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CIPK9 is involved in seed oil regulation 
in Brassica napus L. and Arabidopsis thaliana (L.) 
Heynh.
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Abstract 

Background:  Accumulation of storage compounds during seed development plays an important role in the life 
cycle of oilseed plants; these compounds provide carbon and energy resources to support the establishment of 
seedlings.

Results:  In this study, we show that BnCIPK9 has a broad expression pattern in Brassica napus L. tissues and that 
wounding stress strongly induces its expression. The overexpression of BnCIPK9 during seed development reduced oil 
synthesis in transgenic B. napus compared to that observed in wild-type (WT) plants. Functional analysis revealed that 
seed oil content (OC) of complementation lines was similar to that of WT plants, whereas OC in Arabidopsis thaliana 
(L.) Heynh. Atcipk9 knockout mutants (cipk9) was higher than that of WT plants. Seedling of cipk9 mutants failed to 
establish roots on a sugar-free medium, but root establishment could be rescued by supplementation of sucrose or 
glucose. The phenotype of complementation transgenic lines was similar to that of WT plants when grown on sugar-
free medium. Mutants, cipk9, cbl2, and cbl3 presented similar phenotypes, suggesting that CIPK9, CBL2, and CBL3 
might work together and play similar roles in root establishment under sugar-free condition.

Conclusion:  This study showed that BnCIPK9 and AtCIPK9 encode a protein kinase that is involved in sugar-related 
response and plays important roles in the regulation of energy reserves. Our results suggest that AtCIPK9 negatively 
regulates lipid accumulation and has a significant effect on early seedling establishment in A. thaliana. The functional 
characterization of CIPK9 provides insights into the regulation of OC, and might be used for improving OC in B. napus. 
We believe that our study makes a significant contribution to the literature because it provides information on how 
CIPKs coordinate stress regulation and energy signaling.
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Background
Sucrose is transported from leaves to other tissues as a 
main product of photosynthesis, and it is also the main 
carbon and energy source for plants’ reproduction and 
growth and for obtaining storage components such as 
oil, starch, and protein [1–4]. In oilseeds, lipids are the 

major energy reserves and are stored in the form of tria-
cylglycerols (TAGs) in oil bodies [5, 6]. Once germination 
begins, consumption of the energy reserves accumulated 
during seed maturation is necessary for energy produc-
tion to ensure heterotrophic growth [7–10]. During the 
early postgermination stage, lipases initiate the hydroly-
sis of TAGs into glycerol and fatty acids (FAs), and the 
β-oxidation pathway depredates those FAs for carbon 
[11–16]. During seed germination, the young plant 
degrades energy reserves and transfers them into solu-
ble molecules (e.g. sucrose), which can be transported 
throughout the plant.
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As a main carbon and energy source, sugars function 
as signaling molecules, represent the nutrient status 
of the plant, and regulate many nutrient-related genes 
[17–19]. In addition, sugars can regulate many biologi-
cal processes, including starch synthesis, cell division, 
and growth. Conversely, sugar starvation can affect the 
plant’s central development by enhancing photosynthetic 
activities and carbon remobilization [20, 21]. Sugar sign-
aling can interact with several other signals including 
hormone, nitrogen [22], stress, and energy levels [23–
25]. However, there are few transcriptional factors (TFs) 
among the large number of genes regulated by sugars. A 
novel screening technology demonstrated the participa-
tion of several basic region–leucine zipper (bZIP) and 
v-myb avain myeloblastosis viral oncogene homolog 
(MYB) TFs in the sugar signaling system [18, 26–29]. 
The cis-acting elements found among the target genes 
provide clues for identifying trans-acting factors in sugar 
response. For instance, the protein kinase SnRK1A has 
been identified as a sugar response transcriptional factor 
(TF) in rice, based on the cis-acting elements present in 
the promoter of gene α-amylase 3 (α-Amy3) [30]. Acting 
both as a structural component and as an energy source, 
sugar is an important substrate for plants during their 
active growth, seed production, and response to stress.

Energy-signaling protein kinases are conserved among 
the different species of eukaryotes: SNF1 in yeast, AMP-
activated protein kinase (AMPK) in mammals [31–35], 
and SnRK1 [36–40], and SnRK2.6 in plants [41]. The 
Snf1-related protein kinases (SnRKs) found in plants 
comprise families SnRK1, SnRK2, and SnRK3, which 
include three, 10, and 25 members, respectively [40, 42]. 
Given their ability to interact with calcineurin B-like 
proteins (CBLs) [43–50], members of the SnRK3 fam-
ily are also named CBL-interacting protein kinases 
(CIPKs). However, their roles in energy signaling and 
stress response remain unknown. To unravel the roles of 
the CIPKs in the regulation of carbohydrate and energy 
metabolism, we aimed to identify the kinases involved 
in seed oil production. In oilseed plants, such as rape-
seed, a large proportion of photoassimilate is transported 
to seeds for TAG synthesis, which demands abundant 
energy and carbon sources. The carbon level relative to 
that of nitrogen is then used as a signal to accelerate or 
decelerate the rate of oil synthesis [51, 52]. Overall, the 
analyses performed in these previous studies suggested 
that sugar and energy supplies in source tissues of oilseed 
plants affect seed oil synthesis.

