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Abstract 

Background:  In the pursuit of sources of energy, biofuel pellet is emerging as a promising resource because of its 
easy storage and transport, and lower pollution to the environment. The composition of biomass has important 
implication for energy conversion processing strategies. Current standard chemical methods for biomass composition 
are laborious, time-consuming, and unsuitable for high-throughput analysis. Therefore, a reliable and efficient method 
is needed for determining lignocellulose composition in biomass and so to accelerate biomass utilization. Here, near-
infrared hyperspectral imaging (900–1700 nm) together with chemometrics was used to determine the lignocellulose 
components in different types of biofuel pellets. Partial least-squares regression and principal component multiple 
linear regression models based on whole wavelengths and optimal wavelengths were employed and compared for 
predicting lignocellulose composition.

Results:  Out of 216 wavelengths, 20, 10 and 17 were selected by the successive projections algorithm for cellu-
lose, hemicellulose and lignin, respectively. Three simple and satisfactory prediction models were constructed, with 
coefficients of determination of 0.92, 0.84 and 0.71 for cellulose, hemicellulose and lignin, respectively. The relative 
parameter distributions were quantitatively visualized through prediction maps by transferring the optimal models to 
all pixels on the hyperspectral image.

Conclusions:  Hence, the overall results indicated that hyperspectral imaging combined with chemometrics offers 
a non-destructive and low-cost method for determining biomass lignocellulose components, which would help in 
developing a simple multispectral imaging instrument for biofuel pellets online measurement and improving the 
production management.
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Background
Exploration and utilization of biomass energy has 
received much attention because of the problems caused 
by energy shortages and environmental pollution. There 
is a growing market for producing compressed biofuel 
pellets from forest and agriculture residues since this 
biofuel has advantages of easy storage, convenient trans-
port and being environment friendly [1]. However, low 

energy-conversion efficiency and poor moisture resist-
ance make the direct use of biofuel pellets less attractive. 
Hydrothermal carbonization (HTC) is a novel technol-
ogy for rapid conversion of lignocellulosic biomass into 
carbon-rich and value-added products called hydrochar 
[2]. The different weight percentages of lignocellulose 
components and their physical architecture affect the 
fuel characteristics of hydrochar. For example, lignin 
is more difficult to degrade and decompose than hemi-
cellulose or cellulose [3], and lignin is the main con-
tribution to hydrochar solid yield [4]. Lignocellulosic 
composition and proportion varies by species and these 

Open Access

Biotechnology for Biofuels

*Correspondence:  yhe@zju.edu.cn; heyong1@yahoo.com 
1 College of Biosystems Engineering and Food Science, Zhejiang 
University, Hangzhou 310058, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13068-018-1090-3&domain=pdf


Page 2 of 12Feng et al. Biotechnol Biofuels  (2018) 11:88 

and production conditions can significantly influence the 
process scheme. Therefore, it is necessary to accurately 
determine the lignocellulose components for further 
hydrothermal treatment. Unfortunately, the conven-
tional chemistry approach for measuring the concentra-
tion of lignocellulose components in biomass is accurate, 
but time-consuming, cumbersome and expensive. These 
analyses require complex pre-treatment and some toxic 
chemical reagents, and are not suitable for the large-
scale sample measurement needed for industry online 
application.

