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Abstract 

Background:  Caldicellulosiruptor saccharolyticus is an attractive hydrogen producer suitable for growth on various 
lignocellulosic substrates. The aim of this study was to quantify uptake of pentose and hexose monosaccharides in an 
industrial substrate and to present a kinetic growth model of C. saccharolyticus that includes sugar uptake on defined 
and industrial media. The model is based on Monod and Hill kinetics extended with gas-to-liquid mass transfer and a 
cybernetic approach to describe diauxic-like growth.

Results:  Mathematical expressions were developed to describe hydrogen production by C. saccharolyticus con-
suming glucose, xylose, and arabinose. The model parameters were calibrated against batch fermentation data. The 
experimental data included four different cases: glucose, xylose, sugar mixture, and wheat straw hydrolysate (WSH) 
fermentations. The fermentations were performed without yeast extract. The substrate uptake rate of C. saccharo-
lyticus on single sugar-defined media was higher on glucose compared to xylose. In contrast, in the defined sugar 
mixture and WSH, the pentoses were consumed faster than glucose. Subsequently, the cultures entered a lag phase 
when all pentoses were consumed after which glucose uptake rate increased. This phenomenon suggested a diauxic-
like behavior as was deduced from the successive appearance of two peaks in the hydrogen and carbon dioxide 
productivity. The observation could be described with a modified diauxic model including a second enzyme system 
with a higher affinity for glucose being expressed when pentose saccharides are consumed. This behavior was more 
pronounced when WSH was used as substrate.

Conclusions:  The previously observed co-consumption of glucose and pentoses with a preference for the latter was 
herein confirmed. However, once all pentoses were consumed, C. saccharolyticus most probably expressed another 
uptake system to account for the observed increased glucose uptake rate. This phenomenon could be quantitatively 
captured in a kinetic model of the entire diauxic-like growth process. Moreover, the observation indicates a regula-
tion system that has fundamental research relevance, since pentose and glucose uptake in C. saccharolyticus has only 
been described with ABC transporters, whereas previously reported diauxic growth phenomena have been correlated 
mainly to PTS systems for sugar uptake.
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Background
The need for renewable energy is ever increasing to tackle 
the major challenges of global warming, energy demand, 
and limited resources. According to statistics published 
by the International Energy Agency [1], just over 86% 
of the Total Primary Energy Supply (TPES) in 2014 was 
produced from fossil resources, leaving a modest 14% 
originating from renewable energy sources. When put-
ting these numbers in relation with the adopted Paris 
Agreement in 2015, targeting to keep the global average 
temperature increase below the 2  °C above pre-indus-
trial levels [2], it is evident that actions need to be taken. 
There are, however, positive trends in that the supply 
of renewable energy sources has grown faster, with an 
average annual rate of 2.0% since 1990, compared to the 
growth of the world TPES of 1.8% [1].

Hydrogen has the potential of becoming an impor-
tant renewable energy carrier. Currently, hydrogen is 
widely used as a reducing agent in the chemical and food 
industry. However, using hydrogen as an energy car-
rier in sustainable applications is of great interest due 
to its potentially high efficiency of conversion to usable 
power, its low emissions of pollutants and high energy 
density [3]. Up to 96% of the world’s hydrogen produc-
tion is fossil based, i.e., natural gas, oil, and coal [4]. A 
sustainable alternative to the conventional methods for 
producing hydrogen is by biological methods, i.e., bio-
hydrogen. There are four major categories in which pro-
duction of biological hydrogen can be classified, namely: 
photofermentation of organic compounds by photosyn-
thetic bacteria, biophotolysis of water using algae and 
cyanobacteria, bioelectrohydrogenesis, and fermenta-
tive hydrogen production, so-called dark fermentation, 
from organic wastes or energy crops [5, 6]. The latter is 
the focus of this study, where various sugars present in, 
e.g., agricultural waste like wheat straw, can be fermented 
by microorganisms for hydrogen production. This also 
addresses the challenge of converting lignocellulosic bio-
mass to renewable energy.

Lignocellulosic biomass has been previously described 
as “the most abundant organic component of the bio-
sphere” with an annual production of 1–5·1013  kg and, 
therefore, is an attractive substrate for biofuel production 
[7]. Lignocellulosic biomass primarily consists of cellu-
lose (40–60% CDW), hemicellulose (20–40%), and lignin 
(10–25%) [8]. Cellulose and hemicellulose can be enzy-
matically hydrolyzed into smaller sugar molecules.

The thermophilic microorganism Caldicellulosiruptor 
saccharolyticus is able to produce hydrogen from ligno-
cellulosic biomass through dark fermentation and has 
previously shown the potential of producing hydrogen 
close to the maximum theoretical yield of 4 mol hydrogen 
per mol hexose [9–11]. C. saccharolyticus is cellulolytic 

and can utilize a broad range of di- and monosaccharides 
for hydrogen production [12]. Van de Werken et al. [13] 
showed that C. saccharolyticus coferments glucose and 
xylose as it lacks catabolite repression. VanFossen et  al. 
[14] revealed that although C. saccharolyticus co-utilizes 
different sugars, it has a preference for some sugars over 
others. Xylose was discussed as a preferred sugar over 
glucose and is, therefore, utilized by the microorganism 
to a greater extent than glucose. However, the substrate 
uptake kinetics was not determined and a yeast extract 
(YE)-supplemented medium was used [13].

By developing a mathematical model for a biological 
process, it is possible to describe past and predict future 
performances as well as gaining a deeper understanding 
of the physiological mechanism behind the process. The 
aim of this study is to present a model that describes the 
growth of C. saccharolyticus on lignocellulosic sugar mix-
tures and how the uptake rate changes when the sugars 
are used simultaneously or individually. Similar kinds 
of models have been developed [15, 16]; however, these 
models focus on single sugar uptake. The proposed model 
here builds on the one presented by Ljunggren et al. [15] 
by adding the consumption rates for each individual 
sugar in the sugar mixtures. Monod [17] first described 
the phenomenon of diauxic growth, where a microorgan-
ism is exposed to two substrates and first consumes the 
substrate that supports the most efficient growth rate. 
Several models have been developed in this area [18, 19] 
describing how to capture the subsequent uptake of sug-
ars when multiple sugars are present. This phenomenon 
can be modeled using a cybernetic approach to whether 
a particular enzyme, needed for a specific sugar to be 
metabolized, is upregulated or not.

This paper describes the development of a substrate-
based uptake model using Monod-type kinetics includ-
ing biomass growth, product formation, liquid-to-gas 
mass transfer, and enzyme synthesis with Hill kinetics, 
with C. saccharolyticus as model organism. The model 
presented in this paper takes into consideration the usage 
of different sugars, including hexoses, i.e., glucose, and 
pentoses, i.e., xylose and arabinose. The model describes 
the different sugar uptakes individually, exemplifying the 
rate at which each sugar is consumed when C. saccharo-
lyticus grows on the sugar mixtures and on the individual 
sugars, respectively.

