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Rich biotin content in lignocellulose 
biomass plays the key role in determining 
cellulosic glutamic acid accumulation 
by Corynebacterium glutamicum
Jingbai Wen, Yanqiu Xiao, Ting Liu, Qiuqiang Gao and Jie Bao* 

Abstract 

Background:  Lignocellulose is one of the most promising alternative feedstocks for glutamic acid production as 
commodity building block chemical, but the efforts by the dominant industrial fermentation strain Corynebacterium 
glutamicum failed for accumulating glutamic acid using lignocellulose feedstock.

Results:  We identified the existence of surprisingly high biotin concentration in corn stover hydrolysate as the deter-
mining factor for the failure of glutamic acid accumulation by Corynebacterium glutamicum. Under excessive biotin 
content, induction by penicillin resulted in 41.7 ± 0.1 g/L of glutamic acid with the yield of 0.50 g glutamic acid/g 
glucose. Our further investigation revealed that corn stover contained 353 ± 16 μg of biotin per kg dry solids, approxi-
mately one order of magnitude greater than the biotin in corn grain. Most of the biotin remained stable during the 
biorefining chain and the rich biotin content in corn stover hydrolysate almost completely blocked the glutamic acid 
accumulation. This rich biotin existence was found to be a common phenomenon in the wide range of lignocellulose 
biomass and this may be the key reason why the previous studies failed in cellulosic glutamic acid fermentation from 
lignocellulose biomass. The extended recording of the complete members of all eight vitamin B compounds in lig-
nocellulose biomass further reveals that the major vitamin B members were also under the high concentration levels 
even after harsh pretreatment.

Conclusions:  The high content of biotin in wide range of lignocellulose biomass feedstocks and the corresponding 
hydrolysates was discovered and it was found to be the key factor in determining the cellulosic glutamic acid accu-
mulation. The highly reserved biotin and the high content of their other vitamin B compounds in biorefining process 
might act as the potential nutrients to biorefining fermentations. This study creates a new insight that lignocellulose 
biorefining not only generates inhibitors, but also keeps nutrients for cellulosic fermentations.
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Background
Glutamic acid is a five-carbon amino acid with the annual 
production of three million tons as flavor enhancer [1]. 
Together with the potential of glutamic acid to act as 
commodity monomer chemicals for productions of 
polyesters and polyamides, it requires a major shift of 

feedstock from food crops-derived glucose to non-food 
carbohydrate alternatives [2]. Among all the available 
feedstocks options, lignocellulose biomass provides one 
of the most promising options due to its abundance 
and availability to produce various valued-added prod-
ucts based on fermentation [3, 4]. Corynebacterium glu-
tamicum is the major industrial strain for glutamic acid 
production since its first isolation at 1960s [5]. It also 
provides a versatile cell factory to produce multiple bio-
based chemicals and biofuels far beyond the traditional 
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l-amino acids [5]. The potential of C. glutamicum in 
lignocellulose biorefinery processes was also well dem-
onstrated [5, 6]. However, very few studies on C. glutami-
cum concerned the fermentation of the most traditional 
and important glutamic acid using lignocellulose feed-
stock. The only relevant studies are on the pentose uti-
lization to accumulate low titer of glutamic acid by C. 
glutamicum [7, 8].

We tried to establish a practical glutamic acid fermen-
tation process by C. glutamicum using corn stover feed-
stock by dry acid pretreatment, biodetoxification, and 
high solids loading saccharification and fermentation, 
which had successfully applied to produce high titer of 
ethanol [9], long chain fatty acid [10], lactic acid [11], glu-
conic acid [4] and citric acid [12]. However, failures on 
glutamic acid accumulation were encountered during 
our cellulosic glutamic acid fermentations. Generally, the 
over-degradation products such as furfural, 5-hydroxym-
ethylfurfural (HMF), acetic acid, and phenolic aldehydes 
generated from pretreatment step are considered as the 
major challenges of biorefining saccharification and fer-
mentations [13]. Cellulosic glutamic acid fermentation 
scenario was significantly different from the general 
biorefining fermentation cases with much greater cell 
growth of C. glutamicum in inhibitor containing corn 
stover hydrolysate (CSH) than that in the generally used 
complex medium, but failed to accumulate target prod-
uct, glutamic acid.

We noticed that the phenomenon of high cell growth 
rate and low glutamic acid accumulation of cellulosic glu-
tamic acid fermentation is similar to the general glutamic 
acid fermentation using glucose under excessive biotin 
condition [14, 15]. Biotin is a crucial factor to the domi-
nant industrial biotin auxotrophic bacterium C. glutami-
cum for its essential role to act as cofactor for acetyl-CoA 
carboxylase in fatty acid synthesis [16]. The absence of 
biotin suppresses the cell growth but the excessive bio-
tin blocks glutamic acid secretion [14, 17], unless certain 
surfactants such as Tween 60 [18], β-lactam antibiotics 
such as penicillin [19], or other cell wall inhibitors such 
as ethambutol [20] are used to disrupt the over-strength-
ened cell structure and activate glutamic acid secretion 
as well as redirect the carbon flux to glutamic acid syn-
thesis [21]. Indeed, we identified the existence of surpris-
ingly high contents of biotin in corn stover feedstocks to 
be the determining factor of cellulosic glutamic acid fer-
mentation and the induction by penicillin for high titer 
glutamic acid was demonstrated. In addition to its spe-
cific function on glutamic acid, biotin also plays impor-
tant role in other fermentations such as lysine [22] and 
arginine [23], ethanol [24], and lactic acid [25]. High bio-
tin content was also found in the other generally used 

lignocellulose biomass such as rice straw, wheat straw, 
sugarcane bagasse, and P. communis reeds, but not in 
poplar sawdust.