Near-infrared (NIR) spectroscopy is a reliable alter-
native to traditional methods for efficiently evaluating 
chemical components in a non-destructive manner [5]. 
The NIR spectral region (800–2500  nm) is dominated 
by the bands related to the overtones and combination 
of fundamental vibrations (e.g., N–H, C–H, O–H and 
S–H), which are the foundation for analysis of lignocel-
lulose components in biomass [6]. Hodge et al. [7] devel-
oped global NIR models for rapid determination of cell 
wall components in pine wood which gave high corre-
lation coefficients with independent validation of 0.97 
for lignin and 0.82 for cellulose. Jin et  al. [8] reported 
that hemicellulose, cellulose and lignin contents could 
be predicted with NIR spectroscopy and chemometric 
method for Miscanthus sinensis with excellent results. 
Xue et  al. [9] applied NIR spectroscopy and a partial 
least-squares regression as a rapid and non-destructive 
method for online measurement of lignocellulose com-
ponents of corn stover. In addition to different kinds of 
wood, agriculture residues and bioenergy crops, suit-
ability of NIR spectroscopy for compositional evaluation 
has also been explored using flax and prairie grass [10]. 
However, traditional NIR spectroscopy applied for bio-
mass energy conversion processes captures small point 
sources of spectrum information, but does not provide 
spatial dimension information. In contrast, hyperspectral 
imaging can simultaneously obtain spatial and spectral 
information from the same object. Spectral information 
associated with each pixel in a hyperspectral image can 
be used to characterize the analytical composition at the 
pixel level, thus allowing visualization of their spatial dis-
tribution in the sample. However, the large size of such 
hyperspectral data sets often complicates the process 
of predicting the value of a dependent variable [11, 12]. 
One way to overcome this problem is to implement the 
hyperspectral data in conjunction with variable selection 
to reduce the complexity of data for producing better 
prediction and a simpler process [13]. Thus, development 
of a multispectral imaging system which would be faster 
and cost-effective based on the variable selection per-
formed is necessary for online automated quality control. 
As a result, hyperspectral imaging techniques have the 

potential for more precise and comprehensive informa-
tion extraction for the bioenergy industry than is feasible 
with other techniques. To the best of our knowledge, no 
studies have presented a precise model for assessing the 
lignocellulose constituents in selection of biofuel pellets 
for HTC processes based on NIR hyperspectral imaging.

Considering the abovementioned background, the 
objects of our work follow: (1) to explore the feasibility 
of NIR hyperspectral imaging for determining the ligno-
cellulose components of biofuel pellets; (2) to determine 
the important wavelengths for predicting cellulose, hemi-
cellulose and lignin contents using the successive projec-
tions algorithm (SPA); (3) to develop optimal prediction 
models for determination of lignocellulose components; 
and (4) to visualize the component concentrations in the 
sample by transferring these models to each pixel on the 
hyperspectral images for online application.

Methods
Materials and determination of lignocellulose components
A total of 148 biofuel pellet samples were purchased from 
different bioenergy enterprises across China. The pellets 
were mainly compressed from agriculture residues (rice 
straw, corn stover and rice husk), forest residues (rubber, 
pinus, tea and mahogany) and furniture waste.

Of each sample, 10 g was ground to powder for labo-
ratory chemical analysis of lignocellulosic substrates. The 
biofuels pellets were dried, and then crushed into power 
in a grinder (ZSJD, Linda mechanism Co., Ltd., Zhejiang, 
China) with a size range of 0.5–1.2 mm. The lignocellu-
lose components of biofuel pellets (percentages of cellu-
lose, hemicellulose and lignin) were determined using the 
methods of Xue et al. [9], which were originally obtained 
from Standard Biomass Analytical procedures and 
American Society for Testing and Materials procedures # 
NREL/TP-510-42618 [14] and ASTM E1721-01 [15].

Hyperspectral imaging acquisition and calibration
For each biofuel pellet sample, about 10  g was selected 
for hyperspectral image acquisition. The apparatus of 
NIR hyperspectral imaging for acquiring the images was 
as described by Feng et  al. [16]. Figure  1 illustrates the 
typical push-broom system. The instruments included 
an ImSpector N17E imaging spectrograph (Specim, 
Oulu, Finland) using the wavelengths 900–1700 nm, two 
150-W halogen lamps (Fiber-Lite DC9500 Illuminator; 
Dolan Jenner Industries Inc., USA), a CCD camera (Xeva 
992; Xenices Infrared Solutions, Leuven, Belgium) and a 
C-mount imaging lens (OLES22; Specim). Three instru-
ment parameters had to be reset before obtaining a clear 
and non-deformed image. In the present study, biofuel 
pellets were placed on the conveyer belt and moved at 
the speed of 3.1 mm/s. The exposure time of the camera 
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was 0.03 s. The vertical distance between lens and sam-
ples was 31.2 cm. Each raw hyperspectral image of a bio-
fuel pellet contained 256 contiguous wavelength bands 
and 256 congruent sub-images.

