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Abstract 

Background:  As an important biofuel plant, the demand for higher yield Jatropha curcas L. is rapidly increasing. 
However, genetic analysis of Jatropha and molecular breeding for higher yield have been hampered by the limited 
number of molecular markers available.

Results:  An ultrahigh-density linkage map for a Jatropha mapping population of 153 individuals was constructed 
and covered 1380.58 cM of the Jatropha genome, with average marker density of 0.403 cM. The genetic linkage map 
consisted of 3422 SNP and indel markers, which clustered into 11 linkage groups. With this map, 13 repeatable QTLs 
(reQTLs) for fruit yield traits were identified. Ten reQTLs, qNF-1, qNF-2a, qNF-2b, qNF-2c, qNF-3, qNF-4, qNF-6, qNF-7a, 
qNF-7b and qNF-8, that control the number of fruits (NF) mapped to LGs 1, 2, 3, 4, 6, 7 and 8, whereas three reQTLs, 
qTWF-1, qTWF-2 and qTWF-3, that control the total weight of fruits (TWF) mapped to LGs 1, 2 and 3, respectively. It 
is interesting that there are two candidate critical genes, which may regulate Jatropha fruit yield. We also identified 
three pleiotropic reQTL pairs associated with both the NF and TWF traits.

Conclusion:  This study is the first to report an ultrahigh-density Jatropha genetic linkage map construction, and the 
markers used in this study showed great potential for QTL mapping. Thirteen fruit-yield reQTLs and two important 
candidate genes were identified based on this linkage map. This genetic linkage map will be a useful tool for the 
localization of other economically important QTLs and candidate genes for Jatropha.
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Background
As a sustainable and renewable energy source, bioenergy, 
whose use may reduce dependency on fossil fuels and 
maintain a safe and healthy environment, has attracted 
worldwide attention [1, 2]. Jatropha curcas L., charac-
terized by drought resistance, low cost of planting, fast 
growth rate and high oil content, is one of the highest 
potential energy plants among oil-bearing tree species [3, 
4]. Therefore, increasing yield or oil content is the most 
important breeding objective for J. curcas researchers.

Jatropha curcas is a native plant, originated in Mexico 
and Central America. After being introduced into tropi-
cal and subtropical areas, it has been widely planted in 
African and Southeast Asian countries, such as Zimba-
bwe, China, India, Mauritius, and the Philippines [1, 5]. 
Already, more than 2  million  ha of J. curcas are grow-
ing in China, mainly distributed in southern and south-
western China, such as Hainan, Yunnan, Guangxi, and 
Guizhou [1]. J. curcas is a diploid species (2n = 22), with 
an estimated genome size of 416 Mb [6, 7]. A previously 
reported genome sequence of J. curcas was 285.9  Mb, 
with the mean and N50 scaffold lengths of 1.9 and 3.8 kb, 
respectively [8]. An upgraded J. curcas genome sequence 
was 397 Mb, and the mean and N50 scaffold lengths were 
7.6 and 16.0 kb, respectively [9]. Following the upgraded 
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version, the most recent J. curcas genome sequence is 
320.5  Mb, with the N50 scaffold length being 0.75  Mb 
[10].

Genetic linkage maps, an important tool for genetic 
analysis and molecular breeding, have been widely used 
for identification of genetic loci with agronomic traits 
such as biological or abiotic stress and yield, which 
can promote more cost-effective breeding and genetic 
improvement. The first genetic linkage map, using 93 
progeny from an interspecific cross between J. curcas and 
J. integerrima, contained 506 markers (216 microsatellite 
and 290 single nucleotide polymorphism, SNPs), with an 
average marker density of 2.8  cM [11]. Another genetic 
linkage map contained 1208 markers, with an average 
diversity of 1.4  cM per marker [10]. Sun constructed 
a genetic linkage map with 105 SSR markers [12]. King 
constructed a genetic linkage map containing 502 mark-
ers, in which 399 were unique markers [13]. Subse-
quently, the same linkage map was moderately improved 
and contained 587 markers, with a density of 1.2 cM per 
marker or 1.5 cM per unique locus [14]. The research and 
development of J. curcas is still at a very early stage com-
pared with more established oilseed crops, which have 
seen significant increases in yield through breeding and 
agronomy [13]. An available ultrahigh-density genetic 
linkage map (≤  1  cM average map density [15–17]) for 
J. curcas has not been reported at present. To rapidly 
improve fruit yield, J. curcas requires numerous informa-
tive and well-distributed genome-wide markers for con-
struction of an ultrahigh-density genetic linkage map.