Methods
Strains and cultivation medium
Caldicellulosiruptor saccharolyticus DSM 8903 was 
obtained from the Deutsche Sammlung von Mikroorgan-
ismen und Zellkulturen (Braunschweig, Germany). Sub-
cultivations were conducted in 250 mL serum flasks with 
50 mL modified DSM 640 media [20]. The carbon source 
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of each cultivation corresponded to that of the subse-
quent fermentor cultivation. The 1000× vitamin solution 
and modified SL-10 solution were prepared according to 
[20] and [21], respectively.

All bioreactor experiments used a modified DSM 640 
medium with the exclusion of yeast extract according 
to Willquist and van Niel [20]. To quantify the kinetics 
of xylose and glucose uptake and the effect of when the 
sugars were mixed in pure and industrial medium, the 
growth and hydrogen production was monitored in four 
different cases, where the total sugar concentration in 
the medium was fixed to 10 g/L. Cultivations were per-
formed using 10 g/L glucose (Case 1), 10 g/L xylose (Case 
2), a sugar mixture (Case 3), and wheat straw hydrolysate 
(Case 4). In Case 4, a 9% solution of wheat straw hydro-
lysate was used corresponding to approximately 10  g/L 
total sugars. In Case 3, the sugar mixture contained 
pure sugars with the same concentration as the wheat 
straw hydrolysate (6.75 g/L glucose, 3.06 g/L xylose, and 
0.173  g/L arabinose). The total sugar concentrations at 
the start of the fermentation included the sugar added 
as described above and the additional sugar added from 
the inoculum, which varied slightly in the different con-
ditions. The starting sugar concentration was, there-
fore, as follows: Case 1, 12.11 ± 0.09 g/L glucose; Case 2, 
10.96 ± 0.20  g/L xylose; Case 3, 8.69 ± 0.12  g/L glucose, 
3.38 ± 0.19  g/L xylose, and 0.38 ± 0.01  g/L arabinose; 
Case 4, 7.31 ± 0.07  g/L glucose, 3.36 ± 0.06  g/L xylose, 
and 0.34 ± 0.00 g/L arabinose.

Fermentor setup
Batch cultivations were performed in a jacketed, 3-L 
fermentor equipped with ADI 1025 Bio-Console and 
ADI 1010 Bio-Controller (Applikon, Schiedam, The 
Netherlands). A working volume of 1  L was used for 
cultivations and the pH was maintained at optimal con-
ditions  6.5 ± 0.1 at 70  °C by automatic titration with 
4  M NaOH. The temperature was thermostatically kept 
at 70 ± 1  °C. Stirring was maintained at 250  rpm and 
nitrogen was sparged through the medium at a rate of 
6  L/h. Sparging was initiated 4  h after inoculation and 
was continued throughout the cultivation. A condenser 
cooled with water at 4 °C was utilized to prevent evapo-
ration of the medium. Samples were collected at regular 
time intervals for monitoring of the optical density. The 
supernatant from each culture was collected and stored 
at − 20 °C for further quantification of various sugars and 
organic acids. Gas samples were collected from the fer-
mentor’s headspace to quantify H2 and CO2. The sugar 
mixture and wheat straw hydrolysate experiments were 
done in triplicate. The individual sugar fermentations 
were done in biological duplicate.

A defined medium was autoclaved in each fermen-
tor, while anoxic solutions of cysteine HCl·H2O (1 g/L), 
MgCl2·6H2O (0.4  g/L), and carbon source(s) were pre-
pared separately and were added to the fermentor before 
inoculation. Just after inoculation, the fermentor was 
closed for 4  h to allow buildup of CO2 as previously 
described [20] necessary to initiate growth.

Analytical methods
Optical density was determined using an Ultraspec 2100 
pro spectrophotometer (Amersham Biosciences) at 
620  nm. Sugars, organic acids, hydroxymethyl furfural 
(HMF), and furfural were detected using HPLC (Waters, 
Milford, MA, USA). For the quantification of organic 
acids, an HPLC equipped with an Aminex HPX-87H 
ion-exchange column (Bio-Rad, Hercules, USA) at 60 °C 
and 5  mM H2SO4 as mobile phase was used at a flow 
rate of 0.6 mL/min. Glucose, xylose, and arabinose quan-
tification was conducted using an HPLC with a Shodex 
SP-0810 Column (Shodex, Japan) with water as a mobile 
phase at a flow rate of 0.6  mL/min. CO2 and H2 were 
quantified with a dual channel Micro-GC (CP-4900; Var-
ian, Micro-gas chromatography, Middelburg, The Neth-
erlands), as previously described [21].

Mathematical model description
The model developed for C. saccharolyticus in this study 
takes into account the kinetics of biomass growth, con-
sumption of glucose, xylose and arabinose, and for-
mation of the products acetate, hydrogen, and carbon 
dioxide. Furthermore, the model includes liquid-to-gas 
mass transfer of hydrogen and carbon dioxide as well as 
the equilibrium between carbon dioxide, bicarbonate 
(HCO3

−) and carbonate (CO3
2−). The model is developed 

on a cmol basis. The formation of lactate was excluded to 
reduce the complexity of the model, as it constituted to 
less than 5% of the total product in the sugar mixture fer-
mentations. In addition, inhibition due to high aqueous 
H2 concentration and high osmolarity was not included 
in the model to reduce the number of unknown param-
eters. This is motivated by the fact that the focus of this 
study is mainly on the consumption behavior of C. sac-
charolyticus on the different sugars.

The model is constructed with a similar nomencla-
ture and setup as in the anaerobic digestion model no 1 
(ADM1) described by Batstone et al. [22] and was imple-
mented in MATLAB R2015b (Mathworks, USA). The fol-
lowing biochemical degradation reactions are the basis 
for the model (Eqs. 1, 2).

Biomass formation from sugar [23]:
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Reaction 1 is not balanced, since there were elements in 
the fermentation medium that were not included in the 
model, i.e., cysteine. The value of the yield factor YX is 
calculated from the data of the batch fermentations. It 
is assumed that nitrogen, sulfur, and phosphorus are in 
excess in the media and, therefore, are not included as 
separate entities in the mathematical model.

Sugar degradation to product formation by C. saccha-
rolyticus in cmol: 

(1)Sugar
ρ1
→YXCH1.62O0.46N0.23S0.0052P0.0071.

(2)
CH2O+ 1

/

3H2O
ρ2
→ 2

/

3CH2O+ 1
/

3CO2 +
2
/

3H2.

Model inputs and initial conditions
The model requires a range of input variables. The lag 
time was determined by calculating the intersection point 
between the lag phase and the exponential phase when 
taking the natural logarithm of the biomass concentra-
tion over time, as illustrated by Swinnen et al. [24]. Since 
the lag phase is dependent on the culture status before 
the fermentation, which was not addressed in this study, 
it was excluded from the experimental data when the lat-
ter were compared to model data and for initial input val-
ues for the model. The start values of the unknown state 
variables are listed in Table 1. The constants used in the 
model are presented in Table 2.