The raw hyperspectral images (Iraw) were calculated 
using a white (Iwhite) and a dark reference image (Idark) to 
correct the reflectance spectrum from the illumination 
and device response. The calibrated image (Ical) was cal-
culated using Eq. (1):

where Idark was acquired by turning light sources off and 
covering the camera with reflectance close to 0%, and 

(1)Ical =
Iraw − Idark

Iwhite − Idark

,

Iwhite was obtained using white Teflon with ~ 99% reflec-
tance under the same condition.

Spectra extraction and data pre‑processing
Each biofuel pellet sample was isolated from the back-
ground by employing the image segmentation approach 
with ENVI software (Version 4.6, ITT Visual Informa-
tion Solutions, Boulder, CO, USA). The procedures of 
extracting spectral information of samples are shown in 
Fig.  1. Initially, a threshold for excluding any interfer-
ing information from the background was set accord-
ing to the spectral differences between background and 
sample (spectral intensity of sample > 800 and spectral 
intensity of background < 800 at 1196  nm). The maxi-
mum spectral intensity value is 4095 in hyperspectral 

Fig. 1  Configuration of the hyperspectral imaging system and flowchart of hyperspectral image segmentation
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image. Segmentation was produced for detecting the bio-
fuel pellet based on simple thresholding at a value of 0.19 
(0.19 = 800/4095). Spectral information was extracted 
from the isolated sample portion defined as the region 
of interest (ROI). Each sample spectrum was an average 
from all the pixels spectra in each relative ROI.

Pre-processing of NIR spectral data is an important 
step before implementing the chemometric models for 
quantitative analysis. Four pre-treatment algorithms were 
employed to decrease any inappropriate information: 
mean centering (MC), standard normal variate (SNV), 
second derivatives (2nd derivatives) and multiplicative 
scatter correction (MSC) [17, 18]. All pre-processing 
programs were carried out with the aid of Unscrambler X 
Version 10.1 software (CAMO AS, Oslo, Norway).

Development and analysis of NIR models
Sample set partitioning based on joint x–y distances 
(SPXY) algorithms [19] were implemented to divide 148 
samples into calibration and prediction sets at a ratio of 
3:1 based on their differences in both spectra and chemi-
cal composition. NIR spectra contain robust information 
related to chemical composition and molecular structure 
that is not directly available from their spectral reflec-
tance curve results [20]; thus a chemometric approach 
including wavelength selection approaches and multivar-
iate models were also implemented for spectra analysis. 
Hyperspectral images contain a high-dimensional data-
set with a number of highly correlated variables. There-
fore, a feature selection method named the SPA was 
applied to identify important variables for constructing 
cost-effective and simple models. SPA, a forward feature 
selection tool, adopts a simple projection operation to 
acquire subsets of variables with minimal collinearity [21, 
22]. The SPA method was developed using the SPA tool-
box of MATLAB R2010b (The Math Works, Natick, MA, 
USA). Here, the parameters of minimum and maximum 
numbers of variables selected in the SPA procedure were 
5 and 50, respectively. Statistical models can build a rela-
tionship between spectral fingerprint and chemical com-
ponents. To evaluate the sensitivity of variables selected 
by SPA, statistical models constructed using whole wave-
lengths and features were analyzed and compared. In the 
present study, partial least-squares regression (PLSR) 
[23] and principal component multiple linear regression 
(PC-MLR) [24] were implemented to build the prediction 
models.

The PLS algorithm projects the raw variable into a new 
space with new orthogonal variable called latent variables 
(LVs), but the first few LVs contain the most important 
information. The optimal LV number was determined 
by implementing leave-one-out cross-validation to the 

calibration set. PLSR was used to develop the bilinear 
model with the aid of Unscrambler X Version 10.1.

Multiple linear regression is suitable for the situation 
where the number of variable is less than the sample size. 
Due to the presence of multicollinearity, the standard 
errors of the parameter could be high [25]. The specific 
goals of PC-MLR are to reduce a large number of predic-
tor variables to smaller number of principal components 
(PCs). In the present study, PC-MLR is used for forecast-
ing the dependence of a response variable with PCs as 
inputs to reduce the model complexity and eliminate data 
collinearity. The optimal number of PCs was determined 
by the calibration model performance. The PC-MLR 
model was constructed using MATLAB R2010b.

Four criteria were used to evaluate the accuracy of the 
regression models developed: the coefficients of determi-
nation from the calibration ( R2

c ) and prediction sets ( R2
p ), 

and root mean square errors of the calibration (RMSEC) 
and the prediction sets (RMSEP). Ideally, a prediction 
model should have high R2

c and R2
p , and low RMSEC and 

RMSEP.