Based on next-generation sequencing (NGS) technol-
ogy, several high-throughput SNVs discovery methods 
have been developed including restriction site-associated 
DNA sequencing (RAD) [18], genotyping by sequenc-
ing (GBS) [19], sequence-based genotyping (SBG) [20], 
and amplified-fragment single nucleotide polymorphism 
and methylation (AFSM) [21]. As one of the next-gener-
ation genetic marker types, the AFSM method has sev-
eral attractive features for linkage mapping, especially 
for non-model organisms. AFSM is a simple and rapid 
method that can be used in SNP and indel discovery by 
sequencing short genomic regions surrounding restric-
tion sites for a given restriction endonuclease, which 
produces AFSM markers within the restriction sites 
or in adjacent sequences that flank the restriction sites. 
AFSM allows cost-effective whole genome screening for 
a large number of markers and individuals. AFSM can 
be used in discovering markers and constructing high-
density linkage maps for many plant species and has been 
successfully employed in cassava [22]. To increase the 
understanding of the genetic architecture of J. curcas, a 
good available genetic map is required. In this study, we 
constructed an ultrahigh-density genetic linkage map 

comprising 3422 SNP and indel markers in J. curcas with 
an average marker density of 0.403  cM. This ultrahigh-
density genetic linkage map represents the first ultrahigh-
density genetic linkage map of J. curcas, and may provide 
an indispensable and powerful tool for QTL analysis, 
gene mapping and marker-assisted selection in J. curcas 
breeding. We also identified thirteen reQTLs and two 
important candidate genes for J. curcas fruit-yield traits.

Results and discussion
A large‑scale SNP and indel discovery in J. curcas by AFSM
Illumina HiSeq 2500 sequencing generated a total of 
450,514,542 high-quality reads (99.26%) out of a total 
of 453,860,778 reads. There were 9,202,450 reads for 
the parents (3,919,586 reads for YN049X and 5,282,864 
reads for HN001-31-1) and 441,312,092 for F1 progeny. 
The F1 progeny had a mean number of 2,922,597 reads, 
with minimum and maximum number of 44,195 and 
27,232,578 reads, respectively.

Here, we used high-throughput Illumina AFSM to 
detect genome-wide SNPs and indels and to genotype 
F1 accessions in the J. curcas HY population. The 127-
bp read length for AFSM tag, as obtained in our study, is 
longer than that reported in the jute [23] and bitter gourd 
[24] (approximately 90-bp read length for RAD-tag). For 
high-density linkage map construction in plants, many F1 
or F2 mapping populations were used [24–31]. İpek et al. 
used an olive F1 population consisting of 123 individu-
als to construct a linkage map [25]. Balsalobre et al. used 
151 full sibs derived from a cross between SP80-3280 and 
RB835486 sugarcane cultivars to construct a linkage map 
[26]. An F1 population comprising 153 individuals was 
used to construct the linkage map in this study, which is 
similar in number to the individuals used in the sugar-
cane [26] and larger than the population used in the olive 
[25].