Besides biotin, vitamin B family includes thiamin (vita-
min B1), riboflavin (vitamin B2), niacin (vitamin B3), 
pantothenate (vitamin B5), pyridoxine (vitamin B6), folic 
acid (vitamin B9), and cobalamin (vitamin B12) consist-
ing important cofactors of metabolisms for nearly all 
kinds of organisms [26–30]. The contents of all eight 
vitamin B compounds in the biorefinery process were 
also recorded and the major vitamin B members main-
tained at high concentration levels after harsh pretreat-
ment. This study reveals the determining factor of biotin 
in lignocellulose to cellulosic glutamic acid fermentation, 
and the existence of rich vitamin B compounds as poten-
tial nutrient supplementations to general biorefining 
fermentations.

Results and discussion
Suppressed cellulosic glutamic acid accumulation 
and the solution to high titer fermentation
The potential of glutamic acid fermentation by the domi-
nant industrial fermenting strain C. glutamicum S9114 
using corn stover as feedstock was evaluated (Fig. 1). As 
a control, glutamic acid fermentation was first carried 
out in the biotin-limited complex medium (containing 
0.5  g/L corn steep liquor, CSL) which was considered 
as a conventional treatment for glutamic acid fermen-
tation [11]. The cells grew quickly and 54.4 ± 1.6 g/L of 
glucose was converted to 24.4 ± 0.8 g/L of glutamic acid 
by C. glutamicum S9114 within 72 h (Fig. 1a). While in 
the non-detoxified CSH prepared by hydrolyzing 15% 
(w/w) of the pretreated corn stover (without inhibitor 
removal or detoxification), 63.2 ± 0.4 g/L of glucose was 
completely consumed and the cell growth was almost 
threefold greater than that in the biotin-limited complex 
medium, but almost no glutamic acid accumulation was 
observed (Fig.  1b). C. glutamicum exhibited high toler-
ance to the inhibitors derived from the pretreatment step 
(Fig.  1c) by quickly converting furfural, HMF, syringal-
dehyde, 4-hydroxybenzaldehyde (HBA) and vanillin into 
the corresponding less toxic alcohols or acids. Acetic acid 
was a byproduct of C. glutamicum [31], but the C. glu-
tamicum strain showed strong tolerance to it. However, 
the essential removal of inhibitors from pretreated corn 
stover feedstock by biodetoxification did not result in the 
observed accumulation of glutamic acid (Fig. 1d). Nutri-
ents additions of varying dosages of corn steep liquor 
(CSL) and inorganic salts (KH2PO4, MgSO4, FeSO4, and/
or MnSO4) into the corn stover hydrolysate also did not 
result in the observable changes of cell growth and glu-
tamic acid accumulation. These results indicate that the 
inhibitor existence or nutrient deficiency in corn stover 
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hydrolysate is not the determining factor on glutamic 
acid accumulation by C. glutamicum.

We noticed that the phenomenon of low glutamic acid 
accumulation with high cell mass formation was fre-
quently observed in the conventional glutamic acid fer-
mentation under the existence of excessive biotin content 
[14, 15]. A general solution for low glutamic acid accu-
mulation caused by excessive biotin is to use β-lactam 
antibiotics such as penicillin to trigger glutamic acid 
secretion by disrupting the crosslinking of peptidogly-
can of C. glutamicum cell envelope [17, 19]. A signifi-
cant increase of glutamic acid accumulation by penicillin 
addition was observed in corn stover hydrolysate (Fig. 2): 
the cell growth reached OD600 of 14–16 at 16 h with only 
slight lag phase (Fig. 2a), the glucose was completely con-
sumed (Fig. 2b), and glutamic acid was accumulated con-
siderably (Fig. 2c) after penicillin addition at the middle 
stage of the exponential growth of C. glutamicum (OD600 
at 8–9). The maximum glutamic acid titer reached 41.7 ± 
0.1  g/L with the yield of 0.5  g/g within 48  h using the 
CSH at 25% solids content (w/w). Although corn stover 
hydrolysate contained glucose, xylose, as well as small 
amount of arabinose, galactose, and mannose, the pre-
sent C. glutamicum S9114 only utilizes glucose. Thus 
the yield was calculated only based on the glucose con-
sumption. This meaningful penicillin induced glutamic 
acid accumulation using lignocellulose as fermentation 
feedstock marked a potential to compete with the con-
ventional glutamic acid fermentation using the starch 
derived glucose feedstock (over 120  g/L) [32]. Even the 
glutamic acid titer here is relative low and the penicillin 
addition is expensive for industrial application, the over-
all economic feasibility would be significantly improved 
by further elevating the bioconversion level, eliminating 
the use of the expensive penicillin inducer, and applying 
the innovative multistage fermentation design [33].