Table 1  Start data of the unknown state variables in the model

State 
variable

Description Case 1
Glucose 
fermentation

Case 2
Xylose 
fermentation

Case 3
Sugar mix 
fermentation

Case 4
Wheat straw 
hydrolysate 
fermentation

Unit

Glu Glucose concentration 0.40 – 0.28 0.26 cmol/L

Xyl Xylose concentration – 0.36 0.10 0.11 cmol/L

Ara Arabinose concentration – – 0.012 0.014 cmol/L

X (Biomass) Biomass concentration 0.0013 0.00071 0.0016 0.0058 cmol/L

Ac Acetate concentration 0.0012 0 0.0039 0.021 cmol/L

H2,aq H2 concentration (liquid phase) 0 0 0 0 M

CO2,aq CO2 concentration (liquid phase) 0 0 0 0 cmol/L

CO2,sol Concentration of all CO2 ionic species 
(HCO3− and CO3

2−)
0 0 0 0 cmol/L

H2,g H2 concentration (gas phase) 0 0 0 0 M

CO2,g CO2 concentration (gas phase) 0 0 0 0 cmol/L

E2 Enzyme concentration – – 1e−7 1e−7 cmol/L

Table 2  Constants used in the model

a   The acid–base reaction is considered to be in equilibrium at all times, which means that the reactions have infinitely fast reaction rates

Constant Value Unit Refs

Vliq, liquid volume 1 L

Vgas, gas volume 0.05 L [15]

pH 6.5 –

kAB, acid base rate constanta 1e4 –

T, temperature 343.15 K

R, ideal gas constant 0.08206 L atm/K/mol

KHH2 , Henry’s constant H2 7.4e−9 mol/L/Pa

KHCO2
 , Henry’s constant CO2 2.7e−7 mol/L/Pa

kLaCO2
 , volumetric mass transfer coefficient for carbon dioxide 5.85·(N2/6)0.46 h−1 [15]

pK1, dissociation constant of reaction forming bicarbonate 6.3 –

pK2, dissociation constant of reaction forming carbonate 10.25 –

β, enzyme decay rate 0.05 h−1 [18]

N2, stripping rate 6 L/h
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Mass balances for biomass growth, substrate consumption, 
and product formation in the liquid phase
The stoichiometric relationships and mass balances of the 
reactants and products present in the model are displayed 
in Table 3. The model is supplemented with an enzyme, 
E2, and cybernetic variables v and u as in [18], where the 
former controls the activity of the enzyme and the latter 
is the fractional allocation of a critical resource for the 
synthesis of the enzyme. We hypothesize that initially, 
there is a first enzyme system present aiding the subse-
quent uptake of both hexose and pentose sugars, but with 
a preference for the pentoses (phase I). This transporter 
is only available as long as pentoses are present. After 
depletion of the pentoses, a second enzyme system, E2, is 
synthesized allowing for uptake of the remaining hexose 
sugars by a second transporter (phase II). For the sake of 
convenience, we simplify the enzyme system, consisting 
of multiple proteins, using the word enzyme and using 
this abstraction also in the kinetic model.

The mass balance for the biomass, X, is dependent 
on the rate of substrate consumption ρ, with Monod-
type kinetics, and on the biomass decay rate, which is 
described with first-order kinetics, where rcd (h−1) is the 
cell death rate and Yx (cmol/cmol) is the yield of biomass 
from total sugar (Table  3). A second glucose rate equa-
tion ( ρGlu, 2 ) is added to describe the diauxic-like growth 
appearance in the sugar mixture. The rate of the glucose 
consumption, when the pentose sugars are depleted, is 
dependent on enzyme E2. The rate of the enzyme syn-
thesis, ρE, is based on Hill kinetics, as in [19], the decay 
rate of the enzyme is first-order kinetics, and the third 

term, − 1·E2·ρGlu, 2, represents the dilution of the specific 
enzyme level as is described with kinetics similar to Hill, 
i.e., E22. The parameters km and km,2 (h−1) are the maxi-
mal uptake rates in phase I and phase II, respectively, and 
Ks,glu, Ks,glu,2, Ks,xyl, Ks,ara, and Ks,E2 (cmol/L) are the affin-
ity constants for the uptake of glucose, xylose, arabinose, 
and synthesis of enzyme E2, respectively. Finally, α is the 
enzyme synthesis rate (h−1) and β is the enzyme decay 
rate (h−1).

Acetate, hydrogen, and carbon dioxide are produced 
in the liquid phase. Yac (cmol/cmol), YH2 (mol/cmol) 
and YCO2 (cmol/cmol) represent the conversion yields of 
acetate, hydrogen, and carbon dioxide, respectively, from 
both hexose and pentose sugars. The conversion yields 
were fitted with experimental data from the batch fer-
mentations. YX was determined by the slope of the curve: 
total sugar vs biomass; here, only phase I was considered. 
Yac and YCO2 were determined by first taking the slope of 
the curves, total sugar vs acetate, and total sugar vs car-
bon dioxide, and then, the actual yields were calculated 
according to the following equation:

When YH2 was calculated the same way as in Eq.  3, it 
gave a too high conversion yield. To obtain a more accu-
rate yield, the effects of liquid-to-gas mass transport were 
considered and YH2 was instead determined as follows:

(3)YAc =
YAc, curve slope

1− YX
.

(4)YH2 =
H2,end −H2,start

Tot sugarstart − Tot sugarend
.

Table 3  Description of the model setup including mass balances for the sugars (glucose, xylose, and arabinose), enzyme 
E2, biomass, acetate, aqueous hydrogen, and aqueous carbon dioxide

At the bottom of the table, the cybernetic variables v and u are described

Phase I Phase II Process↓

Glu Xyl Ara Ac H2,aq CO2,aq E2 X Rate (ρ, cmol/L/h)

Glu − 1 (1 − Yx)·Yac (1 − Yx)·YH2 (1 − Yx)·YCO2
Yx ρGlu = km ·

Glu
Glu+Ks,glu

· X · v1

Glu − 1 (1 − Yx)·Yac (1 − Yx)·YH2 (1 − Yx)·YCO2
 − 1·E2 Yx ρGlu,2 = km,2 · E2 ·

Glu
Glu+Ks,glu,2

· X · v2

Xyl − 1 (1 − Yx)·Yac (1 − Yx)·YH2 (1 − Yx)·YCO2
Yx ρXyl = km ·

Xyl
Xyl+Ks,xyl

· X · v1

Ara − 1 (1 − Yx)·Yac (1 − Yx) · YH2 (1 − Yx)·YCO2
Yx ρAra = km ·

Ara
Ara+Ks,ara

· X · v1

Enzyme, E2 (synthesis) 1 ρE = α ·
Glun

Glun+Kns,E2
· X · u

Enzyme, E2 (decay) − 1 ρdec,E2 = β · E2

Biomass (decay) Biomass (decay) − 1 ρdec,X = rcd · X

v1 =
ρXyl

max (ρXyl; ρGlu,2)

v2 =
ρGlu,2

max (ρXyl; ρGlu,2)

u =
ρGlu,2

sum (ρXyl; ρGlu,2)
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Acid–base reactions
The acid–base reaction considered in the model is that 
of carbon dioxide, bicarbonate, and carbonate forma-
tion. ρAB,CO2

 in Table 4 describes the rate of formation of 
bicarbonate and carbonate.

