resultant time-course calibrated model can be used as a 
powerful platform for metabolic engineering of A. niger.

Results
Citric acid fermentation occurs as part of a diauxic growth 
response
To investigate citric acid production by the parent cit-
ric acid-producing ATCC 1015 strain, empirical time-
course data were obtained from fermentation performed 
in shake flasks. Biomass and citric acid production were 
monitored with samples taken at 24-h time-points. 
Diauxic growth behaviour was observed, with a drop 
in growth rate at day 3 (Fig.  1a). Citric acid production 
commenced at day 3, coinciding with the diauxic growth 
shift (Fig. 1b). 60 g/L citric acid was produced.

In order to better understand the basis of this growth 
behaviour, we developed a dynamic flux balance analysis 
(dFBA) model based on the previously published FBA 
model [13, 14]. To validate the model and further inves-
tigate the diauxic growth behaviour, empirical data were 
obtained for citric acid fermentation under a range of 
phosphate levels (0.05, 0.09, and 0.17  g/L). Samples of 

Fig. 1  Citric acid production commences upon a diauxic growth switch. Empirical data plotted are the mean average of four biological replicates 
and error bars represent standard deviation. Citric acid data are normalised to reflect the amount produced. a Change in biomass dry weight (g/L) 
over time. b Change in external citric acid concentration (g/L) over time
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the cultures were taken every 24  h to produce a time-
course of biomass dry weight, phosphate depletion, cit-
ric acid production, and glucose consumption (Fig.  2). 
Phosphate was rapidly taken up and depleted by day 2 
(Fig. 2b), yet growth continued (Fig. 2a). Phosphate was 
therefore clearly stored internally to enable growth dur-
ing the absence of external phosphate. Diauxic growth 
was observed, with growth becoming phosphate-limited. 
The diauxic growth shift was synchronous with depletion 
of external phosphate. The phosphate-limited growth 
rate was a function of the initial phosphate concentra-
tion, with increased growth rate at higher phosphate. The 
timing of citric acid production was observed to coincide 
with the onset of phosphate-limited growth and external 

phosphate depletion (Fig. 2c). Up to 50 g/L citric acid was 
produced, with the culture at 0.17 g/L phosphate produc-
ing the most. Glucose uptake was relatively slow for the 
lower phosphate cultures and a limiting factor in citric 
acid production (Fig. 2d).

From these observations, we hypothesised that the 
diauxic growth shift is caused by a switch to phosphate-
limited growth, resulting in citric acid production. This 
hypothesis was motivated by examination of our data, 
existing knowledge of A. niger [10] and also the ecologi-
cal evidence that organic acids are released extracellularly 
in order to facilitate the mobilisation of phosphate, espe-
cially in soil [15]. We decided to examine the plausibility 
of this hypothesis using dFBA modelling.

Fig. 2  Comparing empirical and in silico data in response to varying phosphate. Markers represent empirical data and lines represent in silico data. 
Green circles and dashed-dotted lines correspond to 0.05 g/L phosphate. Purple triangles and dashed lines correspond to 0.09 g/L phosphate. 
Brown squares and solid lines correspond to 0.17 g/L phosphate. Empirical data plotted are the mean average of four biological replicates and 
error bars represent standard deviation. Citric acid data are normalised to reflect the amount produced. In silico data-points are one per minute. 
a Change in biomass dry weight (g/L) over time. b Change in external phosphate concentration (g/L) over time. c Change in external citric acid 
concentration (g/L) over time. d Change in external glucose concentration (g/L) over time
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Simulating citric acid fermentation by dynamic flux 
balance analysis
To create time-course simulations comparable to the 
citric acid fermentation empirical data, dynamic flux 
balance analysis (dFBA) was used with the iMA871 met-
abolic model [13]. Citric acid production was modelled 
by incorporating kinetic acid-dissociation reactions into 
the dFBA schema for the organic acids in iMA871 and 
setting the objective to proton production. This explicit 
inclusion leads to an acid hierarchy [14], which suggested 
that citric acid production was the most efficient means 
of acidification with oxalic acid production switched off.

In the standard setting for the metabolic model, citric 
acid secretion is included as a part of the external con-
straints during growth [13]; however, this is not sup-
ported by our observations. Therefore, a novel modelling 
approach was designed to simulate the diauxic growth 
behaviour with citric acid production commencing upon 
a diauxic growth shift coupled to phosphate intake. To 
achieve this, a double optimisation dFBA setup was 
designed (Fig. 3). The objective is first set to biomass pro-
duction, with the maximised growth rate then used in the 

second optimisation. The second objective is dependent 
on the growth-limiting condition of the first optimisa-
tion. The decision process uses a boolean expression. If 
the external phosphate flux is lower than its flux con-
straint, the second objective is set to phosphate storage to 
store excess phosphate not used for growth. Otherwise, 
external phosphate flux is equal to its flux constraint and 
the second objective is set to proton production to make 
use of the carbon not used for growth (phosphate-limited 
growth).