Identification of excessive biotin in corn stover hydrolysate 
and its crucial role on glutamic acid accumulation
We designed a series of stepwise experiments for iden-
tification of excessive biotin in lignocellulose and its 
function on glutamic acid fermentation. The first identi-
fication of excessive biotin in corn stover hydrolysate was 
by microbiological assay using VitaFast Kit (R-Biopharm 
AG, Darmstadt, Germany). The surprisingly high bio-
tin concentration of 22.5 ± 4.3  μg/L was determined in 
the CSH at 15% solid content (w/w) (Fig. 3) prepared by 
hydrolyzing 15% (w/w) of the pretreated and biodetoxi-
fied corn stover. This biotin level is approximately two 
orders of magnitude greater than that of the complex 
medium (0.21 ± 0.02 μg/L), and tenfold greater than the 
“suboptimal” biotin level (2–5  μg/L) [15] used for glu-
tamic acid fermentation. The excessive biotin in corn 
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Fig. 1  Glutamic acid fermentation of C. glutamicum S9114 in 
the complex medium and CSH. a In the biotin-limited complex 
medium. b In the non-detoxified CSH. c Inhibitor degradation in 
the non-detoxified CSH. d In the CSH (15% solid content, w/w). 
Fermentation was carried out in 250 mL flasks containing 30 mL 
of complex medium or corn stover hydrolysate as described in 
the Methods section. Mean values were presented with error bars 
representing at least two standard deviations
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stover hydrolysate was quickly transported into the C. 
glutamicum cells with the well conserved mass bal-
ance between the extracellular and intracellular bio-
tin (Fig.  3a). Although the intracellular biotin content 
declined from the maximum of 11.3 ± 0.1  μg/g dry cell 
weight (DCW) to approximately 2.7 ± 0.2  μg/g DCW 

with increasing cell mass (Fig. 3b), this is still too high for 
glutamic acid secretion [15].

Then a biotin depletion experiment was designed by 
selectively depleting biotin from corn stover hydrolysate 
using a specific biotin binding protein, avidin [34], fol-
lowed by the re-supplementation of biotin into the hydro-
lysate using pure biotin (Fig.  4). The depletion of biotin 
by adding optimal dosage of avidin (20 mg/L, equivalent 
to 200–300 units/L) led to the significantly depressed cell 
growth of C. glutamicum (Fig. 4a) and the suspended glu-
cose consumption (Fig.  4b). After biotin was re-supple-
mented by adding 1.0 μg/L of pure biotin, the cell growth 
and glucose consumption were restored and the glutamic 
acid accumulated to 6.0 ± 0.7  g/L (Fig.  4c). To further 
confirm the excessive biotin on glutamic acid accumula-
tion, we added 23 μg/L biotin to the biotin free CSH. As 
expected, comparable cell growth and glucose consump-
tion with original CSH was observed, but no glutamic 
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Fig. 2  Triggering of glutamic acid secretion from C. glutamicum 
S9114 cells by penicillin induction in CSH. a Cell growth. b Glucose 
consumption. c Glutamic acid accumulation. CSHs were prepared 
from the pretreated and biodetoxified corn stover feedstock at 15, 
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carried out in a 3-L fermentor as described in the Methods section. 
Mean values were presented with error bars representing at least two 
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acid was accumulated again. The key role of biotin on cell 
growth and glutamic accumulation in the CSH was fully 
demonstrated.

The crucial role of excessive biotin in corn stover 
hydrolysate on glutamic acid accumulation was fur-
ther identified at the transcriptional level by RT-qPCR 
analysis (Additional file  1: Table  S1). The biotin-limited 
medium (containing 0.5 g/L CSL) was used as control of 
the biotin rich CSH (15% solids content, w/w) and the 
biotin-rich complex medium (containing 5.0 g/L CSL). A 

similar transcription pattern was observed in the biotin 
rich CSH and in the biotin rich complex medium. The 
genes involving phospholipid synthesis including cyclo-
propane-fatty-acyl-phospholipid synthase gene ufaA 
[35], phosphatidyl-glycerophosphate synthase gene pgsA1 
[35], and phosphatidylinositol α-mannosyltransferase 
gene pima [35] were significantly up-regulated, indicat-
ing the cell membrane may strengthened under the con-
dition of excessive biotin. Similarly, the cell wall structure 
also was seem to be strengthened in the presence of 
excessive biotin as the genes involving peptidoglycan syn-
thesis including two septum-peptidoglycan synthetase 
genes ftsI [36], two d-alanyl-d-alanine carboxypeptidase 
genes dacB and dac [37] were significantly up-regulated. 
On glutamate synthesis pathway, the genes odhA and 
sucB encoding α-ketoglutarate dehydrogenase complex 
(ODHC) subunits e1o and e2o [38] on the key node of 
carbon flux network to glutamic acid [39] were obvi-
ously up-regulated, while the two glutamate dehydro-
genase genes (gdh) showed no differential change. Since 
the carbon flux distribution around the α-ketoglutarate 
branch was depend more on the ODHC activity [39], the 
carbon flux to TCA cycle at that node could be enhanced 
instead of glutamate synthesis. Furthermore, the gene 
yggb (CGS9114_RS01440) encoding putative mecha-
nosensitive channel (MscCG) homolog responsible for 
glutamate secretion [21] was obviously down-regulated, 
indicating the glutamic acid secretion would be curtailed. 
The up-regulation of biotin transporter genes bioYMN 
[40] was in agreement with the experimental observation 
of the quick biotin uptake by the cells (Fig. 3). The genes 
responsible for biotin biosynthesis were not examined in 
this study, because C. glutamicum was the naturally bio-
tin auxotrophic strain which cannot synthesize biotin 
[41]. On the other hand, the transcription of the genes 
involving fatty acid synthesis including accBC, accD1, 
accD2, accD3, accD4, and fasA [16, 42] showed no regu-
lar changes under the excessive biotin although biotin is 
the cofactor of acetyl-CoA carboxylase on the first com-
mitted step of fatty acid synthesis [16], indicating biotin 
excessive condition may have limited effects on varying 
gene expression involving fatty acid synthesis.