Chemical imaging build
In addition to rapid and accurate determination of com-
position in the samples, another benefit of hyperspectral 
imaging is to display the spatial distribution of constitu-
ents and the concentration gradients of different con-
stituents in the samples with the aid image processing 
[26]. One advantage of hyperspectral imaging is that it 
allows for quantizing different chemical composition on 
the “distribution map” of a sample based on their spectral 
fingerprint associated with each pixel in the hyperspec-
tral image [11]. Regions of similar spectral information in 
the hyperspectral image should have similar biochemical 
constituents. Therefore, it is possible to evaluate biomass 
lignocellulose components from sample to sample or 
even with the sample using such a distribution map. The 
optimal calibration model for each biochemical param-
eter was selected after comparing the performance of 
statistical models previously constructed. Lignocellulose 
components of each pixel were predicted by transfer-
ring their optimal models to the spectrum of each pixel 
on the examined hyperspectral image. The visualization 
of chemical composition was developed in MATLAB 
R2010b.

Results and discussion
Spectral data pre‑processing and analysis
The statistical results of hemicellulose, cellulose and 
lignin contents in both sets are shown in Table 1. Differ-
ent feedstock resources had different concentrations of 
hemicellulose, cellulose and lignin. Compared to predic-
tion sets, the calibration sets had a lower mean value of 
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lignocellulose components, and higher or similar stand-
ard deviation. The ranges of hemicellulose, cellulose and 
lignin in the calibration set were 18.94–64.56%, 11.12–
30.98% and 13.87–29.12%, respectively; and correspond-
ing components in the prediction set were 21.44–61.00%, 
11.98–30.56% and 14.32–27.24%.

Optimization of pre‑processing methods
Prior to further spectrum analysis, the front–back end 
range of NIR spectra (874.41–954.88 and 1686.07–
1733.91  nm) was removed due to having artificial noise 
from the instrument and illumination (Additional file 1: 
Figure S1). A composite absorbance spectrum was 

computed for each by applying a mean centering spectral 
pretreatment on the individual biofuel pellet spectrum 
to bring the spectral to a common axis, and the averag-
ing the 148 spectra. However, MC pretreatment was not 
helpful for improving the predictive capability of the 
models (Additional file  2: Table  S1). NIR spectral pre-
processing methods including 2nd derivatives, SNV and 
MSC were implemented in order to decrease the effects 
from physical and chemical interferences and enhance 
the predictive ability of mathematical models (Fig.  2). 
The impact of pre-processing strategies on predictive 
accuracy was compared by constructing multivariate 
calibration models using PLSR and PC-MLR. In this step, 

Table 1  Statistical description of cellulose, hemicellulose and lignin concentrations for calibration and prediction sets

Indices Cellulose (%) Hemicellulose (%) Lignin (%)

Calibration Prediction Calibration Prediction Calibration Prediction

Number 111 37 111 37 111 37

Maximum 64.56 61 30.98 30.56 29.12 27.24

Minimum 18.94 21.44 11.12 11.98 13.87 14.32

Mean 49.14 49.31 18.42 18.5 20.25 20.28

Standard deviation 7.72 8.55 3.76 3.76 3.57 3.57

Fig. 2  Reflectance obtained with no pre-treatment and three pre-processed spectra within wavelengths 958–1683 nm. a No pre-treatment; b 
standard normal variate (SNV); c second derivative (2nd derivative); and d multiplicative scatter correction (MSC)
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PLSR and PC-MLR predictive models for determination 
of chemical components were established on the whole 
wavelengths. The newly proposed combined mathemati-
cal models were assessed and compared: raw–PC-MLR, 
SNV–PC-MLR, 2nd derivative–PC-MLR, MSC–PC-
MLR, raw–PLSR, SNV–PLSR, 2nd derivative–PLSR and 
MSC–PLSR (Table 2).