The dynamic modelling approach, dFBA, therefore 
includes a number of metabolite pools that are tracked 
outside of the FBA, including external glucose, exter-
nal phosphate, external pH, organic acids as well as the 
hypothesised stored phosphate. These metabolite pools 
are linked to the FBA simulations at each step via first 
order differential equations describing transport pro-
cesses. These differential equations are solved at each 
time-step to provide flux constraints for the FBA opti-
misations occurring in a tandem fashion and assuming 
the metabolic system remains at a steady-state despite 
the small changes in the external constraints. All equa-
tions used are detailed in the methods, but are essentially 
either linear diffusion or Michaelis–Menten transport 
equations across the membrane as described below 
and mathematically in the methods section. Literature 
sources were used to parameterise the model wherever 
available as described below.

Following previous studies [16, 17], glucose uptake 
was modelled as the sum of passive diffusion and facili-
tated diffusion, using empirical values from the literature 
[16, 17] for all transport-mediated kinetic parameters 
(Table 1). The calculated parameter for passive diffusion 
overestimated glucose uptake, and therefore was fitted 
to empirical data (Table  2). Transport-mediated glu-
cose uptake in A. niger is inhibited by low pH and non-
competitively inhibited by external citrate [17], and 
this was therefore included in the modelled glucose 
uptake. A. niger has both low- and high-affinity glucose 

Fig. 3  Simulating citric acid fermentation by dynamic flux balance 
analysis. A schematic showing the decision process implemented in 
the dFBA model

Table 1  Parameters set to empirical values from the literature

a  [GOX] is concentration of external glucose oxidase enzyme in mg gDW−1 and was fitted to empirical data (Table 2)

Parameter Description Value References

vG2,max (mmol gDW−1 h−1) External glucose high-affinity transport maximum rate 0.186 [16, 17]

KG2 (mM) External glucose high-affinity transport Michaelis constant 0.26 [16, 17]

Ki2 (mM) External glucose high-affinity transport citrate inhibition constant 933 [16, 17]

vG3,max (mmol gDW−1 h−1) External glucose low-affinity transport maximum rate 2.706 [16, 17]

KG3 (mM) External glucose low-affinity transport Michaelis constant 3.67 [16, 17]

Ki3 (mM) External glucose low-affinity transport citrate inhibition constant 233.21 [16, 17]

vGOX,max (mmol gDW−1 h−1) Glucose oxidase (GOX) maximum reaction rate 27.48 × [GOX]a [26]

KGOX (mM) Glucose oxidase (GOX) Michaelis constant 33 [26, 27]
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transport systems [17], both of which were included in 
the model. The low-affinity system is reported only active 
above 150 g/L glucose, [17] and so this system was only 
included in the model at high glucose (> 150 g/L).

Phosphate uptake and release of stored phosphate were 
modelled according to Michaelis–Menten kinetics. As no 
characterised phosphate transporters could be found for 
A. niger in the literature, kinetic parameters were fitted to 
empirical data on phosphate uptake (Table 2).

Fitting of model parameters to empirical data and model 
validation
The empirical data obtained from the experiment vary-
ing phosphate were used to fit model parameters and 
validate the model. A total of eight parameters were fit-
ted to a data-set containing 84 data-points. As each data-
point was in quadruplicate with very low error margins, 
we decided to use the data-set for both model train-
ing and validation. The trained model was later applied 
to independent data-sets (Fig.  4), which gave further 
validation. Using the trained model, citric acid fermen-
tation was simulated for each of the phosphate levels 
tested, and model predictions plotted alongside empiri-
cal data (Fig. 2). The modelled diauxic growth behaviour 
gave good fits to empirical data, with external phosphate 
depletion being the trigger that results in phosphate-
limited growth and citric acid production. All the model 
outputs showed a strong qualitative comparison to the 
empirical data with unfitted parameters taken directly 
from the literature. Notably, the modelled glucose uptake 
fitted empirical data closely (Fig.  2d) with unadjusted 

literature values for transport-mediated uptake rate and 
affinity.

However, a number of adjustments were required for 
the model to fit the empirical data more closely. In par-
ticular, the model underestimated biomass production 
during phosphate-limited growth, suggesting a lower 
phosphate demand not reflected in the iMA871 biomass 
equation. These contrasting observations in the different 
areas of growth suggest that the biomass equation for the 
iMA871 model represents an average biomass composi-
tion over different growth conditions and that therefore 
the biomass equation needs to be altered. Differences 
in biomass composition in different growth conditions 
have previously been reported in Escherichia coli [18]. 
To reflect citric acid-producing conditions, two new fit-
ted parameters were added to the model, the nucleic 
acid and phospholipid components of the biomass equa-
tion (Additional file 1: Table S1). The ratios between the 
different components of each, and the total mass of the 
biomass components were kept constant. Change in 
mass was balanced by adjustment of the glycerol compo-
nent, which has been reported to increase during citric 
acid-producing conditions [19]. The additional param-
eters increase the complexity of the model, and the like-
lihood of overfitting. Therefore, Akaike information 
criterion (AIC) [20] was used to measure the quality of 
fit and assess improvement in the model (Table  3) (see 
“Methods”).