The fermentation and transcriptional analysis results 
suggest that the presence of excessive biotin in the CSH 
stimulates the fast transport of biotin into the cells, then 
strengthens the cell structure and decreases the flux to 
glutamate synthesis. Finally, the glutamate secretion and 
the accumulation of glutamic acid in corn stover hydro-
lysate are strongly suppressed.

Biotin content of lignocellulose in biorefining chain
To investigate why so much biotin was retained in the 
corn stover hydrolysate. We recorded the biotin content 
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of corn stover during the biorefining chain of pre-han-
dling, pretreatment, detoxification, enzymatic hydrolysis, 
as well as glutamic acid fermentation (Fig. 5). The newly 
harvested corn stover contained the maximum biotin at 
353 ± 16 μg per kg of dry corn stover matter (DM), more 
than one order of magnitude greater than the biotin in 
corn grain (29 ± 6  μg/kg DM) (Fig.  5a) and close to the 
level of the typical fermentation nutrients additives corn 
steep liquor (744 ± 15 μg/kg DM), peanut meal (1790 μg/
kg DM), and yeast extract (1000  μg/kg DM) [26]. This 
rich existence of biotin was also observed in corn stover 
collected from other places, for example, 282 ± 11 μg/kg 
from Bayan Nur, Inner Mongolia, China, in fall 2015 and 
330 ± 15 μg/kg from Tongliao, Inner Mongolia, China, in 
fall 2016. The pre-handling of virgin corn stover by water 
washing to remove the field dirt, sands and metal pieces 
led to the biotin loss of 60% to 131 ± 1 μg/kg DM, but the 
loss is certainly avoidable in the large industrial practice 
where mechanic vibration and cyclone of corn stover are 

applied, instead of water washing in small bench opera-
tion [43].

In the core steps of biorefining process of pretreat-
ment, detoxification, hydrolysis, and fermentation, 
the biotin content maintained approximately constant 
(Fig.  5b). In the dry acid pretreatment step (175  °C for 
5 min with addition of 2.5% sulfuric acid), approximately 
92% (121 ± 4 μg/kg) of biotin was maintained largely due 
to no wastewater generation in this specific pretreat-
ment method. The biotin content after biodetoxification 
and enzymatic hydrolysis was 138 ± 4 μg/kg DM, a slight 
increase to that of the pretreated corn stover, perhaps 
due to the reduced inhibition by biodetoxification on the 
cell growth of the biotin assay strain L. plantarum. No 
biotin was detected in the A. resinae ZN1 cells and the 
cellulase enzyme solution. In the fermentation step, the 
biotin in corn stover hydrolysate was completely trans-
ported into the C. glutamicum cells (Fig. 3), but the total 
amount of biotin maintained almost the same since no 
biotin metabolized by the cell.

Due to the specific characteristic of our biorefinery 
process and the high chemical stability of biotin under 
the treatment by sulfuric acid, a stable and well con-
served mass balance of biotin in the biorefining chain 
emerged which caused a negative scenario for glutamic 
acid production but created a new sight for the biorefin-
ery process.

Extended identification of biotin and vitamin B 
compounds in general lignocellulose and biorefining chain
The biotin content measurement was extended to differ-
ent lignocellulose biomass. The selected lignocellulose 
biomass included corn stover, rice straw, wheat straw, 
and sugarcane bagasse as the typical agricultural bio-
mass, Phragmites communis reeds  as the typical reeds 
biomass, and Italian poplar sawdust as the typical wood 
biomass. Biotin content in the starch biomass (corn) was 
also assayed as the control (Fig.  5a). The results show 
that except poplar sawdust with relative low biotin con-
tent (23 ± 0.2  μg/kg DM), corn stover, rice straw, wheat 
straw, sugarcane bagasse, and P. communis reeds con-
tained as high as 353 ± 16, 357 ± 13, 101 ± 5, 197 ± 8, and 
133 ± 7  μg/kg dry biomass matter (DM), respectively. 
Biotin in the corn leaves even reached 1344 ± 54  μg/
kg DM, almost one order of magnitude greater than 
that in the stem of corn stover (161 ± 4 μg/kg DM) and 
two orders of magnitude greater than that in corn grain 
(29 ± 6  μg/kg). Perhaps due to the plastids in leaves 
requires more biotin as the cofactor for acetyl-CoA car-
boxylase in de novo fatty acid synthesis [44], those bio-
mass samples contain more plastids tend to have a higher 
content of biotin, while the poplar sawdust contains the 
least amount of plastids thus contains relative low biotin 
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of biotin content per kg of the pretreated corn stover. Mean values 
were presented with error bars representing at least two standard 
deviations
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content. This common phenomenon of rich biotin in the 
high plastids containing lignocellulose biomass which 
caused no glutamic acid accumulation by C. glutamicum 
may be one of the reasons why few studies concerning 
glutamic acid production use lignocellulose biomass.

Biotin has been found in various crop biomass, fruits 
and dairy products such as wheat, corn, potato, beet and 
cane molasses, peanut meal, grape, milk and so on [44, 
45]. This study gave the first insight on the excessive con-
tent of biotin in lignocellulose biomass. In plants, biotin 
existed either in its free form in cytosol or the bound 
form as the cofactor of carboxylases in organelles [46]. 
The biotin-bound carboxylases are required for cellular 
metabolism such as amino acid catabolism, fatty acid 
synthesis, and carbohydrates gluconeogenesis [47], while 
the free biotin may act as a reserve pool for plant cells 
[48]. In biotin auxotrophic bacteria such as C. glutami-
cum, free biotin content generally is very low [26] and the 
uptake of biotin from extracellular sources is required 
for their cell growth and metabolism while glutamic acid 
accumulation failed when biotin is excessive as in corn 
stover hydrolysate.