For cellulose, pre-treatment of NIR spectra data did 
not improve the predictive capability of models for both 
PLSR and PC-MLR. The best cellulose prediction model 
was developed by PC-MLR using no spectral pre-pro-
cessing before regression analysis (i.e., raw–PC-MLR), 
with R2

c , RMSEC, R2
p and RMSEP of 0.93, 2.21, 0.91 and 

2.49%, respectively. The strongest hemicellulose predic-
tion model was SNV–PC-MLR with corresponding val-
ues of 0.81, 1.61, 0.83 and 1.53%; and the SNV–PLSR 
model for hemicellulose slightly decreased its predic-
tive capability compared with SVN–PC-MLR, with 0.81, 
1.60, 0.82 and 1.58%. Similarly, the pre-processing did 
not improve the prediction performance of PLSR and 

PC-MLR model for lignin. The preferred mathematical 
model for the prediction of lignin was raw–PC-MLR with 
R
2
c = 0.88, RMSEC = 1.19%, R2

p = 0.75 and RMSEP = 1.75% 
(Table 2).

Cellulose is the most abundant and critical polysac-
charide for plant biomass. Therefore, the cellulose 
prediction model had better performance than those 
for hemicellulose and lignin, consistent with previous 
results [8, 9, 27]. In the present study, the capability of 
predicting biomass pellet lignocellulose components 
for the PC-MLR model was better than for the PLSR 
when the whole NIR spectral data were used. In addi-
tion, spectra data pre-treatment was only helpful for 
prediction of hemicellulose. Thus, NIR spectral data 
pretreated by SNV for hemicellulose determination, 
and spectral data without pre-treatment for cellulose 
and lignin determination were used for further analy-
ses. Successful application of NIR spectra combined 
with chemometric methods for the determination of 
lignocellulose components of biomass energy was also 

Table 2  Prediction results of  the  pre-processing models constructed by  partial least-squares regression (PLSR) 
and principal component multiple linear regression (PC-MLR) for lignocellulose components of biomass pellets

a   Model parameters indicate the optimal number of latent variables for establishing the PLSR calibration model and optimal number of principal components 
for PC-MLR; R2c and R2p , coefficients of determination for calibration and prediction sets, respectively; RMSEC and RMSEP, root mean square errors of calibration and 
prediction sets, respectively; SNV, standard normal variate; 2nd, second derivative; MSC, multiplicative scatter correction

Indices Model type Pre-processing Para Calibration set Prediction set

R
2
p

RMSEC (%) R
2
p

RMSEP (%)

Cellulose PC-MLR Raw 29 0.93 2.21 0.91 2.49

SNV 21 0.86 3.19 0.87 2.95

2nd 45 0.93 2.26 0.79 3.82

MSC 21 0.84 3.39 0.85 3.27

PLSR Raw 10 0.91 2.64 0.91 2.51

SNV 11 0.84 3.36 0.83 3.39

2nd 2 0.61 5.23 0.61 5.23

MSC 10 0.83 3.56 0.81 3.63

Hemicellulose PC-MLR Raw 21 0.83 1.54 0.79 1.68

SNV 16 0.81 1.61 0.83 1.53

2nd 45 0.87 1.36 0.78 1.74

MSC 18 0.80 1.66 0.78 1.73

PLSR Raw 12 0.82 1.54 0.80 1.86

SNV 10 0.81 1.60 0.82 1.58

2nd 9 0.83 1.56 0.76 1.83

MSC 7 0.72 1.95 0.59 2.67

Lignin PC-MLR Raw 38 0.88 1.19 0.75 1.75

SNV 21 0.71 1.90 0.60 2.23

2nd 32 0.85 1.30 0.74 1.78

MSC 13 0.61 2.23 0.52 2.44

PLSR Raw 13 0.86 1.31 0.74 1.79

SNV 8 0.61 2.20 0.46 2.58

2nd 16 0.82 1.47 0.71 1.87

MSC 6 0.58 2.28 0.45 2.61
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demonstrated in previous studies [8, 9, 20]. Jin et al. [8] 
collected the NIR spectral of biomass crop Miscanthus 
with the spectral rang of 400–2500 nm and established 
PLS determination models for hemicellulose, cellu-
lose and lignin, respectively, and the results were R2

p of 
0.93 and RMSEP of 0.71% for hemicellulose; R2

p of 0.94 
and RMSEP of 0.68% for cellulose; and R2

p of 0.86 and 
RMSEP of 0.56% for lignin. Wang et  al. [28] reported 
PLSR models with R2 of 0.53 and RMSE of 0.73 in the 
calibration sample set for hemicellulose; R2 of 0.56 and 
RMSE of 0.76 for cellulose; R2 of 0.56 and RMSE of 1.23 
for lignin at the wavelength range of 830–25000  nm 
for soybean straw. Our NIR model performance estab-
lished on shorter wavelength range of 958–1683 nm for 
predicting lignocellulose components was comparable 
to or better than previous works that predicted such 
content in biomass crop.