Our reverse genetic study suggested that BnCIPK9 is 
a negative regulator of seed oil synthesis in B. napus. To 
further elucidate its function, we overexpressed BnCIPK9 
in B. napus, and demonstrated its roles in reducing OC. 
In the present study, we also investigated the function of 

Arabidopsis thaliana (L.) Heynh. AtCIPK9 in lipid accu-
mulation and its role in root establishment.

Results
Phenotypic variation
Seeds from the parental lines, P1 (high-oil parent) and P2 
(low-oil parent), showed a statistically significant differ-
ence in their seed oil content (OC): 46.4% (± 0.7; n = 4) 
and 41.1% (± 0.9; n = 2), respectively (Fig.  1a). The OC 
exhibited transgressive segregation, with a minimum of 
30.3% (± 0.8) and a maximum of 51.8% (± 0.7) in the F2 
populations of P1/P2 (Fig. 1a). Within these populations, 
the seven lines with the highest OC were H4 (51.8%), 
H12 (50.5%), H133 (50.1%), H41 (49.9%), H154 (49.1%), 
H86 (49.0%), and H64 (48.9%), and the seven lines with 
the lowest OC were L307 (33.2%), L161 (32.3%), L89 
(31.8%), L179 (31.5%), L267 (31.4%), L306 (30.7%), and 
L270 (30.3%).

Microarray analysis conducted using the above-men-
tioned rapeseed lines allowed identifying 10 genes poten-
tially involved in OC regulation, including BnCIPK9. 
Gene expression analysis showed that BnCIPK9 was dif-
ferentially expressed between the high- and the low-oil 
content lines from F2 populations, with higher expres-
sion in the low-oil lines than in the high-oil content lines 
(Fig. 1b). The results of quantitative real-time PCR (qRT-
PCR) analysis further confirmed a negative correlation 
between the expression level of BnCIPK9 and the OC of 
rapeseed seeds (Fig. 1c).

The YlSNF1 is known to negatively regulate lipid accu-
mulation in yeast [53]. Consistent with this finding, our 
results suggested that BnCIPK9 was a negative regula-
tor of OC in rapeseed. Therefore, we further attempted 
to characterize the molecular mechanism underlying this 
regulation. Full-length BnCIPK9 sequences, including 
the 5′-untranslated region (5′-UTR) were obtained from 
rapeseed lines. Analysis of rapeseed genome suggested 
that BnCIPK9 has four copies, and that is conserved 
(data not shown). Annotation of the 3050-bp (BnCIPK9 
promoter1) and a 3372-bp (BnCIPK9 promoter2) frag-
ments isolated from the 5′-UTR next to the BnCIPK9 
genomic locus from the parental line P1 revealed several 
cis-elements in this region. The main difference between 
BnCIPK9 promoter1 and promoter2 sequences was the 
presence of a 264  bp insertion/deletion at the position 
− 281 in BnCIPK9 promoter2 (Fig. 4a).

Expression analysis of BnCIPK9
The A. thaliana homolog of BnCIPK9, AtCIPK9, is 
expressed in several tissues, including leaves, stem, flow-
ers, and siliques [54–56]. At 24  days after pollination 
(DAP), high BnCIPK9 transcription levels were observed 
in the stem, leaves, and in silique walls, whereas low 
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transcription levels were found in flowers, buds, 24 DAP 
seeds, and especially in the roots (Fig.  2a). A qRT-PCT 
was performed to characterize the relative accumula-
tion of mRNA transcripts of BnCIPK9 during the dif-
ferent developmental stages of P1 seeds, from 10 to 43 
DAP (Fig. 2b). Transcript levels were relatively low dur-
ing early seed development (up to 15 DAP), but a sharp 
increase was observed from 15 to 20 DAP, after which 
transcript levels gradually decreased from 25 to 43 DAP 
(Fig. 2b). These results indicated that the expression pat-
tern of BnCIPK9 is similar to that of AtCIPK9; both are 
expressed in various organs, including photosynthetic 
and non-photosynthetic tissues.

The expression profiles of BnCIPK9 were also evaluated 
based on β-glucuronidase (GUS) activity in transgenic 
A. thaliana seedlings carrying GUS, under the control of 
BnCIPK9 promoters 1 and 2 (BnCIPK9 promotor1:GUS, 
and BnCIPK9 promotor2:GUS). This analysis revealed a 
similar expression pattern between plants transformed 
with BnCIPK9 promotor1:GUS (Fig.  2c) and BnCIPK9 
promotor2:GUS (data not shown). Wounding stress sig-
nal strongly induced the expression of BnCIPK9 (Fig. 2c2, 
c3, c5). Although BnCIPK9 was expressed in siliques, 
GUS activity was mainly restricted to the stigma and 
receptacle of developing siliques (Fig.  2c1, c2). In the 
inflorescence, substantial GUS activity was predomi-
nantly detected in the anthers and stamen filaments and 
in the vasculature of mature petals and sepals (Fig. 2c1, 
c3). In addition, BnCIPK9 was expressed in all tissues 
of 7-day-old seedlings, particularly in vascular tissue of 
leaves (Fig.  2c4). In adult plants, low GUS activity was 
detected in the typical rosette leaf and old stems (Fig. 2c5, 
c6). Overall, GUS activity profiles were generally consist-
ent with the mRNA profiles obtained using qRT-PCR.