CO2,sol is the sum of the ionic species, HCO−

3  and 
CO3

2− and Eq.  5 gives the differential equation for 
CO2,sol:

Liquid‑to‑gas mass transfer and mass balances for product 
formation
Hydrogen and carbon dioxide are produced in the liquid 
phase and then transferred to the gas phase via liquid-to-
gas mass transport. ρt,H2 describes the mass transfer rate 
of hydrogen and ρt,CO2 is the mass transfer rate of car-
bon dioxide (Table  5). pgas,H2

 and pgas,CO2
 (in atm then 

converted to Pa) are the partial pressures of H2 and CO2, 
respectively.

The expression for the mass balances describing the 
gaseous products can be described as in Eqs. 6, 7, where 
qgas (L/h) is the total gas flow, and Vliq and Vgas (L) are the 
liquid and the gas volumes, respectively:

Sensitivity analysis
A sensitivity analysis can identify parameters that have 
great effect on the model output. The sensitivity analysis 

(5)
dCO2,sol

dt
= ρAB,CO2

.

(6)
dH2,g

dt
=

Vliq

Vgas
· ρt,H2 +

(

−H2,g ·
qgas

Vgas

)

(7)
dCO2,g

dt
=

Vliq

Vgas
· ρt,CO2 +

(

−CO2,g ·
qgas

Vgas

)

.

was done based on the OFAT approach, i.e., one-factor-
at-at-time [25]. The chosen parameter was altered with 
a factor δ, as described in [26], to see the effect on the 
different state variable output result, as in the following 
equation:

where Γi,j is the sensitivity of state variable i with respect 
to model parameter j in each timepoint of the Matlab 
simulation. Furthermore, yi(θj) is the value of state vari-
able i in regard to parameter j and yi

(

θj + δ · θj
)

 is the 
value of state variable i when parameter j has been altered 
with a factor δ. The parameters that were included in the 
sensitivity analysis were km, km,2, Ks,glu, Ks,glu,2, Ks,xyl, Ks,ara, 
Ks,E2, α, n, rcd, and kLaH2 and the state variables that were 
considered were Glu, Xyl, Ara, Ac, X, and H2. The pre-
sented sensitivity data of one parameter in regards to a 
specific state variable were calculated as the average of 
Γi,j.

Model calibration
To get a better fit to the experimental data, the model 
parameters were calibrated using the knowledge that was 
revealed in the sensitivity analysis. This was done with 
the function lsqcurvefit in MATLAB which uses a least 
square method to find the right parameter value for a 
non-linear curve fitting by seeking to find coefficients x 
that solve the problem in the following equation: 

given the input data xdata and the observed output 
ydata, where xdata and ydata are matrices or vectors and 

(8)Γi,j =

(

yi
(

θj
)

− yi
(

θj + δ · θj
))

/yi(θj)

δ
,

(9)

min
x

∥

∥F(x, xdata)− ydata
∥

∥

2

2
= min

x

∑

i

(

F(x, xdatai)− ydatai
)2

Table 4  Kinetic rate equation for the acid–base reaction

Process↓

CO2,sol CO2,aq Rate (ρt,j, cmol/L/h)

CO2 acid–base 1 − 1
ρAB,CO2

= kAB · (CO2,aq ·

(

10−pK1

10−pH + 10−pK1 ·
10−pK2

(10−pH)
2

)

− CO2,sol

Table 5  Liquid-to-gas mass transfer processes

Process↓

H2,g CO2,g H2,aq CO2,aq Rate (ρt,j, cmol/L/h)

H2 transfer 1 − 1 ρt ,H2 = kLaH2 · (H2,aq − pgas,H2
· KHH2 )

CO2 transfer 1 − 1 ρt ,CO2
= kLaCO2

· (CO2,aq − pgas,CO2
· KHCO2

)
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F(x,xdata) is a matrix-valued or vector-valued function of 
the same size as ydata.

The lsqcurvefit function starts at x0 and finds coeffi-
cient, i.e., parameter x, to best fit the non-linear function 
fun(x,xdata) to the data ydata:

The uncertainties of the calibrated parameters were 
assessed by calculating the confidence interval. This was 
done with the function nlparci in MATLAB which com-
putes the 95% confidence intervals for the non-linear 
least square parameters estimated.

Results and discussion
Growth profiles on the various sugars
The growth profiles of the single sugar experiments (glu-
cose; Case 1 and xylose; Case 2), sugar mixture experi-
ments (Case 3) and wheat straw hydrolysate experiments 
(Case 4) are presented in Fig. 1a–d. Glucose is consumed 
approx. two times faster when used as sole substrate 

(10)x = lsqcurvefit(fun, x0, xdata, ydata).

(Case 1) than in the sugar mixtures (Cases 3 and 4). 
Xylose, on the other hand, is consumed approx. two 
times slower when used as sole substrate and is com-
pletely consumed after approx. 60 h compared to around 
20 h when co-fermented with other sugars (Cases 3 and 
4; Fig. 1c, d). The highest production rate of acetate and 
hydrogen occurred around 20  h both in the sugar mix-
ture and in the wheat straw hydrolysate fermentations. 
Lactate was formed just after 20 (Case 3) and 30 h (Case 
4) reaching in total 0.015 and 0.014 cmol/L, respectively.

The calculated lag phases differed for each experi-
ment. The lag phases of the sugar mixture experi-
ments ranged from 9 to 11 h, whereas the lag phase of 
the wheat straw hydrolysate experiment was 4  h. This 
observation could be correlated to the richer nutrient 
content of wheat straw than the defined sugar mixture 
medium. A similar observation was found by Pawar 
et  al. [27]. The lag phase with glucose alone was 4  h, 
but there was no lag phase with xylose alone. It is worth 
noticing though that it took more effort to initiate 
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Fig. 1  Fermentation profiles of Cases 1–4: a glucose experiment, b xylose experiment, c sugar mixture experiment, and d wheat straw hydrolysate 
experiments. The error bars indicate the standard deviation. Glu glucose, Xyl xylose, Ara arabinose, Ac acetate, Lac lactate, X biomass
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growth on xylose than on glucose as two out of four 
replicates failed, where none of the other experiments 
(Cases 1, 3, and 4) failed. This is due to that precautions 
are needed to start a culture on xylose in the absence of 
yeast extract, such as no sparging for several hours.