Selection of optimal wavelengths
A statistical model established using a number of varia-
bles that are highly correlated would increase the compu-
tational complexity of prediction [29]. Thus, the selection 
step for sensitive wavelengths in multivariate analysis 
is necessary to determine the most important spectral 
information and simplify the process. SPA seemed to be 
the better method to save the multicollinearity problems 
compared to other method (Additional file 3: Figure S2). 
Therefore, reduced variables selected by SPA were set as 
the input variable to build multivariate models by PLSR 
and PC-MLR for predicting lignocellulose component 
in this study. SPA was proposed to identify the charac-
teristic wavelengths for the determination of cellulose, 
hemicellulose and lignin; and the number of wavelengths 
selected by SPA decreased by 9.26, 4.63 and 7.87%, 
respectively (Fig. 3).

Fig. 3  Selection of optimal wavelengths by successive projections algorithm. Distributions of important variables (marked with ‘filled circle’) for 
cellulose (a), hemicellulose (b) and lignin (c); final number of selected variables for cellulose (d), hemicellulose (e) and lignin (f) determined on the 
basis of the root mean square error (RMSE) of validation set of multiple linear regression models
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In general, absorptions at the optimal wavelengths 
are closely related to molecular structures of the chemi-
cal components. Some wavelengths (1321, 1372, 1548 
and 1673  nm) were shared by cellulose, hemicellulose 
and lignin (Fig.  3), indicating similar molecular struc-
tures among these chemical components. The absorption 
band at ~ 1320 nm may be assigned to C–H combination 
related to CH2 [30]. The other wavelengths bands were 
primarily attributed to the first overtone of C–H stretch-
ing and/or deformation (1372 nm), first overtone of O–H 
stretching (1548 nm) and first overtone of aromatic C–H 
stretching (1673  nm) [31]. Individual absorption bands 
that were sensitive for cellulose mainly corresponded to 
the second overtone of O–H vibration (985 nm); second 
overtones of C–H stretching (1204  nm); first overtone 
of C–H stretching and/or deformation of CH, CH2 and 
CH3 groups (1440 and 1683 nm); first overtone of O–H 
stretching from cellulose (1483, 1514 and 1582  nm); 
and first overtone of C=C from vinyl group (1653 and 
1659  nm) [31–33]. For hemicellulose, the characteristic 
wavelengths of 1109, 1197, 1416, 1429 and 1622 nm are 
connected with the combination of O–H stretching (first 
overtone) [31]. The special signal bands that are sensitive 
for lignin include 1264, 1534 and 1646 nm. The absorp-
tion at 1264  nm is connected to the third overtone of 
C–H harmonic stretching [34]. The signal at ~ 1534 nm 
is assigned to the first overtone of O–H stretching [31]. 
The absorption band near 1646 nm may be due to the ali-
phatic C–H vibrations and first and second overtones of 
lignin aromatic rings [35].

Establishment of multivariate models based on optimal 
wavelengths
After reducing the amount of spectral data into several 
variables by using the wavelength selection method, NIR 
band assignments provide some insight into the relation-
ship between spectral features and chemical components. 
The whole spectral data set was decreased to a matrix of 
dimensions m × n, where m represents the number of 

samples (m = 148) and the number of wavelengths n was 
20 for determination of cellulose, 10 for hemicellulose 
and 17 for lignin. To inspect the suitability of optimal 
variables selected by SPA, the sensitive wavelengths were 
set as the input variables to build multivariate models by 
PLSR and PC-MLR for predicting lignocellulose com-
ponents. Table  3 shows the performance of prediction 
models established on the characteristic wavelengths. 
The newly introduced models were compared and evalu-
ated: SPA–PLSR, SPA–PC-MLR, SNV–SPA–PLSR and 
SNV–SPA–MLR. The PC-MLR models established on 
characteristic wavelengths for the prediction of cellulose, 
hemicellulose and lignin were again better than the PLSR 
models. The R2