Decrease in lipid storage in the seeds of transgenic plants 
overexpressing BnCIPK9
We generated transgenic rapeseed plants overexpressing 
BnCIPK9 to determine whether an increase in BnCIPK9 
expression would reduce the OC in seeds. To specifically 
control for the accumulation of lipids in mature seeds, 
the BnCIPK9 transgene was expressed under the con-
trol of seed-specific BnNapin promoter. We recovered 
four independent lines the pattern and rate of growth, 
leaf number, and leaf size of which were all normal. The 
T3 mature seeds from the transgenic plants were normal 
in size (Fig. 3a, d), and transgenic plants had high levels 
of BnCIPK9 expression (Fig.  3b). Seeds harvested from 
four fully mature transgenic plants were used for further 
studies. The transgenic plants with the increased levels 
of endogenous BnCIPK9 expression had a significantly 
lower OC than the non-transgenic plants (Fig. 3c).

Fig. 1  Negative regulation of BnCIPK9 according to seed oil 
content in Brassica napus. a Seed oil contents of various rapeseed 
lines expressed as a percentage of dry weight. For P1 and P2, Bars 
represent mean values of seed oil content, and error bars indicate its 
standard deviation (SD) (n = 2–4); the asterisk indicates a significant 
difference (P < 0.05) in seed oil contents between P1 and P2. b 
Different expression levels of BnCIPK9 in the high-oil and low-oil 
content lines, as determined by microarray analysis. Error bars 
indicate SD (n = 6). c Relative expression analysis of BnCIPK9 in the 
rapeseed lines examined. The data are mean ± SD of three replicates
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Characterization of promoters 1 and 2 of BnCIPK9
To determine the regulatory elements of BnCIPK9, the 
promoter regions (3.0  kb fragment upstream of the 
translation start site) were isolated from the rapeseed 
genomic DNA. We performed an in silico analysis of 
BnCIPK9 promoter1 (3050 bp) and BnCIPK9 promoter2 
(3372 bp) fragments to find the cis-elements related with 
sugar response. The analysis of the promoter fragments 
was performed using the PLACE database (http://www.
dna.affrc​.go.jp/PLACE​), searching for the motifs that 
might be involved in gene suppression by sugars (Fig. 4a). 

Seventeen and 23 potential sugar response motifs were 
characterized from BnCIPK9 promoter1 and promoter2, 
respectively. One of the most interesting elements found 
in the promoters was the TAT​CCA​ motif, which has also 
been found in the 5′-UTR of α-Amy3D from rice and 
characterized as a sugar response motif [57, 58]. This 
motif occurs twice in promoter1 (at − 134 and − 391 
from ATG) and promoter2 (at − 134 and − 661 from 
ATG), separated by 252 and 516  bp, respectively. The 
I-box [59] was found four times within BnCIPK9 pro-
moter1 and six times within BnCIPK9 promoter2, but 

Fig. 2  Expression patterns of BnCIPK9 in the high-oil content parent (P1). a Spatial and temporal expression analyses of BnCIPK9 in roots, stem, 
leaves, 24 days after pollination (DAP) seeds, 24DAP slique wall, buds, and flowers using quantitative real-time PCR (qRT-PCR). Total RNA was isolated 
from the different tissues (roots, stem, leaves, 24DAP seeds, 24DAP silique wall, buds, and flowers); qRT-PCR was performed with BnCIPK9-specific 
primers and BnaUBC9-specific primers. Gene BnaUBC9 was used as an internal control for normalization. The data shown are mean ± standard 
deviation (SD) of three technical replicates. b BnCIPK9 expression profile using qRT-PCR at different seed-development stages (10, 10DAP; 15, 15DAP; 
20, 20DAP; 25, 25DAP; 30, 30DAP; 35, 35DAP; 40, 40DAP; 43, 43DAP). Tissues were collected at different seed-development stages, and RNA was 
isolated to obtain first-strand cDNA. The qRT-PCR was performed with BnCIPK9-specific and BnaUBC9-specific primers. BnaUBC9 expression levels 
were used as an internal control. The data shown are mean ± SD of three technical replicates. c GUS staining of different tissues in BnCIPK9:GUS 
transgenic plants. Gus activity in 7-day-old seedlings (4) and individual organs of adult plant (1–3, 5, 6), siliques (1, 2), whole inflorescence (3), stem 
(5), mature leaf (6). Scale = 2 mm (siliques, whole inflorescence, stem, mature leaf ), 1 mm in 7-day-old seedlings

http://www.dna.affrc.go.jp/PLACE
http://www.dna.affrc.go.jp/PLACE
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only one I-box motif of BnCIPK9 promoter2 overlapped 
with the MYBST1 element [60] (Fig.  4a). The MYBST1 
element occurred four times within BnCIPK9 promoter1 
and six times within BnCIPK9 promoter2. The E-box 
motifs [61, 62], which are likely seed-specific, occurred 
four times within BnCIPK9 promoter1 and five times 
within BnCIPK9 promoter2.