An ultrahigh‑density genetic linkage map for the HY 
population in J. curcas
Out of 183,650 high-quality markers (165,062 SNPs and 
18,588 indels), a total of 73,334 polymorphic markers 
(with read-depth ≥ 5, SNP base quality ≥ 20, 5% minor 
allele frequency) were detected in the HY population. 
We found high polymorphism level between parent lines 
(38.15%), which was consistent with the previous studies 
that accessions from China had high polymorphism level 
[32–34] rather than low [1]. Only markers with a good fit 
to the expected Mendelian 1:1 or 3:1 segregation ratios 
were retained. Finally, 6704 markers were used for link-
age map construction.

We constructed the ultrahigh-density genetic linkage 
map of J. curcas, consisting of 3422 SNP and indel mark-
ers and covering 1380.58  cM of the genome (Table  1, 
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Fig.  1). The number of markers contained in this link-
age map is approximately three times the number of 
markers in the largest J. curcas linkage map previously 
constructed [10]. These mapped markers were distrib-
uted throughout the 11 linkage groups (LGs), which is 
consistent with the karyotype of J. curcas [6]. LG 6 had 
the highest (664) number of markers, and LG 10 had 
the lowest (183) number of markers, whereas LG 8 had 
the longest (258.6  cM) length, and LG 3 had the short-
est (68.67 cM) length. The average density was 0.403 cM, 
which was higher than other available linkage maps of J. 
curcas in the previous studies (2.8 cM, 216 SSR and 290 

SNP markers [11]; 1.4 cM, 1208 markers [10]; 1.2 cM, 587 
markers [14]) and other ultrahigh-density genetic linkage 
maps of the jute (0.72 cM, 503 RAD markers) [23], cotton 
(0.69 cM, 3187 GBS markers) [31], olive (0.98 cM, 3384 
GBS markers) [25], and American cranberry (0.93  cM, 
1328 GBS markers) [35].

Only using the markers in this study, we were able 
to anchor a total of 752 scaffolds into our genetic link-
age map. The combined length of these scaffolds was 
25,411  Mb, which was equivalent to 79.82% of the 
sequenced genome.

Recombination events and linkage disequilibrium
Assuming on average two crossovers per chromosome 
during a single round of meiosis, and 11 chromosomes 
for each of 153 individuals, the mapping population 
contains an estimated 3300 total recombination events. 
Thus, our map of 3422 markers is likely to capture many 
of the available recombinant genotypes. In fact, our maps 
invert the traditional relationship between markers and 
recombination events in high-resolution maps: there are 
multiple markers within each recombination event rather 
than vice versa. The recombination hotspots were shown 
in Additional file 1: Figure S1 and Table S1. The number 
of recombination hotspots of cross-over detected for 11 
LGs ranged from 1 to 3, with a mean of 2.0.

Extent of genome-wide LD was evaluated using all 
possible pair combinations of 3422 markers genetically 
mapped on 11 Jatropha LGs genetic maps. We combined 
the data from 11 LGs to estimate the average extent of 
LD in Jatropha. For these marker pairs, r2 ranges between 
0 and 0.626. Additional file  1: Figure S2 shows the dis-
tribution of r2 values for the marker pairs. Distributions 

Table 1  Distribution and statistics of SNP and indel mark-
ers on the linkage groups of the Jatropha HY genetic map 
from the “YN049X” and “HN001-31-1” cross

Linkage groups 
(LG)

Number 
of markers

LG length (cM) Average 
distance 
(cM)

LG1 212 122.51 0.578

LG2 373 109.10 0.292

LG3 250 68.67 0.275

LG4 249 170.31 0.684

LG5 286 76.20 0.266

LG6 664 115.35 0.174

LG7 484 153.40 0.317

LG8 291 258.60 0.889

LG9 210 87.86 0.418

LG10 183 92.13 0.503

LG11 220 126.45 0.575

Total 3422 1380.58 0.403

Fig. 1  Integrated Jatropha genetic map constructed using SNP and indel markers. LGs are the linkage groups. The scale on the left indicates map 
distance in centimorgans. The darker bands indicate the markers
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shifted toward the modest r2 values reflect disequilib-
rium, due to either chance or evolutionary forces that 
affect variation across the entire genome. Median r2 val-
ues is ~ 0.058, and the 75th percentile for LD (which we 
are using to define elevated LD) is ~ 0.176.