Besides biotin, we expected that certain levels of vita-
min B compounds may exist in lignocellulose biomass, 
besides biotin. The quantitative assay was extended on 
the complete vitamin B members in virgin corn stover 
and in their content profile of biorefinery processing 
steps (Table 1). The vitamin B contents reported in starch 
biomass (corn and rice) were taken as the controls of 
the measurement. All eight vitamin B compounds were 
detected in virgin corn stover and the contents were 
comparable to that in starch biomass. In the pre-han-
dling step, the water-soluble thiamin, riboflavin, niacin, 
pantothenate, pyridoxine, folate, and cobalamin were 
washed out by 67, 48, 38, 22, 44, 8, and 14%, respectively. 
As mentioned above, water washing is only a bench 
approach for removal of field dirt and not practiced in 

industrial processes [43], thus the loss could be reason-
ably neglected. In the dry acid pretreatment step, thia-
min (500  μg/kg DM) and riboflavin (4200  μg/kg DM) 
increased more than twofold, perhaps due to the release 
of their bound form by the harsh pretreatment action 
of sulfuric acid hydrolysis at high temperature (175  °C), 
comparing to the relatively weak extraction in the assay 
methods used. On the other hand, significant decrease of 
pyridoxine (500–200 μg/kg DM), niacin (4600–2600 μg/
kg DM), and pantothenate (988–130  μg/kg DM) were 
observed in the pretreatment step, due to the unstable 
properties of the compounds. Folic acid in the virgin corn 
stover was high, but it was degraded significantly after 
pretreatment (below the detection line, 20  μg/kg DM). 
Cobalamin is synthesized solely in prokaryotic microor-
ganisms [49], therefore the minor cobalamin content in 
corn stover should come from the contamination from 
bacteria during the plant growth period.

Vitamin B compounds are the essential additives in var-
ious fermentations such as for the production of ethanol 
[24], lactic acid [25], and amino acids [22, 23]. Compared 
to cereal biomass (rice and corn) [45, 49–52], thiamin, 
riboflavin, niacin, pantothenate, pyridoxine, and bio-
tin in the pretreated corn stover still retained at certain 
level and may act as fermentation nutrients for elevating 
the fermentability of biorefining strains. Few examples 
include the enhancement of biotin on the anti-oxidative 
activity of Pichia guilliermondii to improve cellulosic eth-
anol fermentation [24], and the cell growth enhancement 
of Pediococcus acidilactici in corn stover hydrolysate 
than that in MRS medium in the cellulosic lactic acid fer-
mentation [11]. In addition, our glutamic acid fermenta-
tion with enhanced cell growth in corn stover hydrolysate 
did not need to add additional nutrients except nitrogen 
resources. These results demonstrated that the pretreat-
ment of lignocellulose not only generates the inhibi-
tor compounds, but also liberates the nutrients such as 

Table 1  Vitamin B contents in the raw corn stover during biorefining chain (μg/kg DM)

The standard deviations of biotin were derived from at least two independent determinations
a   Vitamin B compounds contents in starch biomass were referred to the references in the list
b   The contents were below the detection line

Vitamin B members In virgin corn stover After washing After pretreatment In starch biomassa

Thiamin (vitamin B1) 600 200 500 4100 (Rice) [30]

Riboflavin (vitamin B2) 2100 1100 4200 2600 (Corn) [30]

Niacin (vitamin B3) 7400 4600 2600 16000 (Corn) [49]

Pantothenate (vitamin B5) 1270 988 130 2000 (Rice) [30]

Pyridoxine (vitamin B6) 900 500 200 20000 (Corn) [50]

Biotin (vitamin B7) 353 ± 16 131 ± 1 121 ± 4 < 0.15 (Corn) [45]

Folic acid (vitamin B9) 118 108 < 20b 19 (Rice) [51]

Cobalamin (vitamin B12) 7 6 < 1b N/A [30]
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vitamin B compounds in lignocellulose biomass and 
facilitates the biorefining fermentation for production of 
biofuels and bio-based products.

This study provides a new insight on supplementa-
tion of vitamin B nutrients or more plant-derived com-
ponents into biorefining fermentations for enhancement 
of fermentability or yield in biorefining chains. Based 
on this perspective, biorefining chain of lignocellulose 
should carefully tune the process intensity for preserva-
tion of biotin and other vitamin B compounds, besides 
the conventional consideration of extensively disrupting 
the supermolecular structure of lignocellulose, generat-
ing less toxic inhibitor compounds, and other practical 
issues on reducing wastewater generation and energy 
consumption.

Conclusions
This study provides the first insight into the discovery 
of surprisingly high content of biotin and other vitamin 
B compounds in various lignocellulose feedstocks dur-
ing the biorefining process. The excessive biotin is highly 
stable in lignocellulose biorefining chain and plays the 
determinant role on the cellulosic glutamic acid fermen-
tation. High titer cellulosic glutamic acid was produced 
from corn stover feedstock by penicillin induction on 
Corynebacterium glutamicum with the potential to com-
pete with corn-derived glutamic acid production. This 
study also reveals that lignocellulose biorefining creates 
not only inhibitors, but also nutrients for fermentations.