The profiles of the mixed sugars indicate a biphasic 
growth, where the uptake of glucose decreased after 
xylose was depleted, but then increased again (Fig. 1c, 
d). The two-phased sugar uptake was more pronounced 
in the wheat straw hydrolysate fermentations. The 
behavior can be further illustrated by the hydrogen 
productivity and CO2 productivity (Fig.  2a, b). This 
observation has, to our knowledge, not been reported 
for Caldicellulosiruptor previously, although the tran-
scriptomics of multiple sugar uptake have been exten-
sively studied [13, 14]. One possible reason for this 
could be that many multi-sugar experimental studies 
on this genus have been performed on a yeast extract-
supplemented medium [3]. Because yeast extract itself 
partly supports growth [20], it possibly masks biphasic 
behavior. Moreover, the initial ratio of pentose/hexose 

sugars was higher in those studies [14] than in the WSH 
used in this study. Thus, after xylose was consumed, the 
culture adapted to a hexose-only medium, which initi-
ated a second phase of growth.

The emerging pattern resembles a diauxic growth 
behavior, which was first described by Monod [17], and is 
characterized by two growth phases often separated with 
a lag period. This normally occurs in the presence of two 
carbon sources, where the preferred one is consumed 
first by the microorganism followed by the second after 
a lag period [28–30]. However, in the case of C. saccha-
rolyticus, both pentose and hexose sugars are consumed 
simultaneously, albeit with a slight preference for the for-
mer. When the pentose sugars are depleted hexose con-
sumption continues, but in Case 4 that happened with an 
increased rate (Table 8).

To quantify this behavior and investigate whether 
the theory of diauxic growth could be used to explain 
the observations, a kinetic model was developed con-
sisting of two phases. In the phase I, glucose was con-
sumed simultaneously with xylose and arabinose. Van 
de Werken et al. [13] concluded that growth on glucose 
and xylose mixtures as well as growth on the individual 
sugars all trigger transcription of the genes encoding a 
xylose-specific ABC transport system. This supports our 
hypothesis that glucose, xylose, and arabinose were ini-
tially transported by the same uptake system. However, 
when xylose was depleted, phase II starts with a new 
uptake system being expressed that had a higher affinity 
for glucose, transporting glucose at an altered rate. It is 
relevant to observe, however, that diauxic growth behav-
ior is generally considered to be related to PTS systems 
[31–33]. However, according to current knowledge, C. 
saccharolyticus only possesses ABC transport systems 
[13, 14]. Still, it has been described that other transport 
systems can generate this diauxic growth profile. For 
example, in Streptomyces coelicolor and related species, 
the genes involved in carbon catabolite repression are 
PTS independent, and instead, glucose kinase is the main 
controlling enzyme [33].

Determination of conversion yields
The calculated conversion yields from the batch experi-
ments differ from the stoichiometric yields (Table 6). To 
begin with, the single sugar fermentations the calculated 
yields are lower than the corresponding stoichiomet-
ric yields. This is in contrast to the yields calculated for 
the sugar mixture experiments, except for Yac that was 
slightly lower. The lower yield for acetate could be due 
to that part of the acetate, or rather acetyl-CoA, which 
is used as a building block for cell mass production [34].

The carbon balances attained in the model were 90 and 
102% with start data from the sugar mixture experiments 
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and the WSH experiments, respectively, which are equal 
or close to the values calculated from the experimental 
data, 90 and 107%, respectively, Table 6. The higher val-
ues in the carbon balance, i.e., > 100%, for the WSH fer-
mentations, could be due to that other carbon sources 
may be present, such as oligosaccharides, that are also 
converted to products giving a higher carbon and elec-
tron output.

Sensitivity analysis
Dynamic simulations using benchmark parameter val-
ues [15] showed discrepancies between the experimental 
results and the model predictions. To further improve the 
dynamic simulations, a sensitivity analysis was conducted 
to determine the most important parameters. This was 
done with start values both from the sugar mixture fer-
mentations as well as from the wheat straw hydrolysate 
fermentations. The change, δ, in the parameter value was 
set to 1% as in [35].

The sensitivity analysis allowed ranking of the param-
eters, which was useful for the model calibration. The 
most sensitive parameters, i.e., with a sensitivity value 
of > 1%, in regard to each of the state variables are listed 

in Table  7. The state variables that were affected the 
most by a change in parameter value were Glu and Xyl. 
The sensitivities of the other parameters for the differ-
ent state variables were less than 1%.

Parameter calibration
The sensitivity analysis served as a basis for the param-
eter calibration. The model was calibrated with data 
from the four different batch experiments, Cases 1–4. 
Start values of the state variables were taken from the 
experimental data (Table 1), and initial parameter val-
ues, i.e., benchmark values, were taken from the litera-
ture [15] or guesstimated, e.g., by manually fitting the 
curves of the data points. The calibrated parameters 
together with a confidence interval of 95% are given in 
Table 8. Some of the parameters were graphically cali-
brated and, therefore, are without a confidence interval. 
The simulations with start data from the single glucose 
and xylose fermentations were carried out without the 
diauxic-like growth additions; thus, only phase I was 
applied.

The km values for Cases 3 and 4 describe the maximal 
simultaneous uptake rates of glucose, xylose, and ara-
binose (Table  8), and they are modeled with the same 
value for all the sugars in phase I. However, the Ks val-
ues for glucose in phase I, Ks,glu, are higher than the Ks 
values for xylose, Ks,xyl, which indicates a lower affin-
ity for glucose in phase I, since xylose is present and 
preferred. Moreover, Ks,glu in Case 4 is 18 times higher 
compared to Ks,glu,2 and compared to Ks,glu in Case 3. 
One explanation is the greater affinity for xylose in 
phase I and another possible explanation is that Ks,glu 
in Case 4 also includes an inhibition term due to the 
characteristics of the wheat straw hydrolysate media, 
e.g., Eq. 11:

(11)Ks,glu = Ks,glu, real · I ,

Table 6  Calculated carbon and  redox balances plus  the  calculated yields of  the  four different experiments and  their 
corresponding stoichiometric yields

YX (cmol/cmol) Yac (cmol/cmol) YH2
 (mol/cmol) YCO2

 (cmol/cmol) Carbon 
balance

Redox balance

Yield, biomass 
formation 
from sugar

Yield, acetate 
formation 
from sugar

Yield, hydrogen 
formation 
from sugar

Yield, carbon dioxide 
formation from sugar

(%) (%)

Glucose experiments (Case 1) 0.20 0.51 0.45 0.30 82 87

Xylose experiments (Case 2) 0.12 0.50 0.47 0.31 80 81

Sugar mix experiments (Case 3) 0.21 0.62 0.53 0.38 90 100

Wheat straw hydrolysate 
experiments (Case 4)

0.18 0.68 0.67 0.44 107 90

Stoichiometrically – 0.67 0.67 0.33 – –

Table 7  Most sensitive parameters, i.e., sensitivity value 
> 1%, listed in  descending order for  each state variable 
that was evaluated

State variable Case 3
Sugar mixture

Case 4
Wheat straw hydrolysate

Glu km,2, α, km, rcd, kLaH2 , Ks,glu,2 kLaH2 , α, km,2, rcd, km, Ks,glu,2

Xyl kLaH2 , km, Ks,ara, Ks,xyl kLaH2 , km, Ks,xyl, Ks,ara, Ks,E2

Ara Ks,ara, km, kLaH2 Ks,ara

Ac – –

X – –

H2 – km,2, α
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where I represents a competitive inhibition, Eq. 12:

with SI the concentration of the inhibitor and KI the inhi-
bition parameter. This is possibly due to unknown inhib-
iting compounds in the wheat straw hydrolysate or other 
factors that inhibit glucose uptake in phase I in Case 4. 
The reason behind the competitive inhibition has not 
been identified, but we hypothesize the presence of oligo-
saccharides that might be preferably taken up instead of 
glucose. However, these sugars were not quantified in the 
HPLC analysis of WSH.