The faster LD decayed in population, the more mark-
ers are probably needed for QTL trait analysis [36]. We 
observed faster extended LD decay in LGs of Jatropha 
(~  4  cM, Additional file  1: Figure S3) than chickpea 
(~  15  cM) [15]. The extent of LD pattern is population 
dependent as well as expected to vary as a function of 
recombination frequency along the genome, mating sys-
tem, and population history including selection. We should 
note, LD measured in a wild population may be dramati-
cally different from that observed in a breeding population 
that has been through a genetic bottleneck [37].

The average LD estimate in 11 LGs of Jatropha genome 
(r2) was 0.540 (Additional file 1: Table S2). The LG5 of Jat-
ropha genetic maps had highest LD estimates (r2 = 0.784), 
while LG8 had lowest LD estimates (r2 =  0.459). Maxi-
mum and minimum proportion of marker pairs showed 
significant LD (P  <  0.01) on LG5 (46.800%) and LG4 
(17.454%), respectively (Additional file  1: Table S2). We 
determined the LD decay of 3422 marker pairs by pooling 
the r2 estimates across 11 LGs and plotting their average 
r2 against the 10 cM equal intervals of genetic distance. A 
decreasing trend of LD decay (r2 < 0.3) was observed with 
increase in the genetic distance (cM) of markers mapped 
on the LGs (Additional file  1: Figure S3). Remarkably, a 
rapid LD decay was observed at the genetic distance of 
1.6 cM in genomes. A significant LD decay (r2 < 0.1) was 
observed near about 4  cM genetic distance (Additional 
file  1: Figure S3) in LGs of Jatropha genomes. The aver-
age LD observed in this study (r2 = 0.540) was little higher 
than the previous study (r2 = 0.4952) in Jatropha [38], and 
lower than in chickpea (r2 = 0.59–0.62) [15].

QTL mapping
Fruit yield in J. curcas is one of the most important agro-
nomic traits. However, selective breeding for higher yield 
remains the most challenging task for J. curcas at present. 
Yield traits were measured in the HY QTL mapping pop-
ulation, and the frequency distributions of all the traits in 
the progeny showed a continuous distribution. The larg-
est NF-1, NF-2 and NF-3 values were 268, 239 and 194.3, 
respectively, while the smallest values were 1.0, 2.0 and 
2.0, respectively, and the average values were 23.4, 24.9 
and 25.9, respectively. The highest TWF-1, TWF-2 and 
TWF-3 values were 745, 806.5 and 602.5 g, respectively, 
while the lowest were 1.0, 1.5 and 1.0 g, respectively, and 
the average values were 86.1, 84.6 and 80.4  g, respec-
tively. The highest AFW-1, AFW-2 and AFW-3 values 
were 10.4, 10.9 and 15.2 g, respectively, while the lowest 

were 0.3, 0.3 and 0.5 g, respectively, and the average val-
ues were 2.8, 3.2 and 3 g, respectively. As expected, all the 
fruit-yield traits correlated with each other, and NF had 
high correlation with TWF (Fig. 2).

QTL analyses were performed on each of the fruit-
yield traits, including NF, TWF and AFW. Thirteen 
reQTLs (ten for NF, three for TWF) were identified 
using the AFSM linkage map with an LOD threshold of 
4.3, determined by permutations, and 2 LOD-support 
intervals that extended from 0.03 to 2.05  cM in length 
(Table 2, Fig. 3). The LOD score values ranged from 4.34 
to 6.733. The QTL qNF-1 was detected at the end of 
LG1 and accounted for 18.967% of the phenotypic vari-
ance in NF. At the same position, qTWF-1 was detected. 
Two QTL pairs were also detected at the same position 
(qNF-2b and qTWF-2 at the end of LG2, and qNF-3 and 
qTWF-3 in the middle of LG 3). The percentage of phe-
notypic variation explained by each reQTL ranged from 
16.067% (qTWF-3) to 20.967% (qNF-7b). These reQTLs 
should be considered as major QTLs [39]. Interestingly, 
in this study, we only found reQTLs associated with the 
number and the total weight of fruits, but no reQTL was 
associated with average fruit weight per fruit, which may 
indicate that these reQTLs affect the fruit yield by the 
number of fruits, and consequently the total fruit weight, 
rather than the average fruit weight per fruit.