Our model initially overestimated citric acid produc-
tion. This may be due to the many internal constraints 
imposed on the internal metabolism by the intracellular 

Table 2  Parameters fitted to our empirical data

a  External phosphate input rate changed 8 h after the dFBA start time to 0.015 mmol gDW−1 h−1 if initial pH 2 or 0.004 mmol gDW−1 h−1 if initial pH 7
b  [GLC] is concentration of external glucose in mM
c  [XYL] is concentration of external xylose in mM
d  Citric acid output rate constraint changed to 0.016 mmol gDW−1 h−1 if initial pH above 2

Parameter Description Value

vPe,max (mmol gDW−1 h−1) External phosphate maximum input ratea 0.08

KPe (mM) External phosphate Michaelis constant 0.0333

vP,max (mmol gDW−1 h−1) Internal phosphate maximum input rate 0.0008

KP (mM) Internal phosphate Michaelis constant 0.0833

vG1 (mmol gDW−1 h−1) External glucose passive uptake rate 0.00031419 × [GLC]b

vX1 (mmol gDW−1 h−1) External xylose passive uptake rate 0.00033 × [XYL]c

vX2,max (mmol gDW−1 h−1) External xylose high-affinity transport maximum rate 0.2

KX2 (mM) External xylose high-affinity transport Michaelis constant 3.33

vX3,max (mmol gDW−1 h−1) External xylose low-affinity transport maximum rate 2.5

KX3 (mM) External xylose low-affinity transport Michaelis constant 3.33

[GOX] (mg gDW−1) Concentration of external glucose oxidase enzyme 0.1

vCIT (mmol gDW−1 h−1) Citric acid output rate constraintd 0.12

vOXAL (mmol gDW−1 h−1) Oxalic acid output rate constraint 0.01
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accumulation of, or simply high throughputs of citrate 
that are not accounted for by the steady-state meth-
odology of flux balance analysis. For example, the cit-
rate sensitivity of 6-phosphofructo-1-kinase is a target 
of attempts to increase citrate production [21] and the 

rates of mitochondrial citrate export [22] and citrate 
secretion may be limiting. To reflect these constraints, a 
limit to the citric acid output rate, vCIT, was added and 
fitted as a parameter to more closely reflect empirical 
data (Table 2). Carbon uptake was decreased slightly as a 

Fig. 4  Comparing empirical and in silico data in response to different carbon sources. Markers represent empirical data and lines represent in 
silico data. Green circles and solid lines correspond to glucose. Purple triangles and dashed lines correspond to xylose. Empirical data plotted are 
the mean average of four biological replicates and error bars represent standard deviation. Citric acid data are normalised to reflect the amount 
produced. In silico data-points are one per minute. a Change in biomass dry weight (g/L) over time. b Change in external phosphate concentration 
(g/L) over time. c Change in external citric acid concentration (g/L) over time. d Change in external carbon source concentration (g/L) over time

Table 3  AIC scores for model selection

Additional parameters Number of fitted parameters AIC score

None 5 438

Nucleic acid component of biomass equation 6 416

Phospholipid component of biomass equation 6 422

Nucleic acid and phospholipid components of biomass equation 7 393

Nucleic acid and phospholipid components of biomass equation, and citric acid output constraint 8 300
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result of the constraint on citric acid output, but still gave 
close fits to empirical data. The new model was assessed 
by calculating the AIC (see “Methods”), which showed a 
significant improvement (Table 3).

Citric acid production on other carbon sources
To further investigate the diauxic growth behaviour, we 
tested citric acid fermentation using d-xylose as a sub-
strate at an initial concentration of 160  g/L. The same 
diauxic growth shift coupled citric acid response was 
seen with xylose (Fig. 4) as seen with glucose. We applied 
our model, with previously fitted parameters unchanged. 
The empirical data from this experiment were not used 
in previous model training, and served to provide fur-
ther validation with glucose as substrate and at a different 
phosphate level. The uptake rate of xylose was modelled 
similarly to glucose as the sum of passive and facilitated 
diffusion. The kinetic parameters for xylose uptake were 
fitted to our empirical data (Table  2). Close fits were 
achieved for biomass production and carbon source 
consumption, demonstrating the wide applicability of 
the dynamic model. Citric acid production was overesti-
mated by the model, which may suggest a further limiting 
factor with xylose as the carbon source. The constraint 
applied to citric acid output rate, vCIT, was the same as for 
glucose (Table 2). The discrepancy may be due to differ-
ing morphology as we observed decreased biomass pellet 
sizes and higher viscosity in cultures grown on xylose.