Methods
Raw materials
Corn stover and wheat straw were harvested from 
Dancheng, Henan, China, in fall 2013. Rice straw was 
harvested from Chuzhou, Anhui, China, in summer 
2014. Sugarcane bagasse was obtained from a sugar plant 
of Beihai, Guangxi, China, in summer 2014. Phragmites 
communis reeds and poplar sawdust were harvested 
from Yuncheng, Shanxi, China, in summer 2014. The 
collected lignocellulose biomass was water washed and 
sedimented to remove field dirt, sands, and metal pieces, 
then air dried and milled using a beater pulverizer to pass 
through 10-mm apertures in diameter. After these treat-
ments, the raw biomass contained about 10% moisture 
with no other volatile solids. The composition of the raw 
biomass was determined using the two-step sulfuric acid 
hydrolysis method according to the National Renewable 
Energy Laboratory (NREL) protocols [53, 54] and sum-
marized in Additional file 1: Table S2.

Strains and culture media
Corynebacterium glutamicum S9114 was purchased 
from Shanghai Industrial Institute of Microorganism 

(SIIM, http://www.gsy-siim.com/), Shanghai, China, 
with the storage code of SIIM B460. This strain also 
stored at China Center of Industrial Culture Collection 
(CICC, http://www.china​-cicc.org/), Beijing, China, with 
the storage number of CICC 20935. The culture media 
include: (1) LB agar containing 1% of peptone, 0.5% of 
yeast extract, 0.5% of NaCl, and 1.7% of agar at pH 7.0; (2) 
preculture medium containing 25 g/L of glucose, 1.5 g/L 
of KH2PO4, 0.6 g/L of MgSO4, 2.5 g/L of urea, 2.0 mg/L 
of FeSO4, 2.0 mg/L of MnSO4, 25 g/L of corn steep liq-
uor (CSL); (3) seed culture medium containing 25  g/L 
of glucose, 1.5 g/L of KH2PO4, 0.6 g/L of MgSO4, 2.5 g/L 
of urea, 2.0  mg/L of FeSO4, 2.0  mg/L of MnSO4, 5  g/L 
of CSL; (4) Biotin-limited complex medium, containing 
60  g/L of glucose, 1  g/L of KH2PO4, 0.6  g/L of MgSO4, 
3  g/L of urea, 2.0  mg/L of FeSO4, 2.0  mg/L of MnSO4, 
0.5 g/L of CSL; (5) Biotin rich complex medium, contain-
ing 60 g/L of glucose, 1 g/L of KH2PO4, 0.6 g/L of MgSO4, 
3  g/L of urea, 2.0  mg/L of FeSO4, 2.0  mg/L of MnSO4, 
5.0 g/L of CSL. All the media were autoclaved in 115 °C 
for 20 min before use.

The biodetoxification fungus Amorphotheca resinae 
ZN1 was isolated in our previous study [55] and stored 
in China General Microorganism Collection Center 
(CGMCC, http://www.cgmcc​.net/), Beijing, China, with 
the register code of 7452. A. resinae ZN1 was cultured on 
potato dextrose agar (PDA) medium containing 200 g of 
potato juice, 20  g of glucose and 17  g of agar in 1  L of 
deionized water.

Enzymes and reagents
Cellulase enzyme Youtell #6 was purchased from Hunan 
Youtell Biochemical Co., Yueyang, Hunan, China. The 
protein concentration was 90  mg/g dry cellulase solid 
matter (DM). The filter paper activity was 135 FPU/g DM 
using the NREL protocol LAP-006 [56]. The cellobiase 
activity was 344 CBU/g DM using the method mentioned 
previously [57]. Avidin was purchased from Aladdin 
Industrial Co., Shanghai, China, with the labeled purity 
of 10–15 units per mg protein, and diluted into 1 mg/L 
solution and sterile filtrated before use. Biotin was pur-
chased from Aladdin Industrial Co., Shanghai, China, 
with the labeled purity of more than 98%, and diluted 
into 1  mg/L solution and sterile filtrated before use. 
Penicillin was purchased from New Probe Biochem Co., 
Beijing, China, with the labeled titer of 1650 U/mg, and 
diluted into the 50 mg/mL penicillin solution for induc-
tion experiment. Corn steep liquor (CSL) was purchased 
from Xiwang Group Co., Zouping, Shandong, China. 
Other general chemicals used in this study were ana-
lytical grade and purchased from local supplier Lingfeng 
Chemical Reagent Co., Shanghai, China.

http://www.gsy-siim.com/
http://www.china-cicc.org/
http://www.cgmcc.net/
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Pretreatment and biodetoxification operations
Corn stover was pretreated using dry acid pretreatment 
method [58, 59]. Briefly, 1200  g of feedstock (dry base) 
and approximately 600  g of 5% (w/w) dilute sulfuric 
acid solution (depending on the moisture content of the 
feedstock) were co-currently fed into the pretreatment 
reactor for 3  min at the solids/liquid ratio of 2:1 (w/w). 
The reactor was 20 L in the inner volume and thermally 
insulated. A single helical ribbon impeller was installed 
under the mild agitation rate (50 rpm). The sulfuric acid 
concentration in the dilute acid solution was adjusted 
in a narrow range according to the measured moisture 
content of the feedstocks. The saturated water steam 
(1.6 MPa) was produced from a steam generator machine 
(HX-36D, Huazheng Boiler Co., Shanghai, China). The 
pretreatment operation started when the hot steam was 
jetted onto the feedstock bulk in the reactor to 175 ± 1 °C 
for 5 min under the mild helical agitation (50 rpm). Then 
the pretreated solid feedstocks were discharged gravi-
tationally from the bottom outlet port. All the dilute 
acid solution and the condensed water were completely 
adsorbed into the solids to form approximately 50% 
(w/w) of the dry pretreated feedstock solids with the pH 
around 2.0, and no free wastewater stream was gener-
ated. The pretreated corn stover contained 29.7  mg of 
glucose, 155.1 mg of xylose, 5.3 mg of furfural, 3.5 mg of 
5-hydroxymethylfurfural (HMF), 24.8  mg of acetic acid, 
0.06 mg of 4-hydroxybenzaldehyde (HBA), 3.3 mg of van-
illin, and 2.2  mg of syringaldehyde per gram of the dry 
pretreated corn stover matter (DM). Furfural, HMF and 
acetic acid are the volatile compounds in the pretreated 
corn stover.