As complex traits, J. curcas yield traits are quantita-
tive and determined by many genes with major or minor 
effects [12]. In this study, each of the three reQTL pairs 
for NF and TWF was co-localized to the same genomic 
regions in LG 1, 2 and 3, separately (Fig. 3). These reQTL 

Fig. 2  A principal coordinate analysis (PCoA) of yield traits for the 
Jatropha HY population
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Table 2  Repeatable QTLs mapped for yield traits in Jatropha

Add additive effects, Rec recessive effects, Dom dominant effects
a  Linkage group
b  The number of fruits
c  The total weight of fruits (g)
d  99% confidence interval for QTL length (cM)
e  Proportion of phenotypic variation explained by each QTL

QTL name Trait LGa Position (cM) Flanking markers 99% CI (cM)d LOD R2 (%)e Effect Estimatedinterval 
size (cM)

qNF-1 NFb 1 94.67 KK914295.1_173222
Jatropha666

93.88–95.93 5.273 18.967 Add 2.05

qNF-2a NF 2 27.92 KK914286.1_1650230
Jatropha580

26.95–27.92 6.567 19.367 Add 0.97

qNF-2b NF 2 81.51 KK914708.1_14953
Jatropha3259

81.4–81.55 6.733 19.333 Add 0.15

qNF-2c NF 2 83.5 KK914399.1_1189397
Jatropha1302

83.23–83.58 5.367 18 Add 0.35

qNF-3 NF 3 25.76 KK914370.1_355263
Jatropha1134

25.58–26.05 5.52 18.033 Add 0.47

qNF-4 NF 4 168.11 KK915534.1_3177
Jatropha5670

167.29–168.11 5.093 18.033 Rec 0.82

qNF-6 NF 6 71.94 KK914342.1_53519
Jatropha915

71.85–72.17 5.837 18.067 Add 0.32

qNF-7a NF 7 143.62 KK914970.1_774896
Jatropha4408

143.59–143.78 5.01 20.067 Dom 0.19

qNF-7b NF 7 148.29 KK914352.1_426180
Jatropha984

148.29–148.31 5.11 20.967 Dom 0.02

qNF-8 NF 8 253.78 KK914383.1_100448
Jatropha1196

253.75–253.78 5.413 18.367 Dom 0.03

qTWF-1 TWFc 1 94.67 KK914295.1_173222
Jatropha666

93.88–93.93 4.893 19.633 Add 0.05

qTWF-2 TWF 2 81.51 KK914708.1_14953
Jatropha3259

81.4–81.51 5.257 17.4 Add 0.11

qTWF-3 TWF 3 25.76 KK914370.1_355263
Jatropha1134

25.76–25.94 4.34 16.067 Add 0.18

Fig. 3  QTL mapping results. QTL mapping profiles for three yield traits, AFW (average fruit weight per fruit trait), NF (fruit number) and TWF (total 
fruit weight), with an LOD threshold of 4.3. The reQTLs were indicated by asterisks. Each of them were repeatable in three replicates and average
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pairs that mapped to the same locations in the genome 
had similar gene actions, implying that there is a genetic 
basis for the phenotypic correlation between NF and 
TWF traits, which is consistent with the high correlation 
observed between the two traits in phenotypic analy-
ses. These three reQTL pairs associated with both traits, 
revealing that these are three critical regions for J. cur-
cas fruit yield. Similarly, previous studies reported that 
two QTL clusters played pleiotropic roles in regulating J. 
curcas growth and seed yield, such as plant height, stem 
diameter, branch number, seed yield, and fruit number 
[12], and a major QTL plays pleiotropic roles in regulat-
ing rice heading date and yield [40]. However, the pre-
viously reported pleiotropic QTLs in J. curcas had long 
genetic distances from flanking markers because of the 
limited number of molecular markers [12]. Therefore, we 
constructed an ultrahigh-density genetic linkage map, 
which will lay a solid foundation for a variety of future 