Investigating the role of phosphate during citric acid 
fermentation
As growth on glucose continued beyond external phos-
phate depletion (Fig. 2b), it became clear that A. niger has 
a phosphate storage mechanism, possibly via accumula-
tion of polyphosphate as previously reported [23]. To 
investigate this, polyphosphate was extracted from bio-
mass grown under citric acid-producing conditions and 
quantified. Polyphosphate levels were observed to rise 
early on in fermentation, peaking at day 2 at the point 
of external phosphate depletion (Fig.  5). Polyphosphate 
levels dropped rapidly from day 2 to day 4, with a more 
gradual decrease later in fermentation coinciding with 
phosphate-limited growth and citric acid production.

To further investigate the importance of phosphate, 
we searched for the genes encoding phosphate trans-
porters in A. niger ATCC 1015. A total of eight putative 
genes were found (based on similarity to known trans-
porters), suggesting that A. niger has evolved a range of 
phosphate uptake mechanisms as adaptation to different 
environmental conditions (Additional file  1: Table S2). 
It may be that only a subset of these genes encode phos-
phate transporters while others encode phosphate sen-
sors. One of the genes (Accession Number EHA22558) 

has clear homologues in other species (Additional file 2: 
Figure S1), but none of these have been characterised or 
parameterised at the level of protein activity. The other 
gene annotations are more speculative so may not encode 
phosphate transporters [24].

The dFBA model provides a platform for predictive 
metabolic engineering
A prediction of the model is that oxalic acid produc-
tion is the most efficient means of acidification at initial 
pH 7, followed by citric acid. It is well known that A. 
niger predominantly secretes oxalic and gluconic acid at 
higher initial pH and that by imposing a low initial pH 
during fermentation, production of these competing 
organic acids is prevented and citric acid production is 
increased [14]. Our model suggests that by switching off 
oxalic acid production by deletion of oxaloacetate hydro-
lase (oah), citric acid will solely be produced. The model 
does not predict gluconic acid production suggest-
ing that this may be decoupled from proton production 
and is instead a means of quickly sequestering glucose, 
through the action of extracellular glucose oxidase, early 
in fermentation.

To investigate this phenomenon, we engineered the 
ATCC 1015 strain by targeted gene deletion strategies 
to knockout oah and the gene encoding glucose oxidase 
(gox) responsible for gluconic acid production. We cre-
ated two single knockouts (Δoah and Δgox) and a dou-
ble knockout (Δoah Δgox), and characterised citric acid 
fermentation by these knockout strains at initial pH 7 
(Fig.  6). Citric acid yield was significantly increased in 
the Δoah strain with a further marginal improvement in 
Δoah Δgox. This was not the case for the Δgox strain sug-
gesting gluconic acid production occurs independently of 

Fig. 5  Change in polyphosphate levels during citric acid fermenta‑
tion. Empirical data plotted are the mean average of 3 biological 
replicates and error bars represent standard deviation
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proton production without impacting citric acid fermen-
tation. Gluconic acid was produced early in fermentation 
while oxalic and citric acid production occurred later. 
The synchronicity of oxalic and citric acid production 
suggests that they are part of the same proton produc-
tion response. In this experiment, the Mn2+ concentra-
tion was increased to 1000  ppb. Citric acid production 
usually requires Mn2+-deficient media, though was pre-
viously reported insensitive to Mn2+ in an oah and gox 
double negative mutant strain at pH 5 [25]. The presence 
of Mn2+ did not prevent citric acid production at ini-
tial pH 7, suggesting that its effect is limited to low pH 
conditions.

We applied our dFBA model to the Δoah and Δgox 
knockouts at initial pH 7, which gave close fits for oxalic 
and gluconic production. The differences in predicted 
citric acid production between the knockout strains 
showed a qualitative fit with empirical data (Fig. 6). How-
ever, constraints on oxalic and citric acid output rates, 
vOXAL and vCIT, respectively (Table  2), were required to 
achieve the close fits. The constraint on citric acid out-
put rate, vCIT, was different to that applied at initial pH 
2. This may be due to morphological differences as we 
observed increased biomass pellet sizes when A. niger 
was grown at higher initial pH. The impact of differing 
morphology on transport processes and on anaerobicity 

Fig. 6  Comparing empirical and in silico data in response to Δoah and Δgox knockouts. Markers represent empirical data and lines represent in 
silico data. Green circles and solid lines correspond to Δoah Δgox. Purple triangles and dashed-dotted lines correspond to Δoah. Brown squares 
and dashed lines correspond to Δgox. Blue diamonds and dotted lines correspond to ΔpyrG control. Empirical data plotted is the mean average of 
four biological replicates and error bars represent standard deviation. Citric acid data are normalised to reflect the amount produced. In silico data-
points are one per minute. a Change in external citric acid concentration (g/L) over time. b Change in external oxalic acid concentration (g/L) over 
time. c Change in external gluconic acid concentration (g/L) over time. d Change in external phosphate concentration (g/L) over time
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within pellets requires further investigation. The widely 
reported absence of oxalic acid production below pH 2 
[10, 25] was implemented in the model to reflect empiri-
cal data. To simulate gluconic acid production, the flux 
of the extracellular GOX and gluconic acid-dissociation 
reactions were forced depending on GOX kinetic param-
eters and the ambient pH. The kinetic parameters Vmax 
and KM of GOX (Table 1) were taken from the literature 
[26, 27]. The concentration of GOX per gram biomass 
dry weight is unknown for these experimental conditions 
so was fitted to empirical data (Table 2). The proportion 
of active GOX was based on empirical data of GOX activ-
ity at varying pH [28].