To characterize the molecular mechanism of the reg-
ulation of BnCIPK9 by sugars, fragments of BnCIPK9 
promoter1 and BnCIPK9 promoter2 upstream the ATG 
codon were used for GUS analysis. We examined the 
effects of sucrose and glucose (1 or 3%  w/v) supple-
mentation in half-strength Murashige and Skoog (MS) 
medium on GUS expression. As a control, mannitol 
was used for imposing osmotic stress. Supplementation 
of 3% glucose significantly reduced GUS expression in 
promoter1:GUS lines compared to the medium without 
supplementation (Fig. 4b). Both 1% glucose and 1% man-
nitol resulted in lower GUS activity for the BnCIPK9 pro-
moter2 in relation to the sugar-free condition (Fig.  4c). 
In the presence of both 3% sucrose and 3% glucose, a 
significant reduction in the GUS activity was observed 
in BnCIPK9 promoter2:GUS transgenic lines, compared 
that observed on the medium without supplementation 
(Fig.  4c). Quantitative GUS assays suggested that the 

expression of BnCIPK9 promoter1 and BnCIPK9 pro-
moter2 was reduced at different extents in the presence 
of sugar, and that these regions were particularly respon-
sive to sucrose and glucose.

Characterization of the promoter region of AtCIPK9
The promoter region of AtCIPK9 contains two putative 
sugar-responsive elements, TAT​CCA​ and TAA​CAA​A 
[63], which are found in gene α-Amy3. In addition, the 
promoter fragment includes an RY and an EVENINGAT 
motif [64, 65]. Five I-box motifs were found in the pro-
moter of AtCIPK9, but only one I-box motif overlapped 
the MYBST1A motif. The promoter of AtCIPK9 includes 
six E-box motifs, which potentially mediate gene expres-
sion in seeds. On half-strength MS supplemented with 
1% sucrose, a reduction in the GUS activity was observed 
in AtCIPK9 promoter:GUS transgenic lines compared 
to that observed on the medium without sugar sup-
plementation (Fig.  5b). On half-strength MS with 1% 
glucose, GUS expression in AtCIPK9 promoter:GUS 
transgenic lines was indistinguishable from that observed 
in the absence of sugar. In the presence of both 3% 
sucrose and 3% glucose, GUS activities were reduced 
observed in the AtCIPK9 promoter:GUS transgenic lines 

Fig. 3  Transgenic rapeseed plants overexpressing ProBnNapin:BnCIPK9T178D (BnCIPK9-OE) and analyses of seed oil content, seed size, and seed 
weight. a T3 generation of dried seeds of four independent ProBnNapin:BnCIPK9T178D overexpressing transgenic lines (OE-1, OE-2, OE-3, OE-4) 
and J572 (wild type, WT), used as the control. Bars correspond to 500 µm. b Expression levels of BnCIPK9 in the seeds of transgenic rapeseed lines 
as assessed by qRT-PCR. Bars represent mean ± standard deviation (SD) (three technical replicates). c Total seed oil contents of transgenic rapeseed 
plants (T2), and J572 (WT) used as the control. Bars indicate the SDs of different replicates. Asterisks indicate significant differences (P < 0.05) 
between transgenic and control (J572) plants. d Dry seed weight (15 seeds) of transgenic and J572 rapeseed plants. Error bars indicate the SD 
(n ≥ 5)
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compared to that observed on the medium without sugar 
supplementation.

Disruption of AtCIPK9 leads to an increase in TAG in seeds 
and in the failure establishment of root
We obtained an A. thaliana mutant (Salk_058629) from 
the ABRC Stock Center containing a transfer-DNA 
insertion in the fourth exon (1115 bp from ATG) of the 

AtCIPK9 (At1g01140) locus [54]. This mutant was desig-
nated cipk9. The transcript level of AtCIPK9 in cipk9 was 
40-fold lower than that in wile-type (WT) plants during 
the early stage of silique development (6–10 DAP). Pre-
vious results from northern blot analysis also showed 
that the transcription of AtCIPK9 in this mutant line was 
disrupted [55]. The average OC in WT plants was 24.1%, 
whereas in cipk9 mutant plants it was 26.3% (Fig.  6a). 

Fig. 4  Promoter and expression pattern of BnCIPk9 in seedlings, in the presence and absence of sugars. a Composition of putative cis-acting 
elements in the BnCIPK9 promoter (BnCIPK9 promoter1, 3050 bp from the original fragment; BnCIPK9 promoter2, 3372 bp from the original 
fragment). b Activity of BnCIPK9 promoter1 in 7-day-old seedlings in the presence and absence of sugars. The transgenic fusion including 3050 bp 
(BnCIPK9 promoter1) of the 5′-upstream regulatory region of the BnCIPK9, fused to the GUS reporter gene used to generate the transgenic lines 
(BnCIPK9 promoter1:GUS). c Activity of the promoter2 of BnCIPK9 in 7-day-old seedlings in the presence or absence of sugars. The transgenic fusion 
included 3372 bp (BnCIPK9 promoter2) of the 5′-upstream regulatory region of BnCIPK9, fused to the GUS reporter gene used to generate the 
transgenic lines (BnCIPK9 promoter2:GUS). Different sugar sources [1 or 3% glucose (Glu), or sucrose (Suc)] were used; mannitol (Mlt) was used as a 
control for osmotic stress. Data are shown as means of the relative GUS activity of promoter1 and promoter2 of BnCIPK9± standard deviation (SD) 
(n = 3). The Student’s t test was performed to evaluate the significance of differences between means at *P < 0.05; **P < 0.01



Page 7 of 16Guo et al. Biotechnol Biofuels  (2018) 11:124 

In cipk9 seeds, the relative proportion of C20:1∆11 was 
increased, whereas the relative proportion of C18:2 was 
clearly decreased, compared to WT plants (Fig. 6c).