genetic and genomic studies. Marker-assisted selection 
(MAS), using the closely linked markers identified in this 
study, can speed up the genetic improvement of J. curcas. 
The three LG regions were associated with two traits, 
indicating either linkage or pleiotropic effects. Although 
QTL studies cannot entirely distinguish between tight 
linkage and strict pleiotropy [41], the high resolution of 
QTL positions due to the dense sequence-based genome 
map suggests that genes with pleiotropic effects may 
account for the genetic variation of these correlated 
traits. Besides, there could be certain genes co-existing in 
these reQTLs or a certain gene with pleiotropic effects on 
J. curcas fruit-yield traits.

QTL candidate gene analysis
The likelihood of candidate genes corresponding to QTLs 
on LGs is very high, since the length of the QTL–posi-
tion confidence intervals are extremely narrow. We did 
not expect to be able to identify all candidate genes that 
influence the QTLs underlying the fruit-yield traits in J. 
curcas. Nevertheless, nine-cis-epoxycarotenoid dioxy-
genase 5 (NCED5, JCGZ_04628), which encodes 9-cis-
epoxycarotenoid dioxygenase, a key enzyme in the 
biosynthesis of abscisic acid (ABA), was linked to the NF 
and TWF-related QTLs on LG 3 (Fig. 4a). Previous stud-
ies already showed that plant hormones play an impor-
tant role in regulating flower development, especially for 
the female flower. It may cause a substantial increase in 
the female-to-male flower ratio; therefore, resulting in a 
greater number of female flowers and increase in num-
ber of fruits set as well as higher yield [42–46]. Wang 
et al. reported the ABA effects on wheat floret develop-
ment and grain set, which include an inhibition of flo-
ret development and a decrease in the number of fertile 
florets and grain set at floret initiation, terminal spikelet 

formation, meiosis and floret degeneration developmen-
tal stages [47]. Zhu et al. noted that NCED5 could influ-
ence rice inferior and superior spikelet development by 
regulating the expression of starch synthesis genes [48]. 
Further studies are still needed to expand the findings 
from this study to determine the relationships among the 
ABA signalling pathway in J. curcas, the developmental 
regulatory networks, and yield traits.

Ammonium transporter 2 (AMT2, JCGZ_00441) was 
linked to the NF-related QTL on LG6 (Fig. 4b). As pre-
vious studies report, AMT2, which has ammonium 
transmembrane transporter activity and high-affinity 
secondary active ammonium transmembrane transporter 
activity, encodes a high-affinity ammonium transporter, 
expressed in roots and shoots under nitrogen and car-
bon dioxide regulation, respectively [49]. Ammonium is 
an important nutrient and a ubiquitous intermediate in 
nitrogen metabolism, and plants can control ammonium 
fluxes by regulating expression of AMT2/Rh proteins 
[49]. AMT/Rh-mediated ammonium transport is criti-
cal for providing sufficient nitrogen to plants for optimal 
growth [49] and may control the yield. Although there is 
an indication that this candidate gene is correlated with 
yield traits, further studies should be conducted to vali-
date and prove the real function and effects of AMT2 in 
J. curcas on gene expression in photosynthesis and nitro-
gen metabolism-synthesis pathways and yield traits.