Discussion
We have developed a novel dynamic model of A. niger 
citric acid fermentation that employs dFBA, to give time-
course simulations of batch fermentation relevant to the 
industrial and experimental modes of A. niger fermenta-
tion. Our physiologically motivated double optimisation 
approach is a novel use of dFBA. Previous work incor-
porated proton production into the iMA871 metabolic 
model and used FBA in a static manner to give predic-
tions on organic acid production [13, 14] at fixed values 
of pH. Since acid-dissociation reactions are dependent on 
the dynamic ambient pH, the application of dFBA with 
the dynamic tracking of pH enables more accurate pre-
dictions on organic acid production. The dynamic model 
was also expanded to include alternative feedstocks. 
Xylose was chosen as it is a pentose sugar abundant in 
hemicellulose in plant biomass and readily metabolised 
by A. niger. This new dynamic model is therefore a valu-
able addition to the A. niger metabolic modelling toolbox 
and a powerful demonstration of the promise of dFBA 
for applications in industrial biotechnology.

We tested the ability of the model to predict the impact 
of genetic modifications on organic acid fermentation at 
higher initial pH. We deleted genes encoding oxaloacetate 
acetylhydrolase (oah) and glucose oxidase (gox) to elimi-
nate oxalic and gluconic production, respectively. Dele-
tion of oah significantly increased citric acid production, 
and this was also observed in model predictions, though 
less pronounced. This suggests that the presence of oxalic 
acid in the cytosol in the oah positive strains may have 
negating effects on citric acid production not reflected by 
the model. It is expected that cytosolic organic acid accu-
mulation may occur as a result of constrained transport, 
which is likely to have regulatory effects on organic acid 
production as a safeguard mechanism.

Aspergillus niger has been an industrial workhorse for 
decades and is essential to the world’s citric acid produc-
tion. This is achieved through batch or fed-batch fer-
mentation and the new model enables simulation of the 

dynamic process for the first time. The underlying causes 
of the naturally evolved property of organic acid produc-
tion are still unclear. It was previously reported through 
static FBA predictions [14] that this may be driven by the 
biological objective of proton production. In line with 
empirical findings, oxalic acid production was revealed as 
the most efficient means of proton production at wide-
ranging pH with citric acid second at low pH. We have 
now shown that this in a dynamic manner with variable 
external pH taken into account. Empirical data revealed 
that oxalic and citric acid production are synchronous 
upon a switch to phosphate-limited growth. This sug-
gests that they are coupled and part of the same proton 
production response. This is further supported by the 
significant increase in citric acid production in Δoah.

The role of phosphate is striking as organic acid secre-
tion has been reported in A. niger and other organisms 
as a phosphate mobilisation strategy [15, 29, 30]. The 
observed phosphate-limited growth results from the 
ability of A. niger to rapidly take up phosphate and store 
it as polyphosphate. The constraint on polyphosphate 
hydrolysis then limits growth, enabling flux of carbon 
to organic acid production. While A. niger has sufficient 
stored phosphate for growth, it does not use it and keeps 
it reserved. This behaviour may be due to the energy stor-
age value of polyphosphate. We have observed a release 
of phosphate late in fermentation upon carbon depletion, 
which suggests that A. niger is capable of rapid polyphos-
phate hydrolysis as a means to create ATP when other 
energy sources are limiting. The control mechanisms that 
exist in A. niger to regulate polyphosphate hydrolysis and 
their relation to organic acid production warrant further 
investigation.

Our modelling approach has further demonstrated the 
potential of dFBA; the augmentation of static steady-
state FBA by dynamic transport processes and time 
varying pools of metabolites. It has also revealed some 
fundamental issues with the application of these tech-
niques to real applications. The objective function—the 
biomass equation—is fundamental to FBA and is typi-
cally constructed with evidence from mass spectrometry. 
Our work suggests that this function is strongly depend-
ent on the fermentation context and may even be vari-
able over the growth process. Biologically this is highly 
plausible, but dramatically increases the complexity of 
model implementation and fitting. In addition, it is clear 
that important regulatory constraints on the metabolic 
process, in this case citrate accumulation, need to be 
included. In this manner, we have created an augmented 
dFBA model in a potentially grey area between a com-
plete kinetic model and the genetically based simplicity 
of an FBA model. Further work is required to fully under-
stand validity of such models.
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Conclusions
Our findings reveal a naturally evolved behaviour that 
has been exploited by industry for decades to produce 
citric acid. Our work, encapsulated in a dynamic model, 
further elucidates the causative factors in organic acid 
fermentation by A. niger exploited by industrial pro-
cesses. The model provides a means to further probe this 
behaviour and accurately explore the effects of genetic 
changes on organic acid fermentation in a dynamic man-
ner. This new addition to the A. niger systems biology 
toolbox paves the way for metabolic engineering efforts 
to create new strains capable of enhanced citric acid pro-
duction on low-cost feedstocks.