To examine defects in seedling establishment on half-
strength MS medium, we examined seedlings’ genera-
tion and establishment in the absence and presence of 1% 
sucrose. No significant differences were found between 
the cipk9 mutant and WT plants under normal growth 
conditions (half-strength MS medium with 1% sucrose), 

although cipk9 plants were more sensitive to the half-
strength MS medium without sugar supplementation, 
as they failed to establish roots under this condition. To 
demonstrate the genetic complementation of AtCIPK9, 
we transformed mutant plants using the genomic DNA 
(com-1) and the coding sequence (com-2) of AtCIPK9 
under the control of its native promoter. Three independ-
ent complementation lines were generated for the allele 
of cipk9. The expression levels of AtCIPK9 were restored 

Fig. 5  Promoter and expression pattern of AtCIPK9 in 7-day-old seedlings in the presence or absence of sugars. a Composition of putative 
cis-acting elements in promoter of AtCIPK9. The promoter of AtCIPK9 is the 2000 bp from the original fragment. b Expression pattern of the AtCIPK9 
in 7-day-old seedlings in the presence or absence of sugars. The transcriptional fusion included 3.0 kb of the 5′-untranslated region of the AtCIPK9 
fused to the GUS reporter gene used to generate the transgenic lines (ProAtCIPK9:GUS). Different sugar sources (1 or 3% glucose, or sucrose) were 
used: mannitol was used as a control for osmotic stress. The images shown are representative of the three biologically independent experiments
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in the three complementation lines (Fig. 7a), and the phe-
notypes of these three complementation lines were simi-
lar to that of WT plants, when grown on half-strength 
MS medium without sugar supplementation (Fig.  7d). 
The three transgenic lines showed normal OC (Fig. 7b), 
although significantly lower than that of cipk9 mutant 
plants (Fig.  7c), implying that AtCIPK9 is required for 
proper OC. These results demonstrated that sugar sen-
sitivity and lipid accumulation in seeds of cipk9 were due 
to the disruption of AtCIPK9. Plants appeared normal on 
the medium lacking sucrose, suggesting that AtCIPK9 is 
required for proper early seedling establishment.

CBL2 and CBL3 are involved in the upstream regulation 
of CIPK9
It has been shown that CBL2 and CBL3 interact with 
CIPK9 [56]. We o<btained cbl2 (SALK_057048C) and 
cbl3 (SALK_091827C) mutants from the ABRC Stock 
Center, and the expressions of CBL2 and CBL3 were, 
respectively, disrupted in cbl2 and cbl3 mutants [56, 
66]. Both mutants showed the typical cipk9 phenotype 
on the half-strength MS medium without sugar (Fig. 8a, 
b), suggesting that CBL2, CBL3, and CIPK9 might work 
together and play roles in the establishment of seedlings 
in the absence of sugar.

Fig. 6  Triacylglycerol levels and seedling establishment in the cipk9 mutant. a Relative fatty acids (FAs) in dried Col-0 and cipk9 seeds. b 
Hypersensitive growth of cipk9 mutants in media with no sugar added. c FA profile in Col-0 and cipk9 seeds. The student’s t test was performed to 
evaluate the significance of differences between means at *P < 0.05. Error bars correspond to standard deviations (n ≥ 5)
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Discussion
In eukaryotes, the regulators involved in lipid metabo-
lism and carbohydrate storage in the SNF1/AMPK fam-
ily of protein kinases are evolutionarily conserved from 
yeast (SNF1) to mammals (AMPK) and plants (SnRKs). 
Similar to a previous study that demonstrated the nega-
tive regulation of lipid accumulation by SNF1 in yeast 
[53], we showed that BnCIPK9 and AtCPK9 are negative 
regulators of OC, and that CIPK9 might also regulate OC 
by influencing the expression of genes related to lipid 
metabolism. However, SnRK2.6 is a positive regulator of 
seed oil production in A. thaliana [41]. Considering that 
YlSnf1 apparently regulates lipid metabolism at the tran-
scriptional level, it might also regulate lipid metabolism 

by posttranscriptional regulatory processes, including 
SNF1-dependent translocation and phosphorylation of 
the key enzymes. When active, Snf1 inhibits the acetyl-
CoA carboxylase (ACCase) [67, 68], and glycerol phos-
phate acyltransferase (GAPT) [69] activities. In fact, the 
first conserved function shown for SNF1/AMPK protein 
kinase among eukaryotes was the regulation of ACCase, 
the first and rate-limiting enzyme in the de novo syn-
thesis of FAs [67, 68, 70–72]. In fact, ACCase is highly 
regulated through both transcriptional and biochemical 
mechanisms, and it is critical for controlling the influx 
of carbon into FAs, and thus into oil biosynthesis [73–
79]. Nutritional and metabolic signals, such as glucose 
limitation and salt stress, are transduced to ACC1 by 