Conclusion
Our understanding of the genetic architecture of traits in 
J. curcas is increasing with the development of new ana-
lytical methods. In this study, we constructed an ultra-
high-density genetic linkage map, containing 3422 SNP 
and indel markers. This linkage map can provide bet-
ter marker–trait associations in future studies because 
of its high map density. Thirteen yield reQTLs and two 
candidate QTL genes were identified based on this link-
age map, which proved the validity and practicability 
of the J. curcas genetic map. This genetic map will also 
be a useful tool for the localization of other economi-
cally important QTLs and candidate genes for J. cur-
cas marker-assisted selection. In addition, this genetic 
linkage map can be merged with other J. curcas genetic 
linkage maps into a composite map and improve the J. 
curcas reference genome sequence. Besides, this genetic 
linkage map can be compared with the genomes of phy-
logenetically related species to assess the relationships 
among the genomes of related species. Furthermore, 
the preliminary verification of possible candidate genes 
underlying mapped QTLs demonstrated the importance 
of new insights into the complex relationship between 
phenotypes and genotypes. QTL mapping with ultrahigh 
marker densities must be considered as a major step in 
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understanding regions that control QTLs and in verifying 
the allelic expression of phenotypic traits in the future.

Methods
Plant material
An outcrossing F1 J. curcas mapping population (Join-
Map CP population type) comprising 153 genotypes 
was produced between two parental lines, YN049X and 
HN001-31-1, and is referred to here as the HY popula-
tion. HN001-31-1 is a high-yield landrace from Hainan 
Island, in the south of China, where it is isolated from 
other parts of the mainland, and YN049X is a high-yield 
landrace from Yunnan Province, located far from the 
Hainan Province. We got the hybrids between YN049X 

and HN001-31-1 by artificial pollination. In the flower-
ing time, the selected female flowers were bagged to pre-
vent from insect pollination and then marked them. Stem 
cuttings of 153 F1 progeny and parents were planted in 
Chengmai City, Hainan Province, China, using a rand-
omized block design and two replicates, with each line 
containing six individuals. The population and parental 
lines were planted under standard growth conditions 
with 2  m ×  2  m spacing. Three individuals from each 
line were harvested in 2012 for the collection of pheno-
typic data. We harvested the fruits of each plant in sepa-
rate nylon mesh bags and dried them. The HY mapping 
population was evaluated for three component traits, 
including the total number of fruits (NF), the total weight 

Fig. 4  Candidate QTL genes in LG3 and LG6 for TWF and NF traits. a Candidate QTL gene NCED5. b Candidate QTL gene AMT2
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of fruits (TWF) for each accession and the average fruit 
weight per fruit (AFW), with three replicates per meas-
urement. The yield traits NF, TWF and AFW were from 
the total yield in the year. Each of them had three rep-
licates (NF1, NF2, NF3, TWF1, TWF2, TWF3, AFW1, 
AFW2 and AFW3). Principal coordinate analysis (PCoA) 
was calculated among all the traits, based on the binary 
character matrix [50]. DNA from young leaf samples was 
extracted using Plant DNeasy Maxi Kit (QIAGEN, Valen-
cia, CA) and checked on agarose gel to ensure the sam-
ples were not degraded or contaminated with ribosomal 
RNA. DNA concentration was assessed using the Nan-
oDrop ND-1000 Spectrophotometer.

AFSM library construction and sequencing
Using all 153 F1 individuals from the HY population, 
we constructed two sets of J. curcas AFSM libraries, 
using a previously described protocol by Xia et  al. [21]. 
The libraries were sequenced on an Illumina HiSeq 2500 
sequencing platform (Illumina, San Diego, California, 
USA) with 150-bp paired-end lengths. The sequence 
dataset was submitted to the NCBI Sequence Read 
Archive (SRA) under Accession numbers SRR5351047, 
SRR5351046 and SRR5351045.