The pretreated corn stover was biodetoxified to remove 
the inhibitors as described before [13, 55]. Briefly, the 
residual sulfuric acid in the pretreated biomass solids was 
neutralized to 5.5 by the addition of 20% (w/w) Ca(OH)2 
suspension slurry. The pretreated biomass solids were 
briefly milled by a disk milling machine (PSB-80JX, Fleck 
Co., Nantong, Jiangsu, China) to remove the extra-long 
fibers to avoid the blockage of pipelines and valves in the 
downstream flow of the hydrolysate slurry and broth. A. 
resinae ZN1 spores were collected from PDA slant, then 
inoculated onto the freshly pretreated corn stover solids 
and cultured for 5 days at 28  °C as the seeds for biode-
toxification. The A. resinae ZN1 seed solids were inocu-
lated at 10% (w/w) onto the freshly pretreated corn stover 
and incubated at 28  °C under the aeration of 1.0 vvm 
(based on the pretreated corn stover volume) for 48  h 
and then sterilized at 115  °C for 20  min before use. No 
fresh water or extra nutrients were added during biode-
toxification. Furfural and HMF were completely removed 
by biodetoxification and the residual inhibitors in the 
detoxified corn stover was reduced to 21.9 mg of acetic 

acid, 0.02 mg of HBA, 1.1 mg of vanillin, and 0.4 mg of 
syringaldehyde per gram of the dry detoxified corn stover 
matter (DM).

Corn stover hydrolysate preparation
The fermentation corn stover hydrolysate (CSH) was 
prepared by hydrolyzing the dry acid pretreated and bio-
detoxified corn stover at different solids content (15%, 
20%, 25%, w/w) under the conditions of 10 mg cellulase 
proteins per gram of dry corn stover matter (mg/g DM), 
50  °C, pH 4.8 for 48  h. The hydrolysate slurries were 
centrifuged at 16,125×g for 10  min to remove the solid 
residues and obtain the clear supernatant hydrolysate. 
The hydrolysate was autoclaved in 115 °C for 20 min and 
then sterile filtrated before use. The non-detoxified CSH 
used for inhibitor tolerance assay was prepared from the 
pretreated corn stover under 15% (w/w) solids content 
without detoxification treatment. The compositions were 
summarized in Additional file 1: Table S3.

Biotin binding protein, avidin, was used to prepared the 
biotin free CSH. Considering the miss binding of biotin 
by avidin would happened in the complex CSH, different 
dosage of avidin solution (1  mg/L, sterile filtrated) was 
first added to the fermentation CSH (15% solids content, 
w/w) followed by the incubation at 30  °C and 200  rpm 
for 2 h before use to test the cell growth and the glutamic 
acid accumulation. Finally, the optimal dosage equivalent 
to 20 mg/L avidin (equivalent to 200 units/L of CSH) was 
chosen to prepare the biotin free CSH. The suboptimal 
biotin re-supplemented CSH was prepared by adding 30 
μL of 1 mg/L sterile filtrated biotin solution (equivalent 
to 1.0 μg/L CSH of pure biotin) to the biotin free CSH. 
The excessive biotin re-supplemented CSH was prepared 
by adding 690 μL of 1 mg/L sterile filtrated biotin solu-
tion (equivalent to 23.0 μg/L CSH of pure biotin) to the 
biotin free CSH.

Glutamic acid fermentation
Corynebacterium glutamicum S9114 was evolutionar-
ily adapted in the non-detoxified CSH by continuously 
transfer every 24  h or 147 times at 10% (v/v) inoculum 
ratio, 30  °C, pH 7.0, 200  rpm until the cell growth and 
glucose consumption were stable. Cells grew on LB petri 
dish at 30 °C for 24–36 h, then a single colony was picked 
up, inoculated into the 250  mL-Erlenmeyer flasks con-
taining 30  mL preculture medium flask. The cells were 
cultured in the preculture medium for 10 h at 30 °C and 
200 rpm. Then 1.5 mL of the broth was transferred into 
30 mL of the seed medium at 30 °C, 200 rpm for 8 h and 
consequently transferred into the fermentation medium. 
pH was maintained at 7.0 by adding 20% of the sterilized 
urea solution. Samples were withdrawn at regular inter-
vals for analysis.
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The batch fermentation in fermentor was carried out in 
a 3 L fermentor (Biotech-3BG-4, Baoxing Co., China) at 
32 °C containing 800 mL of corn stover hydrolysate with 
addition of 5  g/L of (NH4)2SO4 into the initial hydro-
lysate. The inoculum ratio of the C. glutamicum seed 
culture was 10% (v/v), the pH was 7.0 by addition of 20% 
(w/v) ammonium hydroxide solution, and the aeration 
rate was 1.4 vvm. Dissolved oxygen (DO) was regulated 
by changing the agitation rate to 10% of the saturation 
in the exponential phase of cell growth and 40% of satu-
ration in the glutamic acid accumulation stage. 2 mL of 
penicillin solution (50  mg/L) was added when the opti-
cal density at 600 nm (OD600) was in the range of 8–9 for 
induction of glutamic acid secretion. All fermentations 
were carried out in duplicate. The standard derivation 
was indicated by error bars.