The km,2 value for Case 4 is 50% lower than the cor-
responding value for the glucose uptake rate in Case 1. 
One explanation for this is that the enzymes involved in 
the sugar uptake in Case 4 take some time to be synthe-
sized making glucose consumption slower in the WSH 
compared to the single glucose fermentation. Again, the 
presence of inhibiting compounds or competitive oligo-
saccharides could further slow down the glucose uptake 
rate.

Furthermore, the results show that on single sugars 
and mineral medium, glucose uptake is approximately 

(12)I = 1+
SI

KI

35% faster than xylose uptake (Table  8). Moreover, 
growth of C. saccharolyticus on glucose is approx. 40% 
faster than on xylose (Table  9). This outcome contra-
dicts the previous results on these two sugars in media 
supplemented with yeast extract (YE), where growth is 
faster on xylose than on glucose [13, 14]. An explana-
tion for this observation could be that C. saccharolyti-
cus needs other sugars (present in YE) to grow optimal 
on xylose. Indeed, when both sugars are present the 
growth on xylose is stimulated by the co-uptake of 
glucose. The stoichiometric relationship of glucose-to-
xylose uptake rate ρ(Glucose):ρ(Xylose) was affected 
by the media used and is approximately 0.7 and 0.3 in 
phase I for growth on defined sugar mixture and wheat 

Table 8  Parameters calibrated to experimental data

Confidence interval 95% (CI, 95%) is given for those parameters which have been fitted numerically

n.c. not calibrated, but the values calculated from the experimental data were used (Table 6)
a   Graphically calibrated
b   This value possibly also includes an inhibition factor I

Parameter Benchmark value 
derived from [15]

Case 1 Case 2 Case 3 Case 4

Glucose simulation Xylose simulation Sugar mixture simulation Wheat straw 
hydrolysate 
simulation

km, maximal uptake rate (h−1) 0.35 – 1.58 (± 0.042) 0.54 (± 0.012) 0.44 (± 0.023)

km,2, maximal uptake rate when 
xylose = 0 (h−1)

0.35 2.4 (± 0.15) – 0.54 (± 0.018) 1.26 (± 0.11)

Ks,glu, affinity constant, glucose 
(cmol/L)

0.00029 0.01a – 0.01a 0.18 (± 0.043)b

Ks,glu,2, affinity constant 2, glucose 
(cmol/L)

– – – 0.01a 0.01a

Ks,xyl, affinity constant, xylose 
(cmol/L)

– – 0.0002a 0.0002a 0.0002a

Ks,ara, affinity constant, arabinose 
(cmol/L)

– – – 0.026 (± 0.004) 0.034 (± 0.0077)

Ks,E2, affinity constant enzyme, E2 
(cmol/L)

– – – 0.001a 0.001a

α, enzyme synthesis rate (h−1) – – – 0.6a 0.64 (± 0.085)

n, Hill coefficient – – – 2a 2a

rcd, cell death rate (h−1) 0.014 0.0027a 0.0027a 0.027a 0.027 (± 0.0039)

kLaH2 , volumetric mass transfer 
coefficient for hydrogen (h−1)

0.26 0.44a 0.44a 0.44 (± 0.085) 0.44a

YH2 , yield, hydrogenformationfromsugar n.c. n.c. 0.58 n.c.

Table 9  Maximal specific growth rates, µmax, calculated 
from km, km,2, and Yx values

Maximal specific growth rate (µmax, h−1) Phase I Phase II

Glucose (Case 1) 0.22 –

Xylose (Case 2) 0.13 –

Sugar mixture (Case 3) 0.33 0.11

Wheat straw hydrolysate (Case 4) 0.24 0.23
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straw medium, respectively (data used from Fig.  1). 
Until xylose is depleted, the total glucose, xylose, and 
arabinose conversion rates, i.e., 0.54·3  h−1, are similar 
to that of xylose conversion in the absence of glucose, 
i.e., 1.58  h−1. This observation is supported by other 
studies with C. saccharolyticus using different sugar 
mixtures both with and without YE, e.g. in Willquist 
[36]. Xylose uptake increases if a small concentration of 
glucose is present or if either the fermentor is sparged 
with CO2 instead of N2 gas or closed, to allow buildup 
of HCO3

− in the reactor.

Model prediction
Comparison between the model and experimental results 
for the combined sugars is depicted in Table  10, and 
Figs. 3 and 4. The results show that a diauxic-like behav-
ior model simulates well the experimental data of C. sac-
charolyticus when grown on mixtures of pentose and 
hexose sugars. Without the addition of a second enzyme 
equation as well as cybernetic variables controlling the 
upregulation of the enzyme, the experimental data could 
not be simulated.

Table  10 shows the fitting between the experimental 
data and the model simulation displaying the regression 
analysis values. It is clear that the model is well able to 
describe the consumption of the different sugars as well 
as biomass growth, acetate formation, and accumula-
tion of hydrogen in Cases 3 and 4. The model, without 
the diauxic-like additions, was better at describing the 
individual xylose fermentations (Case 2), rather than the 
individual glucose fermentations (Case 1) when it comes 
to biomass growth and hydrogen production (Table 10).

The model only predicts a small second peak in 
hydrogen productivity compared to the data of the 
defined sugar mixture fermentations (Fig.  3g). How-
ever, the model succeeds in describing the diauxic-like 
behavior of the hydrogen productivity profile in the 
wheat straw hydrolysate fermentations (Fig.  4g). The 
uptake of the three sugars as well as the formation of 
acetate is well described by the model, both for Cases 3 
and 4 (Figs. 3a–d, 4a–d).

According to the simulation, the enzyme (used to 
describe the diauxic behavior) concentration is very 
low, close to zero, in the beginning, and when phase I 
ends, the enzyme synthesis starts and the concentra-
tion increases up to a peak, where it begins decreasing 
just before t = 60  h in Case 3 and somewhat earlier in 
Case 4 (Figs.  3f, 4f ). The enzyme synthesis is depend-
ent on the biomass concentration, which is why it fol-
lows the behavior of the latter. The two biomass growth 
phases are clearly displayed in Case 4 and expressed 
by the model (Fig.  4e), where a first growth phase 
takes place between 0 and 20  h and a second growth 
phase between 20 and 45  h. The phenomenon with 
two growth phases is characteristic for diauxic growth 
behavior as described in various literatures on the topic 
[18, 28, 37].