AFSM sequence analyses and genotyping
Raw Illumina sequence reads were checked for quality 
using FastQC version 0.10.1 (S. Andrews: http://www.
bioinformatics.babraham.ac.uk/projects/fastqc). Cus-
tom Perl scripts [21] were used to analyse the AFSM 
data, confirm the barcodes and restriction sites, and 
filter the data. Then Bowtie2 [51] was used to align 
the GCA_000696525.1_JatCur_1.0_genomic J. cur-
cas genome [10]. Next, SAMtools and VCFtools_v0.1.9 
(http://vcftools.sourceforge./net/) were implemented 
in inferring the AFSM loci, call SNPs and indels at each 
locus, and determine genotypes.

Linkage map construction
AFSM SNPs and indels were used for linkage map construc-
tion (CP mapping) using JoinMap 4.1 [52]. To identify these 
markers, all pairs of tags were evaluated for the presence 
of at least two reads. Markers were identified and scored 
by querying the filtered tags for pairs of sequences, which 
passed a Fisher’s exact test for independence, and fit to the 
expected Mendelian segregation ratio as demonstrated by 
a Chi-squared test (P < 0.01). The markers segregating for 
only one of the parents were scored as lm ×  ll (marker in 
female parent) or nn × np (marker in male parent), while 
markers segregating for both parents with two alleles were 
scored as hk × hk (marker in both parents). Markers most 
likely scored as heterozygotes due to sequencing errors 
were excluded and classified as missing data. Markers with 

more than 30% missing data were removed from the analy-
sis. Only markers that met the above criteria were grouped 
using a minimum LOD (logarithm of odds) threshold of 
4.0 with the Kosambi mapping function; the others were 
excluded. The SNP and indel markers were integrated into 
11 LGs in intra-specific genetic maps based on their genetic 
distance in centimorgans (cM).

Determination of linkage disequilibrium 
and recombination rate
We used the sliding window approach of TASSEL v5.0 
to determine genome-wide LD in Jatropha, with the LD 
estimates (significant P value < 0.01) as average squared-
allele frequency correlations (r2) among marker pairs 
which mapped on genetic map. The decay of LD with 
the genetic distance was measured by the r2 values of 
marker pairs across 11 LGs of genetic map. The graph 
was plotted between pooled r2 and genetic distance (cM) 
based on nonlinear regression model considering the r2 
value =  1 at marker genetic distance of 0  cM to deter-
mine the trend of LD decay in Jatropha genomes. Recom-
bination rate analysis was evaluated using FastEPRR with 
the nonoverlapped sliding window length of 5 cM [53].

QTL and candidate gene analysis
QTL calculations were completed using the software 
MapQTL5 [54]. rMQM (Restricted MQM Mapping) was 
used to map QTLs and estimate their effects. The loga-
rithmic (LOD) score of significant QTLs was determined 
by conducting test analyses (1000 permutations, 5% total 
error level). Since many adjacent markers in the AFSM 
linkage map had a map distance of <  1  cM, the confi-
dence intervals of the QTL are as described previously 
[12, 55]. In short, the maximum LOD scores were used as 
the QTL positions, and LOD scores were within the max-
imum 2-LOD-unit confidence intervals. The percentage 
of contribution (PVE) of each identified QTL to the total 
phenotypic variance was estimated by variance analysis. 
The QTL names start with “q.”

To identify candidate genes underlying the QTLs, 
we used a BLASTN search of the AFSM SNP and indel 
markers mapped to the QTL regions followed by a 
BLASTX search against the NCBI non-redundant pro-
tein database.

Additional file

Additional file 1: Figure S1. Recombination hotspots in 11 LGs. Figure 
S2. Distribution of r2 values between markers for Jatropha. Figure S3. 
Genome-wide LD decay (mean r2) estimated using 3422 markers that are 
mapped on 11 LGs of Jatropha ultra-high density genetic map. Table S1. 
Recombination hotspots in 11 LGs. Table S2. Genome-wide LD estimates 
among marker-pairs mapped across 11 LGs of ultra-high density genetic 
map for Jatropha.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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