Methods
Shake flask experiments
Citric acid fermentation experiments were performed 
in 250-mL DeLong neck baffled shake flasks (Bellco 
Glass Inc.; Vineland, NJ, USA) with 30  mL medium. 
Flasks were siliconized with 2% (v/v) dimethyldichlo-
rosilane. Cultures were incubated at 30  °C with shak-
ing at 250  rpm. The following medium was used: 
glucose (160 g/L), urea (3.6 g/L), (NH4)2SO4 (0.52 g/L), 
K2HPO4 (0.5  g/L), CaCO3 (0.03125  g/L), MgSO4·7H2O 
(0.275  g/L), ZnSO4·7H2O (0.00225  g/L), FeSO4·7H2O 
(0.0095  g/L), CuSO4·5H2O (0.0117  g/L), MnCl2·(H2O)4 
(0.0000108  g/L), citric acid monohydrate (3.3  g/L), 
Tween 80 (0.0094%). The Mn2+ concentration was con-
firmed as 7  ppb by ICP-MS (Biorenewables Develop-
ment Centre, York, UK). The medium was autoclaved 
(121 °C 15 min) excluding glucose which was filter steri-
lised (0.22  µm). The pH of the medium was adjusted 
after autoclaving by the addition of sterile 2  M H2SO4. 
The medium included 10  mM uridine in experiments 
using pyrG negative strains. The medium was inoculated 
with 1  ×  106 spores/mL. Spores were harvested from 
potato dextrose agar slants incubated for 2 days at 37 °C. 
2  mL saline Tween (0.1% Tween 80, 9  g/L NaCl) was 
added per slant and shaken to disperse spores. Spores 
were washed 3 times in saline Tween. 500  µL samples 
of cultures were taken every 24  h for determination of 
biomass, metabolites, and phosphate. Samples were col-
lected in pre-dried, pre-weighed 1.5 mL Eppendorf tubes 
and centrifuged at 9000g for 5 min. The supernatant was 
retained for metabolite analysis and phosphate determi-
nation and stored at − 20 °C.

Biomass dry weight determination
Mycelia were washed 4 times in 1 mL dH2O and centri-
fuged at 9000g for 5 min. Biomass was dried at 70 °C to 
constant weight. Biomass dry weight was determined by 
subtracting weight of the pre-dried 1.5  mL Eppendorf 
tube.

Metabolite analysis
Enzymatic assay kits were used to determine the level 
of metabolites. Glucose, citric acid, xylose, glycerol, and 
gluconic acid were determined using Megazyme assay 
kits (K-GLUC, K-CITR, K-XYLOSE, K-GCROLGK, and 
K-GATE, respectively) (Megazyme International Ire-
land Ltd., Wicklow, Ireland). Oxalic acid was determined 
using the LIBIOS oxalate assay kit (Oxalate-100; LIBIOS, 
France).

Phosphate determination
Phosphate was determined by the ammonium molybdate 
method, using an assay kit (ab65622; Abcam, Cambridge, 
UK).

Polyphosphate extraction and quantification
Mycelia were grown up in shake flasks using the same 
method as previously described. Mycelia were harvested 
at 8 time-points (days 1–8) in triplicate. To obtain suffi-
cient biomass, one flask was harvested per sample. Day 
1 samples required the pooling of four flasks per rep-
licate. Mycelia were harvested using a double layer of 
Miracloth (Calbiochem) and washed in 300 mL ice-cold 
100  mM Tris·HCl pH 7 followed by 600  mL ice-cold 
dH2O. Washed mycelia were transferred to 15-mL Falcon 
tubes, flash frozen in liquid nitrogen, freeze dried, and 
stored at − 80 °C. Freeze dried mycelia were weighed out 
in 2 mL vials, approximately 50 mg per vial. Biomass was 
ground using the TissueLyser II (QIAGEN; Crawley, UK) 
at 30 Hz for 90 s 3 times. Each vial contained two beads. 
Powdered mycelia were lysed by adding 2 mL 10% (w/v) 
lysing enzymes from Trichoderma harzianum (Sigma, 
Dorset, UK) and incubating at 30 °C with shaking for 3 h. 
Samples were centrifuged and supernatant discarded. 
Polyphosphate was extracted following a previously 
described protocol [23]. All centrifuge steps were done at 
13,000 rpm for 10 min at 4 °C and all shaking was done at 
30 rpm. The polyphosphate fraction was dried in a Savant 
SPD131DDA SpeedVac Concentrator (Thermo Fisher 
Scientific). Polyphosphate was quantified by measuring 
free phosphate before and after acid hydrolysis using the 
previously described phosphate determination method. 
Acid hydrolysis was performed by adding 2  mL 0.5  M 
H2SO4 to the dry pellet and boiling at 100 °C for 3 h.