The hydrogen productivity profile, both in Cases 3 
and 4, is a bit delayed in the model (Figs. 3g, 4g). This 
could be due to a slight underestimation of the kLaH2 
value. The benchmark kLaH2 value used, from Ljun-
ggren et al. [15], was later on calibrated against experi-
mental data resulting in a higher value (Table 8). Still, 
the mass transfer seems to be less efficient in the model 
not being able to fully describe the experimental data.

Table 10  R2 values to describe the fit between experimental data and model simulation

State variable Glucose (Case 1) Xylose (Case 2) Sugar mixture (Case 3) Wheat straw 
hydrolysate (Case 
4)

Glu 0.96 – 0.99 0.97

Xyl – 0.98 0.99 0.99

Ara – – 0.99 0.95

X 0.46 0.86 0.92 0.90

Ac 0.91 0.99 0.99 0.99

H2 accumulated 0.74 0.99 0.99 0.98

(See figure on next page.)
Fig. 3  Sugar mixture experimental data and model simulation. a Glucose (cmol/L) data and model; b xylose data and model (cmol/L); c arabinose 
(cmol/L) data and model; d acetate (cmol/L) data and model; e biomass (cmol/L) data and model; f enzyme, E2 (cmol/L) data and model; g 
hydrogen productivity (L/h/L) data and model; and h hydrogen accumulated (mol/L) data and model. Exp. data E28 experimental data E28, Exp. data 
E29 experimental data E29, and Exp. data E30 experimental data E30
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Conclusions
The outcome of this study revealed that in batch mode, 
C. saccharolyticus ferments (un)defined sugar mixtures 
via different growth phases in a diauxic-like manner. This 
behavior could be successfully simulated with a kinetic 
growth model with substrate-based Monod-type kinet-
ics and enzyme synthesis using Hill kinetics together 
with cybernetic variables to control the upregulation of 
the enzyme. The model was able to predict the behavior 
of growth on sugar mixtures both in a defined medium 
and in wheat straw hydrolysate medium. The model sup-
ported the following sequence: xylose is the preferred 
substrate, but glucose is taken up simultaneously, pos-
sibly with the same transporter. After xylose is depleted, 
glucose is further taken up with a newly induced trans-
porter system, leading to a second hydrogen productiv-
ity peak. We further conjecture that this diauxic-like 
pattern might appear in defined media not containing 
complex nutrient mixtures, such as yeast extract, as the 
latter might reduce the edge of the transition point from 
dominant xylose uptake to dominant glucose uptake by 
C. saccharolyticus. Future studies should aim at investi-
gating how the various uptake mechanisms in C. saccha-
rolyticus act and contribute to the phenomena described 
in this study. In addition, a further developed model, ver-
ifying the values of several kinetic parameters, including 
separate maximal uptake rates for the different sugars in 
the sugar mixture as well as inhibition functions, would 
improve the applicability of this model for industrial 
processes.

Authors’ contributions
JB: data analysis, calculations, model development, and manuscript writing. 
EB: planning and execution of the fermentation experiments, HPLC and GC 
analyses, and manuscript writing. EvN: supervision of fermentation, analysis, 
and manuscript writing. KW: supervision of modeling, analysis and fermenta-
tion, and manuscript writing. All authors contributed to revision of the manu-
script and approved the text, figures, and tables for submission. All authors 
read and approved the final manuscript.

Author details
1 Department of Energy and Circular Economy, RISE Research Institutes 
of Sweden, PO Box 857, 501 15 Borås, Sweden. 2 Division of Applied Microbiol-
ogy, Lund University, PO Box 124, 221 00 Lund, Sweden. 

Acknowledgements
The authors acknowledge the Swedish Energy Agency for the financial sup-
port of this work under “Metanova” Project No. 31090-2.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
All data generated or analyzed during this study are included in this article. If 
additional information is needed, please contact the corresponding author.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
The study was funded by the Swedish Energy Agency whom did not partici-
pate in the execution of the study or in the manuscript writing.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 24 January 2018   Accepted: 12 June 2018

References
	1.	 International Energy Agency. Renewables information 2017: overview. 

http://www.iea.org/publi​catio​ns/freep​ublic​ation​s/publi​catio​n/Renew​
ables​Infor​matio​n2017​Overv​iew.pdf. Accessed 10 Jan 2018.

	2.	 United Nations. Adoption of the Paris Agreement. 2015. http://unfcc​c.int/
resou​rce/docs/2015/cop21​/eng/l09r0​1.pdf. Accessed 31 May 2017.

	3.	 Pawar SS, van Niel EWJ. Thermophilic biohydrogen production: how far 
are we? Appl Microbiol Biotechnol. 2013;97(18):7999–8009. https​://doi.
org/10.1007/s0025​3-013-5141-1.

	4.	 Press RJ, Santhanam KSV, Miri MJ, Bailey AV, Takacs GA. Introduction to 
hydrogen technology. 1st ed. Hoboken: Wiley; 2008.

	5.	 van Niel EWJ. Biological processes for hydrogen production. In: Hatti-Kaul 
R, Mamo G, Mattiasson B, editors. Anaerobes in biotechnology. Berlin: 
Springer International Publishing; 2016. p. 155–93.

	6.	 Das D, Veziroglu TN. Advances in biological hydrogen production 
processes. Int J Hydrogen Energy. 2008;33(21):6046–57. https​://doi.
org/10.1016/j.ijhyd​ene.2008.07.098.

	7.	 Claassen PAM, van Lier JB, Contreras AML, van Niel EWJ, Sijtsma L, Stams 
AJM, de Vries SS, Weusthuis RA. Utilisation of biomass for the supply of 
energy carriers. Appl Microbiol Biotechnol. 1999;52(6):741–55. https​://doi.
org/10.1007/s0025​30051​586.

	8.	 Hamelinck CN, van Hooijdonk G, Faaij APC. Ethanol from lignocellulosic 
biomass: techno-economic performance in short-, middle- and long-
term. Biomass Bioenergy. 2005;28(4):384–410. https​://doi.org/10.1016/j.
biomb​ioe.2004.09.002.

	9.	 Kengen SWM, Goorissen HP, Verhaart M, Stams AJM, van Niel EWJ, Claas-
sen PAM. Biological hydrogen production by anaerobic microorganisms. 
In: Soetaert W, Vandamme EJ, editors. Biofuels. Chichester: Wiley; 2009. p. 
197–221.

	10.	 Willquist K, Zeidan AA, van Niel EWJ. Physiological characteristics 
of the extreme thermophile Caldicellulosiruptor saccharolyticus: an 
efficient hydrogen cell factory. Microb Cell Fact. 2010;9:89. https​://doi.
org/10.1186/1475-2859-9-89.

	11.	 Thauer RK, Jungermann K, Decker K. Energy conservation in chemotro-
phic anaerobic bacteria. Bacteriol Rev. 1977;41(1):100–80.