Fig. 7  Complementation of cipk9 mutant and analysis of seed oil content. a AtCIPK9 transcript levels in the transgenic lines. b Seed oil contents 
of T3 transgenic and wild type (WT, Col-0). c Seed oil contents of T3 transgenic and cipk9 mutants. d Phenotypes of the complementation lines of 
cipk9, WT (Col-0), and cipk9 grown in half-strength Murashige and Skoog medium without sucrose for 7 days. The student’s t test was performed 
to determine the significance of differences between means at *P < 0.05. Error bars indicate standard deviations (n ≥ 5); com-1-1, com-1-2, and 
com-1-3 are three independent promoterAtCIPK9:AtCIPK9 (genomic DNA) transgenic lines; com-2-1, com-2-2, com-2-3 are three independent 
promoterAtCIPK9:AtCIPK9 (coding sequence) transgenic lines
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AMPK [32, 35, 80]. In plants, SnRK1 negatively regulates 
3-hydroxy-3-methyl-glutaryl-coenzyme A reductase [81], 
and is supposed to negatively regulate diacylglycerol acyl-
transferase (DGAT) [82]. A putative tyrosine phosphoryl-
ation motif was observed in mammalian DGAT, but no 
apparent tyrosine phosphorylation site could be found 
in transient axonal glycoprotein1 [83]. However, visual 
examination revealed a consensus sequence (X-L200-X-
K202-X-X-S205-X-X-X-V209), which was identified as 
the targeting motif, typical of the members of the SnRK1 
protein kinase family [84]. Similar to SnRK1 in plants and 
Snf1 in yeast, CIPK9 might also regulate the activities of 
these enzymes through protein phosphorylation.

In oilseed plants, an essential function of seed 
reserves, manifested by OC levels, is to provide energy 
for postgermination growth until the seedling can per-
form photosynthesis [7, 85]. We observed a higher 
OC in cipk9 mutants than in WT plants, but the 
roots of cipk9 mutant seedlings failed to establish on 

half- strength MS medium without sugar, which could 
be recovered by the addition of exogenous sucrose. 
Thus, cipk9 resembles the sdp1 mutant, which showed 
increased OC because of a defect in TAG degrada-
tion [13, 86, 87]. During the establishment of seedling 
roots, resources are mobilized by hydrolysis of lipids 
and fatty acid catabolism (β-oxidation), which con-
nected to sugar biosynthesis via the glyoxylate cycle 
[15]. It has been shown that seedling establishment is 
compromised in plants with deficient glyoxylate cycle 
[88, 89], gluconeogenesis [90, 91], and transportation 
of intermediates derived from lipid breakdown [92–96]. 
The establishment of seedlings could be rescued by the 
supplementing sucrose to mutants with deficient seed 
oil catabolism [91], but carbohydrate metabolism [97] 
was affected during seed development. Furthermore, 
FAs and FA-derived lipids can facilitate successful seed 
germination and seedling establishment [6].

Fig. 8  Postgermination growths of clb2 and clb3. a Phenotype tests performed to cbl2 mutants grown in half-strength Murashige and Skoog (MS) 
medium without sucrose for 7 days. b Phenotype tests performed to cbl3 mutants grown in half-strength MS medium without sucrose for 7 days
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Glycolysis, tricarboxylic acid cycle, oxidative phos-
phorylation, and mitochondrial electron transport were 
reported to be significantly upregulated in germinating 
seeds of A. thaliana, indicating that respiration is one 
of the essential processes to facilitating seed germina-
tion [98, 99]. The cipk9 mutants grown in the medium 
supplemented with sugar showed similar root length to 
WT plants, indicating that plants are capable of sucrose 
catabolism. Transcript analysis indicated that AtCIPK9 
has high expression in root, flower, developing silique, 
and young seedlings [54–56]. Glycolysis and gluconeo-
genesis are important biological process for providing 
energy and structural components, which is critical for 
seedling establishment. These results clearly show that 
AtCIPK9 plays an important role during germination 
and the later phase of seedling establishment. Thus, cipk9 
seeds might not be able to fully convert lipids to sucrose.

The expression of BnCIPK9 and AtCIPK9 are induced 
by sugar starvation and suppressed by sugar supple-
mentation, which is similar to the regulation pattern of 
DIN6, STP1, and α-Amy3 [24, 58, 100, 101]. In the pre-
sent research, we attempted to identify the cis-acting ele-
ments required for the suppression of BnCIPK9 by sugar. 
In silico assays showed that BnCIPK9 and α-Amy3, STP1, 
and DIN6 promoters shared two TAT​CCA​ cis-acting 
elements and G boxes [24, 58, 100]. The TAT​CCA​ cis-
element was identified as the binding site for OsMYB2, 
and is essential for the regulation of α-Amy3 in rice by 
sugar [68]. Moreover, the arrangement of these ele-
ments in BnCIPK9 (in tandem and separated by 252 bp 
and 516 bp) is different from that in α-Amy3 (separated 
15  bp) [57]. As for AtCIPK9, the promoter JcSDP1 also 
carries one TAT​CCA​ element; gene expression is sugar-
dependent and it is especially responsive to sucrose and 
fructose [95]. Thus, the TAT​CCA​ element is an interest-
ing candidate for better understanding the mechanism by 
which sugar regulates BnCIPK9. The transcriptomic anal-
ysis of Cookson et al. [102] suggested that sucrose affects 
gene expression via multiple routes at the transcription 
level. One of the transcriptional responses to changes in 
carbon status is the signaling via SnRK1 accounts. The 
I-box (light regulated) and ABRE-like motifs are enriched 
in all the clusters of gene induced by carbon depletion, 
and promoters of BnCIPK9 and AtCIPK9 also carry sev-
eral I-box elements.