c for cellulose, hemicellulose and lignin 
were 0.91, 0.81 and 0.76 with RMSEC of 2.60, 1.63 and 
1.71%, respectively; whereas the corresponding values 
for R2

p were 0.92, 0.84 and 0.71 and for RMSEP were 2.41, 
1.48 and 1.89%. The best-performing prediction models 
for determining the compositional contents according 
to variable selection methods were the SPA–PC-MLR 
for cellulose and lignin and the SPA–SNV–PC-MLR for 
hemicellulose (Fig. 4). PC-MLR models for the contents 
of cellulose and hemicellulose calculated on optimal 
wavelengths had similar accuracy to corresponding mod-
els based on the whole spectrum (Tables  2 and 3). This 
indicates that the characteristic wavelengths were the 
primary contributors for construction of cellulose and 
hemicellulose determination models. However, the SPA–
PC-MLR model for prediction of lignin had worse per-
formance, with relatively lower R2

c and R2
p , compared with 

the model using the full spectral data (Fig. 4c).
Xun et  al. [9] established PLSR models for prediction 

of corn stover lignocellulose components with spectral 
range of 522–1567 nm: the prediction results were R2

p of 
0.77 and RMSEP of 15.28  g/kg for cellulose; and corre-
spondingly 0.62 and 9.47 g/kg for hemicellulose, and 0.61 
and 11.73 g/kg for lignin. Huang et al. [27] collected NIR 
spectral data of 172 rice straw samples and built PLSR 
models for determining the lignocellulose components 

Table 3  Result of PLSR and PC-MLR models for cellulose, hemicellulose and lignin based on optimal wavelengths

a  Similar model parameters and abbreviations as in Table 2. SPA successive projections algorithm

Indices Model type Para Calibration set Prediction set

R
2
c

RMSEC (%) R
2
p

RMSEP (%)

Cellulose SPA–PC-MLR 18 0.91 2.60 0.92 2.41

SPA–PLSR 11 0.90 2.77 0.91 2.52

Hemicellulose SNV–SPA–PC-MLR 10 0.81 1.63 0.84 1.48

SNV–SPA–PLSR 8 0.79 1.69 0.80 1.63

Lignose SPA–PC-MLR 16 0.76 1.71 0.71 1.89

SPA–PLSR 12 0.75 1.76 0.65 2.06
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at the wavelength range of 400–2500  nm, and obtained 
more accurate results (validation results of R2 were 0.82, 
0.71 and 0.78 for cellulose, hemicellulose and lignin, 
respectively). Compared with results of Xue et  al. [9] 
and Huang et al. [27], our prediction accuracy for cellu-
lose and hemicellulose was greatly increased. Moreover, 
less than 10% of the independent variables were used in 
this study due to application of the optimal wavelength 
selection method. This dimension reduction signifi-
cantly raises computer processor speed and simplifies the 

prediction models. By extension, appropriate reductions 
in numbers of independent variables offers a promising 
alternative for developing real-time multispectral instru-
ments for online industry application. Thus, SPA–PC-
MLR for cellulose and lignin and the SNV–PC-MLR for 
hemicellulose models were used to construct distribution 
maps in the next step.