Analytical methods
Glucose, glutamic acid and lactic acid were analyzed 
using the SBA-40D biosensor (Biology Institute, Shan-
dong Academy of Sciences, Jinan, Shandong, China). 
Acetic acid, xylose, furfural, and HMF were analyzed on 
HPLC (LC-20AD, refractive index detector RID-10A, 
Shimadzu, Kyoto, Japan) with a Bio-Rad Aminex HPX-
87H column (Bio-rad, Hercules, CA, USA) at 65  °C and 
5 mM H2SO4 solution as the mobile phase at the flow rate 
of 0.6  mL/min. Phenolic compounds were analyzed on 
HPLC (UV/Vis detector SPD-20A, at 270 nm, Shimadzu, 
Kyoto, Japan) with a YMC-Pack ODS-A column (YMC 
Co., Kyoto, Japan) at 35 °C as mentioned before [13].

Cell growth was indicated by optical density at 600 nm 
(OD600) by the spectrophotometer Beckman Coulter 
DU800 (Beckman, Brea, CA, USA). The dry cell weight 
(DCW) was transformed 1 unit of OD600 to approxi-
mately 0.4 mg/mL of the dry cell weight.

RT‑qPCR assay
Transcription of C. glutamicum was quantitated using 
real-time quantitative PCR (RT-qPCR) in the three 
media: the biotin-limited complex medium (containing 
0.5  g/L CSL) used as the basic control, the biotin rich 
complex medium (containing 5.0 g/L CSL), and the CSH 
(15% solids content, w/w). C. glutamicum was cultured 
in flask and the cells were harvested at 10 h, then imme-
diately frozen in liquid nitrogen and the total RNA was 
extracted using Trizol reagent kit (Invitrogen, Carlsbad, 
CA, USA). Purity and concentrations of the RNA samples 
were indicated by the ratio of OD260/280 readings using 
NanoDrop ND-1000 spectrophotometer (NanoDrop 
Technologies Inc., Wilmington, DE, USA). Primers of the 
selected genes are shown in Additional file  1: Table  S4 
based on the genome sequence of C. glutamicum S9114 

in National Center of Biotechnology Information (NCBI) 
GenBank database (https​://www.ncbi.nlm.nih.gov/nucco​
re/NZ_AFYA0​00000​00.1). The first strand of cDNA 
was synthesized using cDNA synthesis kit (Toyobo Co., 
Osaka, Japan). The qPCR reaction was run on a CFX96 
Real-Time System with C10000 Thermal Cycler (Bio-
Rad, Hercules, CA, USA). The RT-qPCR was carried 
out at 95  °C for 1 min, then 40 cycles at 95  °C for 15 s, 
55.4 °C for 15 s, and 72 °C for 30 s using the SYBR Green 
Real-time PCR Master Mix. The 16  s ribosomal RNA 
(CGS9114_RS11955) was used as the internal control 
for data acquisition and normalization. The relative gene 
expression data in the biotin rich complex medium and 
the CSH (15% solid loading, w/w) were normalized by the 
gene expression data in the biotin-limited medium using 
the 2−ΔΔCt method [60]. The fold change ≥ 2.0 or ≤ 0.5 
was set to be the criteria for the differential expression 
genes.

Vitamin B compound assay
Biotin was measured using VitaFast Kit (R-Biopharm 
AG, Darmstadt, Germany) by measuring the cell growth 
of cell mass of a biotin auxotrophic strain Lactobacillus 
plantarum ATCC 8014 under varied biotin content [61] 
which was in accordance with international norms. The 
extraction and determination method was according to 
the method provided by the kit. For the intracellular bio-
tin determination, cells were harvested, centrifuged at 
13,000×g for 5  min, washed twice by 0.85% NaCl solu-
tion. The washed cells were re-suspended in 1 M sulfuric 
acid solution and autoclave at 121  °C for 30 min to lib-
erate bound biotin and then the pH was adjusted to 4.5 
before determination.

Other vitamin B compounds of the samples were deter-
mined in the Shanghai Technical Center for Animal Plant 
and Food Inspection and Quarantine (http://spzx.shciq​
.gov.cn/), Shanghai, China, which based on the standard 
methods with the values of the Coefficient of Variances 
(CVs) less than 10%. Thiamin (vitamin B1) was assayed 
based on fluorescence analysis method as described pre-
viously [62]. Riboflavin (vitamin B2) and folic acid (vita-
min B9) were assayed based on the cell growth of the 
riboflavin and folic acid dependent strain Lactobacillus 
casei ATCC 7469 [28, 63]. Niacin (vitamin B3) and pan-
tothenate (vitamin B5) were assayed based on the cell 
growth of a niacin and pantothenate auxotrophic strain 
Lactobacillus plantarum ATCC 8014 [63, 64]. Pyridoxine 
(vitamin B6) and cobalamin (vitamin B12) was assayed 
based on the cell growth of the pyridoxine dependent 
strain Saccharomyces carlsbergensis ATCC 9080 [30] and 
the cobalamin dependent strain Lactobacillus leichman-
nii ATCC 7830 [63, 65].

https://www.ncbi.nlm.nih.gov/nuccore/NZ_AFYA00000000.1
https://www.ncbi.nlm.nih.gov/nuccore/NZ_AFYA00000000.1
http://spzx.shciq.gov.cn/
http://spzx.shciq.gov.cn/
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