Previous studies indicated that CIPK15 induced the 
accumulation of SnRK1A, which promotes the interac-
tion between MYBS1 and the TA box and regulates the 
transcription level of α-Amy3 [103, 104]. In the beginning 
of germination, signals of nutrient starvation induce the 
nuclear import and expression of MYBS1, which acti-
vates target gene expression by binding to the TA box 
in the promoters of the target gene. In rice, during early 

postgermination growth, MYBS1 plays an important 
role in the common nutrient-starvation signaling path-
way, possibly through CBL–CIPK15–SnRK1A-depend-
ent sugar-starvation signaling pathway [30, 103, 104]. 
Moreover, SnRK1 has been reported to play a pivotal 
role in linking stress, development, and sugar signal-
ing at the level of gene expression, which indicates its 
crucial regulatory effect on plant metabolism, energy 
balance, and growth [24]. These findings suggest that 
function conservation in SnRK1/SNF1/AMPK has played 
an important role in sugar-mediated regulation across 
eukaryotes throughout evolution. Consistent with the 
results obtained for rice, the promoter region of BnCIPK9 
would allow the identification of cis-acting elements and 
trans-acting factors involved in sugar and lipid accumula-
tion in rapeseed.

Conclusion
Overall, this study shows that BnCIPK9 and AtCIPK9 
encode a protein kinase involved in sugar-related 
response and are important regulatory elements in 
energy storage. Gene AtCIPK9 has a significant effect 
on early seedling root establishment in A. thaliana. 
Although it has been confirmed that sugars suppress the 
repression of BnCIPK9 and AtCIPK9, it is necessary, and 
would be interesting, to explore the roles of BnCIPK9 and 
AtCIPK9 in the sugar signaling pathway and to identify 
the downstream targets of CIPK9 in plants. In the future, 
genomewide transcriptomic and proteomic analyses 
combined with in  vitro and in  vivo studies of protein–
protein interaction should provide more information on 
the function of CIPK9 in the sugar response.

Methods
Plants material and growth condition
Rapeseed parent plants with high-oil (P1) and low-oil 
(P2) contents, and the F2 populations resulting from 
them were grown in a randomized array in Saskatoon, 
Canada. The dataset consists of seven lines of high OC 
(H4, H12, H41, H64, H86, H133, H154) and their pool 
(HP), seven lines of low OC (L89, L161, L179, L267, L270, 
L306, L307) and their pool (LP), and hybrids of the high- 
and low-oil lines (P1P2, P2P1), all belonging to F2 popula-
tions. The B. napus transgenic lines used for the analysis 
of OC were grown during the normal growing season at 
the experimental station of Huazhong Agricultural Uni-
versity, China. Regular field management was conducted 
according to local agricultural practices.

Arabidopsis thaliana ecotype Columbia (Col-0) was 
grown at 22  °C in growth chambers under 16 h of light 
and 8 h of darkness. A. thaliana Col-0 and its cipk9, cbl2, 
and cbl3 mutants were ordered from the Arabidopsis Bio-
logical Resource Center (ABRC), USA (http://www.arabi​

http://www.arabidopsis.org/
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dopsi​s.org/). Genomic DNA was extracted from plants 
grown in soil for 1 month. Homozygous lines of AtCIPK9 
(SALK_058629), AtCBL2 (SALK_057048C), and AtCBL3 
(SALK_091827C) mutants were screened by PCR using 
LBb1.3 and three gene-specific primers (Additional file 1: 
Table  S1). We chose etiolated seedlings grown on half-
strength MS medium (Caisson Laboratories Inc., UT, 
USA) without supplementary sugar as a model system for 
carbon starvation. The A. thaliana seeds (Col-0, cipk9, 
com-1, com-2, cbl2, cbl3) were surface sterilized, and 
then randomly sown on half-strength MS agarose plates 
with 1% sucrose, or without sugar.

Construction of plasmids
All primers for cloning and vector construction are 
listed in Additional file 1: Table S1. Both complementa-
tion lines of cipk9, with the AtCIPK9 genomic sequence 
(com-1:promoterAtCIPK9:gDNA(AtCIPK9)) and cod-
ing sequence (com-2:promoterAtCIPK9:CDS(AtCIPK9)) 
driven by its own promoter, were cloned into the PCAM-
BIA1300 vector, and were transformed into the cipk9 
(SALK_058629) mutant by floral dipping. Transgenic 
lines were selected on half-strength MS medium con-
taining 1% agarose and supplemented with 40  µg  mL−1 
hygromycin, and T3 seedlings were planted on verti-
cal half-strength MS agarose plates with or without 1% 
sucrose for 7  days. The deletion of the NAF motif and 
substitution of threonine with aspartate within the acti-
vation loop of BnCIPK9 were performed via gene splicing 
by overlap extension PCR in vitro mutagenesis. To obtain 
BnCIPK9-overexpression transgenic lines, the kinase 
domain of CIPK9T178D was cloned a pC2300 vector 
harboring BnNapin promoter and a CaMV35  s polyA 
addition sequence, and transformed into rapeseed vari-
ety J572 (wild type). The rapeseed transgenic lines were 
generated using A. tumefaciens-mediated transformation 
[105, 106]. Primers used in the positive transplant test are 
listed in Additional file 1: Table S1. The four independent 
transgenic lines mentioned above (at least eight plants 
per line) were selected in the T2 generation and used in 
the current study.