Dynamic modelling of organic acid fermentation
Modelling was performed using the iMA871 metabolic 
model [13] as the model for the flux balance analysis. 
During this project, a more complete model of A. niger 
metabolism was published [31] but as this retains the 
core of iMA871 and is not specific to ATCC 1015, we 
have not adopted this model. The FBA calculations were 
performed using bespoke Java code which implements 
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the GLPK toolkit (GNU). dFBA routines were written 
directly into the Java code with the differential equa-
tions solved by simple time-stepping (Euler method) with 
small values for the time-step. The ODEs (ordinary differ-
ential equations) were solved according to

where Cn+1 is the mmol of compound at time-point 
n + 1; Cn is the mmol of compound at time-point n; t is 
the time-step (1/60 h); fn is the flux (mmol gDW−1 h−1) at 
time-point n; and Bn is the biomass (gDW) at time-point 
n. The flux constraints at time-point n +  1 were calcu-
lated by the following kinetic equations. External phos-
phate input (PIe <==>) was constrained according to 

where vPe is the external phosphate uptake rate (mmol 
gDW−1 h−1) and Pe is the external phosphate concentra-
tion (mM).

Internal phosphate input (PI  <==>) was constrained 
according to

where vP is the internal phosphate input rate (mmol 
gDW−1 h−1) and P is the concentration of stored phos-
phate (mM).

If external glucose was below 150 g/L, external glucose 
uptake (DGLCe <==> DGLC) was constrained accord-
ing to 

where vG is the external glucose uptake rate (mmol 
gDW−1 h−1); G is the external glucose concentration 
(mM); and C is the external citrate concentration (mM).

If external glucose was greater than or equal to 150 g/L, 
external glucose uptake was constrained according to 

where vG is the external glucose uptake rate (mmol 
gDW−1 h−1); G is the external glucose concentration 
(mM); and C is the external citrate concentration (mM).

If external xylose was below 150  g/L, external xylose 
uptake (XYLe <==>) was constrained according to 

(1)Cn+1 = Cn + tfnBn,

(2)vPe =
vPe,maxPe

KPe + Pe
,

(3)vP =
vP,maxP

KP + P
,

(4)vG = vG1G +
vG2,maxG

KG2

(

1+ C
Ki2

)

+ G
(

1+ C
Ki2

) ,

(5)

vG = vG1G +
vG2,maxG

KG2

(

1+
C

Ki2

)

+ G

(

1+
C

Ki2

)

+
vG3,maxG

KG3

(

1+
C

Ki3

)

+ G

(

1+
C

Ki3

) ,

where vX is the external xylose uptake rate (mmol gDW−1 
h−1), and X is the external xylose concentration (mM).

If external xylose was greater than or equal to 150 g/L, 
external xylose uptake was constrained according to 

where vX is the external xylose uptake rate (mmol gDW−1 
h−1), and X is the external xylose concentration (mM).

The extracellular GOX (glucose oxidase) reaction rate 
was calculated according to 

where vGOX is the GOX reaction rate; pGOX is the propor-
tion of active GOX; and G is the external glucose concen-
tration (mM).

The proportion of active GOX, pGOX, as a function of 
pH was determined according to 

The kinetic parameters were either fitted to our empiri-
cal data (Table 2) or set to empirical values from the lit-
erature if available (Table 1).

The iMA871 model was adapted to include proton pro-
duction as an objective function and acid-dissociation 
reactions for seven acids (citric, oxalic, gluconic, acetic, 
malic, succinic, lactic) but as a function of a dynamic 
external pH rather than a fixed pH [14]. The number of 
protons released in each acid-dissociation reaction was 
calculated at each time-step according to the following 
equation based on ambient pH and pKa values.

where K1, K2, and K3 are constants calculated from pKa 
values of each acid species (Table 4), and He is the exter-
nal molar concentration of protons that is tracked in the 
dFBA as a dynamic pool.

An output reaction was added for external protons 
(Hpe <==>), which was set as the objective when max-
imising proton production. An explicit phosphate storage 
reaction was also included in the dFBA. An input reac-
tion for internal phosphate (PI <==>) was added to the 
metabolic model, and the dynamic pool of internal phos-
phate was tracked in the dFBA. This new reaction was set 
as the objective when maximising phosphate storage.

(6)vX = vX1X +
vX2,maxX

KX2 + X
,

(7)vX = vX1X +
vX2,maxX

KX2 + X
+

vX3,maxX

KX3 + X
,

(8)vGOX = pGOX
vGOX,maxG

KGOX + G
,

(9)pGOX = −0.102pH2
+ 1.082pH− 1.95.

(10)

H =
K1(He)

−1
+ 2K1K2(He)

−2
+ 3K1K2K3(He)

−3

1+ K1(He)
−1

+ K1K2(He)
−2

+ K1K2K3(He)
−3

,
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When plotting alongside empirical data, the dFBA start 
time was taken as the spore germination time, 18 h after 
inoculation. The initial biomass dry weight was set to 
0.3125 g/L following empirical data.