Construction of distribution maps for lignocellulose 
components
At the final step of hyperspectral image analysis, the 
optimal simplified models were applied to produce cel-
lulose, hemicellulose and lignin distribution maps among 
and within the biofuel pellets at the pixel level. All pixel 
features were predicted by implementing the best-per-
forming model at the examined hyperspectral image. A 
median filter technique was used for removing salt-and-
pepper noise during the imaging processing program 
[36]. Figure  5 shows the lignocellulose component dis-
tribution map for different kinds of biofuel pellets. Dif-
ferent colors shown on the distribution map represents 
different parameters values, which correspond to differ-
ent spectral features of pixels. Although it is impossible 
to determine the contents of lignocellulose components 
in the different biofuel pellet samples in the original NIR 
image (Fig. 5a), the spatial variation of these parameters 
among the variety of pellets can be visualized in the gen-
erated distribution maps (Fig.  5b). The major compo-
nents of biomass pellets vary according to the biomass 
feedstock and production process, which in turn signifi-
cantly influence the final conversion processing strate-
gies. Wood biofuel pellets had higher cellulose (48.37% 
for wood mixtures and 54.47% for pine) than herbaceous 
feedstocks such as rice husk (30.33%); and rice husk 
biomass had much higher hemicellulose concentration 
(19.98%) than pine wood (15.09%). The biofuel pellet size, 
which affects pellet durability, could also be detected 
simultaneously by image processing means. Hyperspec-
tral imaging can obtain spectral and spatial features 
from an object, which are both important for employing 
automatic approaches to biomass quality assurance and 
control. The number of analytical compositions can be 
rapidly and simultaneously visualized from the spatial 
distribution map. This might be important in determin-
ing suitable candidates for further HTC treatment and 
improving management of pellet production. However, 
the lignin prediction model could be enhanced by includ-
ing more samples with a large range of related values. The 
biomass pellet industry and market could benefit from 
the results presented by using hyperspectral imaging for 
fast and accurate determination of biomass composition 
in biofuel pellets to accelerate biomass utilization and 
improve the procedure control.

Fig. 4  Performance of best prediction models for determination of 
biofuel pellet lignocellulose components based on characteristic 
wavelengths. a SPA–PC-MLR model for cellulose; b SNV–SPA–PC-MLR 
model for hemicellulose and c SPA–PC-MLR model for lignin
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Conclusions
Lignocellulose biomass has been proposed as an option 
for production of chemicals and fuels because it could 
reduce greenhouse gas emission by substituting for 
petroleum fuels. The major components of lignocel-
lulosic biomass are cellulose, hemicellulose and lignin. 
The chemical composition and physical architecture 
of biofuel pellets influences the process control in the 
selection conversion technology and characteristics of 
final product. The capability of hyperspectral imaging 
in monitoring lignocellulose components of biofuel 
pellets in its ability to provide spectral information 
related to molecular structures of the chemical compo-
nents. In addition, multispectral imaging systems are 
also suggested to be developed and applied for online 
application. Rapid and accurate measurement of bio-
mass composition is important for increasing biomass 
utilization, and so the lignocellulose components of 
biofuel pellets were determined using an online hyper-
spectral imaging system. The results demonstrated 
that the hyperspectral imaging technique coupled with 
chemometric analysis such as SPA and PC-MLR were 

rapid and non-destructive, and accurately predicted the 
cellulose, hemicellulose and lignin contents of biomass 
pellets. Out of 216, only 20, 10 and 17 wavelengths were 
identified as important by SPA and found to be suitable 
for corresponding biochemical composition determi-
nation. The SPA–PC-MLR calibration model acquired 
good results of R2

p = 0.92 and RMSEP = 2.41% for cel-
lulose and R2

p = 0.71 and RMSEP = 1.89% for lignin. 
The SNV–SPA–PC-MLR gave a satisfactory result of 
R
2
p = 0.84 and RMSEP = 1.48% for hemicellulose. To the 

authors’ knowledge, this is the first publication of the 
distribution of lignocellulose components of biofuel 
pellets at the pixel level and demonstrates how con-
centrations differ among samples. One benefit of the 
wavelength selection method is that the visualized map 
generated on reduced independent variables will help 
in developing a convenient and low-cost multispectral 
imaging device for online industry application. In the 
future, more biofuel pellets with a wide range of ligno-
cellulosic composition should be studied to established 
more accurate and robust inspection model which 
could be applied in the biomass production industry. 

Fig. 5  Distribution maps of cellulose, hemicellulose and lignin contents in different biofuel pellets. a Original biofuel pellet NIR images; b prediction 
map of different lignocellulose components. The numbers accompanying each sample represent the respective lignocellulose component content. 
The three color-scale bars were generated with different cellulose, hemicellulose and lignin contents from small to large, shown in different colors 
from blue to red
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On the other hand, other variable selection methods 
should be considered to selection best wavelengths 
with higher accuracy and fewer numbers to inspect the 
content and distribution of lignocellulose components 
and other components of biofuel pellets. Furthermore, 
more attention should be paid on the physical specif-
ics (shape, density and others) of different variety on 
the impact of hyperspectral imaging analysis in future 
investigation.
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