Construction of promoter:GUS transgenic plants
The BnCIPK9 promoter1 (3050  bp) and BnCIPK9 pro-
moter2 (3372  bp) fragments were amplified with a for-
ward primer containing a SalI restriction site and a 
reverse primer containing a BamHI restriction site, and 
then cloned into the pCXGUS-P vector in front of the 
GUS coding sequence. The AtCIPK9 promoter frag-
ment (3000 bp) was amplified and cloned into pCXGUS-
P in front of the GUS coding sequence using SalI and 
BamHI sites. Multiple lines of BnCIPK9 promoter1:GUS, 
BnCIPK9 promoter2:GUS, and AtCIPK9 promoter:GUS 

seedlings were generated, and the homozygous lines 
were isolated and used to verify the reproducibility of 
GUS staining patterns. The seeds of T3 transgenic lines 
(BnCIPK9promoter1:GUS, BnCIPK9 promoter2:GUS 
and AtCIPK9 promoter:GUS) were surface-sterilized, 
and then randomly sown on half-strength MS agarose 
plates with 1% sucrose, 3% sucrose, 1% glucose, 3% glu-
cose, 1% mannitol (Sigma-Aldrich, MO, USA), 3% man-
nitol or without sugar supplementation. The plates were 
incubated for 1 week (22 °C/18 °C; 16/8 h day/night pho-
toperiod). Analysis of GUS activity in different tissues of 
T3 transgenic lines was performed as described previ-
ously [107].

Quantification of GUS activity
The expression pattern of the promoters was determined 
by a quantitative GUS activity assay using the total pro-
tein extracted from plants grown for 7  days on half-
strength MS without sugar supplementation or with 1% 
sucrose, 3% sucrose, 1% glucose, 3% glucose, 1% man-
nitol, or with 3% mannitol. Fluorometric GUS assays to 
measure GUS activity in plant seedlings were performed 
according to Jefferson [107]. The total protein concentra-
tion in plant extracts was determined according to Brad-
ford [108] using bovine serum albumin as the standard. 
Fluorescence was recorded using Tecan Infinite M200 
PRO (Tecan Group Ltd., Switzerland) [109].

Fatty acid and lipid analysis in A. thaliana
Both fatty acid composition and lipid content of Col-
0, cipk9, com-1, and com-2 plants were analyzed by gas 
chromatography (GC) following previously published 
procedures [6]. About 100 dry seeds of each background 
were weighted for the first biological repeat, and at least 
three technical repeats were included in each experi-
ment. The samples were transmethylated at 90  °C for 
60  min, and 200  µg of heptadecanoic acid (C17:0) was 
used as the quantitative internal standard. After cooling 
the tubes to room temperature, 1.5 mLof 0.9% NaCl (w/v) 
was added to the mix, and the FA methyl esters (FAMEs) 
were extracted twice in 1  mL of hexane. Samples were 
then analyzed with GC using a flame ionization detector 
(FID) on Agilent 6890 (Agilent, santa Clara, CA, USA), 
employing helium as the carrier gas.

Analysis of OC in rapeseed
The total OC in rapeseed seeds was measured in Foss 
NIR-System 5000 near-infrared reflectance spectroscope 
(NIR-Systems, Inc., Silver Spring, MD, USA) [110], using 
the parameters described by Gan et  al. [111]. At least 
eight biological replicates from each transgenic line were 
used.

http://www.arabidopsis.org/
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RNA isolation and quantitative real‑time PCR
Total RNA was isolated from the plant samples (root, 
stem, flower, bud, 24DAP seed, and 24DAP silique wall 
of the parent P1) and used for quantitative real-time 
PCR (qRT-PCR). The RNA contained in each sample 
was quantified in a NanoDrop2000 and its integrity was 
checked on 1.2% (w/v) agarose gels. The qRT-PCR assay 
was performed on a CFX96 real-time PCR machine 
(Bio-Rad, USA) using gene-specific primers and the 
SYBR Green PCR Master Mix (Applied Biosystems), 
according to the manufacturer’s instructions. For the 
internal control, we used species-specific actin primer 
sets for B. napus and A. thaliana. All qRT-PCR experi-
ments were performed in triplicate for each sample 
from three independent biological replicates. All prim-
ers for the qRT-PCR are listed in the Additional file 1: 
Table S1.

Statistical analysis
To ensure reproducibility, the experiments were per-
formed using at least three biological triplicates. All 
quantitative data were expressed as the mean value with 
corresponding standard deviation (SD), and statistical 
differences between means was evaluated using the Stu-
dent’s t test, at significance levels of P < 0.05 and P < 0.01.
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