Model parameterisation
Glucose transport-mediated uptake [16, 17] and glucose 
oxidase [26, 27] kinetic parameters were calculated from 
empirical data in the literature (Table 1). The concentra-
tion of active GOX enzyme [GOX] was fitted to empirical 
data (Table 2). The other kinetic parameters in the model 
were fitted to empirical data via a manual fitting routine 
(Table 2).

Quality of fit assessment and model selection
Akaike information criterion (AIC) [20] was used to 
measure the quality of fit and assess improvement in the 
model. The AIC was calculated according to 

where k is the number of fitted parameters; n is the 
number of data-points; and RSS is the residual sum of 
squares.

Targeted gene deletion of oah and gox
Targeted gene deletion was performed using a previously 
reported strategy [32]. As this technique requires a pyrG 
negative strain, the pyrG gene first had to be deleted 
from ATCC 1015. This was achieved using homologous 
recombination. ATCC 1015 was transformed with lin-
ear DNA containing 2  kb up- and 1.5  kb down-stream 
flanking regions of the pyrG gene (Accession Num-
ber EHA25155), kindly given by Kokolski (University 
of Nottingham). Polyethylene glycol (PEG)-mediated 
transformation of protoplasts was used [32]. Successful 
deletions were selected by resistance to 5-fluoroorotic 
acid (5-FOA) (Fluorochem; Derbyshire, UK) and uridine 

(11)AIC = 2k + n ln

(

RSS

n

)

,

auxotrophy, and confirmed by PCR and DNA sequenc-
ing using primers external to the gene (pyrG_ex_fw 
and pyrG_ex_rv). The oah and gox genes were identi-
fied in the ATCC 1015 genome as Accession Numbers 
EHA22250 and EHA27180, respectively. 1.5  kb up- 
and down-stream flanking regions were cloned from 
ATCC 1015 gDNA using Phusion HF DNA polymerase 
(Thermo Fisher Scientific), and the following primers: 
oah_up_fw, oah_up_rv, oah_down_fw, oah_down_rv, 
gox_up_fw, gox_up_rv, gox_down_fw, gox_down_rv. 
15-bp tails (underlined) were added to outermost prim-
ers for In-Fusion® HD cloning (Clontech; France) into 
the pc3 vector between the NotI and SpeI restriction 
sites. To join up- and down-stream fragments together, 
overlap extension PCR was used with 30-bp overlap-
ping tails (underlined) added to innermost primers. 
Overlapping fragments were first annealed as follows: 
50 µL reaction containing 200 ng each fragment, 400 µM 
dNTPs, HF buffer, and 1 U Phusion HF DNA polymer-
ase run on SOE1 programme (94  °C 5  min, then 94  °C 
30 s, 60 °C 90 s, 72 °C 90 s 10 times, then 10 °C forever). 
The annealed product was then amplified using out-
ermost primers as follows: 100  µL reaction containing 
50 µL first reaction, 1 µM each primer, 400 µM dNTPs, 
HF buffer and 1 U Phusion HF DNA polymerase run on 
SOE2 programme (94  °C 2 min, then 94  °C 30  s, 60  °C 
30 s, 72 °C 90 s 35 times, then 72 °C 10 min, 10 °C for-
ever). The annealed product was gel purified using the 
QIAquick gel extraction kit (QIAGEN; Crawley, UK). 
Transformation was performed using XL10-Gold Ultra-
competent cells according to the manufacturer’s instruc-
tions (Agilent Technologies; Cheshire, UK). Plasmid 
was isolated using the Wizard® Plus SV minipreps DNA 
purification kit (Promega; Southampton, UK). Plasmid 
integrity was confirmed by DNA sequencing. ATCC 
1015 ΔpyrG was transformed with the pc3-oah and pc3-
gox deletion vectors using the previously reported PEG-
mediated protoplast transformation protocol [32]. The 
gene deletion procedure previously outlined [32] was 
then followed with minor modifications. 1.5 g/L 5-FOA 
was used to select for pyrG negative colonies with incu-
bation at 37 °C for 3 days. oah and gox knockouts were 
identified by PCR screening with primers external and 
internal to the deletion site (oah_ex_fw, oah_ex_rv, oah_
int_fw, oah_int_rv, gox_ex_fw, gox_ev_rv, gox_int_fw, 
gox_int_rv). Gene deletion was further confirmed by 
DNA sequencing of the region external to the deletion 
site. To create the Δoah Δgox double knockout, the dele-
tion procedure for gox was applied to ATCC 1015 ΔpyrG 
Δoah (Table 5).

Table 4  Acid constants for Eq. 10

Acid species K1 K2 K3

Citric acid 10−3.128 10−4.761 10−6.396

Gluconic acid 10−3.7 0 0

Acetic acid 10−4.757 0 0

Malic acid 10−3.459 10−5.097 0

Succinic acid 10−4.207 10−5.636 0

Lactic acid 10−3.86 0 0

Oxalic acid 10−1.252 10−4.266 0
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