	12.	 Rainey FA, Donnison AM, Janssen PH, Saul D, Rodrigo A, Bergquist 
PL, et al. Description of Caldicellulosiruptor saccharolyticus gen. nov., 

Fig. 4  Wheat straw hydrolysate experimental data and model simulation. a Glucose (cmol/L) data and model; b xylose data and model (cmol/L); c 
arabinose (cmol/L) data and model; d acetate (cmol/L) data and model; e biomass (cmol/L) data and model; f enzyme, E2 (cmol/L) data and model; 
g hydrogen productivity (L/h/L) data and model; and h hydrogen accumulated (mol/L) data and model. Exp. data E13 experimental data E13, Exp. 
data E14 experimental data E14 and Exp. data E15 experimental data E15

(See figure on previous page.)

http://www.iea.org/publications/freepublications/publication/RenewablesInformation2017Overview.pdf
http://www.iea.org/publications/freepublications/publication/RenewablesInformation2017Overview.pdf
http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf
http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf
https://doi.org/10.1007/s00253-013-5141-1
https://doi.org/10.1007/s00253-013-5141-1
https://doi.org/10.1016/j.ijhydene.2008.07.098
https://doi.org/10.1016/j.ijhydene.2008.07.098
https://doi.org/10.1007/s002530051586
https://doi.org/10.1007/s002530051586
https://doi.org/10.1016/j.biombioe.2004.09.002
https://doi.org/10.1016/j.biombioe.2004.09.002
https://doi.org/10.1186/1475-2859-9-89
https://doi.org/10.1186/1475-2859-9-89


Page 15 of 15Björkmalm et al. Biotechnol Biofuels  (2018) 11:175 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

sp. nov: an obligately anaerobic, extremely thermophilic, cellulo-
lytic bacterium. FEMS Microbiol Lett. 1994;120(3):263–6. https​://doi.
org/10.1111/j.1574-6968.1994.tb070​43.x.

	13.	 van de Werken HJG, Verhaart MRA, VanFossen AL, Willquist K, Lewis DL, 
Nichols JD, Goorissen HP, Mongodin EF, Nelson KE, van Niel EWJ, et al. 
Hydrogenomics of the extremely thermophilic bacterium Caldicellulo-
siruptor saccharolyticus. Appl Environ Microbiol. 2008;74(21):6720–9. https​
://doi.org/10.1128/AEM.00968​-08.

	14.	 VanFossen AL, Verhaart MRA, Kengen SMW, Kelly RM. Carbohydrate 
utilization patterns for the extremely thermophilic bacterium Caldicel-
lulosiruptor saccharolyticus reveal broad growth substrate preferences. 
Appl Environ Microbiol. 2009;75(24):7718–24. https​://doi.org/10.1128/
AEM.01959​-09.

	15.	 Ljunggren M, Willquist K, Zacchi G, van Niel EW. A kinetic model for quan-
titative evaluation of the effect of hydrogen and osmolarity on hydrogen 
production by Caldicellulosiruptor saccharolyticus. Biotechnol Biofuels. 
2011;4:31. https​://doi.org/10.1186/1754-6834-4-31.

	16.	 Auria R, Boileau C, Davidson S, Casalot L, Christen P, Liebgott PP, Combet-
Blanc Y. Hydrogen production by the hyperthermophilic bacterium 
Thermotoga maritima Part II: modeling and experimental approaches 
for hydrogen production. Biotechnol Biofuels. 2016;9:268. https​://doi.
org/10.1186/s1306​8-016-0681-0.

	17.	 Monod J. Recherches sur la croissance des cultures bactériennes. Ph.D. 
thesis, Université de Paris, Hermann, Paris. 1941.

	18.	 Kompala DS, Ramkrishna D, Jansen NB, Tsao GT. Investigation of bacterial 
growth on mixed substrates: experimental evaluation of cybernetic 
models. Biotechnol Bioeng. 1986;28:1044–55. https​://doi.org/10.1002/
bit.26028​0715.

	19.	 Boianelli A, Bidossi A, Gualdi L, Mulas L, Mocenni C, Pozzi G, Vicino A, 
Oggioni MR. A non-linear deterministic model for regulation of diauxic 
lag on cellobiose by the pneumococcal multidomain transcriptional 
regulator CelR. PLoS ONE. 2012;7:10. https​://doi.org/10.1371/journ​
al.pone.00473​93.

	20.	 Willquist K, van Niel EWJ. Growth and hydrogen production charac-
teristics of Caldicellulosiruptor saccharolyticus on chemically defined 
minimal media. Int J Hydrogen Energy. 2012;37(6):4925–9. https​://doi.
org/10.1016/j.ijhyd​ene.2011.12.055.

	21.	 Zeidan AA, van Niel EWJ. A quantitative analysis of hydrogen production 
efficiency of the extreme thermophile Caldicellulosiruptor owensensis OLT. 
Int J Hydrogen Energy. 2010;35(3):1128–37. https​://doi.org/10.1016/j.ijhyd​
ene.2009.11.082.

	22.	 Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, 
Sanders WTM, Siegrist H, Vavilin VA. Anaerobic Digestion Model No. 1 IWA 
task group for mathematical modelling of anaerobic digestion processes. 
London: IWA Publishing; 2002.

	23.	 de Vrije T, Mars AE, Budde MA, Lai MH, Dijkema C, de Waard P, Claassen 
PAM. Glycolytic pathway and hydrogen yield studies of the extreme ther-
mophile Caldicellulosiruptor saccharolyticus. Appl Microbiol Biotechnol. 
2007;74(6):1358–67.

	24.	 Swinnen IAM, Bernaerts K, Dens EJJ, Geeraerd AH, Van Impe JF. Predictive 
modelling of the microbial lag phase: a review. Int J Food Microbiol. 
2004;94(2):137–59. https​://doi.org/10.1016/j.ijfoo​dmicr​o.2004.01.006.

	25.	 Hamby DM. A review of techniques for parameter sensitivity analysis of 
environmental models. Environ Monit Assess. 1994;32(2):135–54. https​://
doi.org/10.1007/bf005​47132​.

	26.	 Barrera EL, Spanjers H, Solon K, Amerlinck Y, Nopens I, Dewulf J. Modeling 
the anaerobic digestion of cane-molasses vinasse: extension of the 
Anaerobic Digestion Model No. 1 (ADM1) with sulfate reduction for a 
very high strength and sulfate rich wastewater. Water Res. 2015;71:42–54. 
https​://doi.org/10.1016/j.watre​s.2014.12.026.

	27.	 Pawar SS, Nkemka VN, Zeidan AA, Murto M, van Niel EWJ. Biohydrogen 
production from wheat straw hydrolysate using Caldicellulosiruptor 
saccharolyticus followed by biogas production in a two-step uncou-
pled process. Int J Hydrogen Energy. 2013;38(22):9121–30. https​://doi.
org/10.1016/j.ijhyd​ene.2013.05.075.

	28.	 Roop JI, Chang KC, Brem RB. Polygenic evolution of a sugar specialization 
trade-off in yeast. Nature. 2016;530:336–49. https​://doi.org/10.1038/natur​
e1693​8.

	29.	 Wang J, Atolia E, Hua B, Savir Y, Escalante-Chong R, Springer M. Natural 
variation in preparation for nutrient depletion reveals a cost–benefit 
tradeoff. PLoS Biol. 2015;13:1. https​://doi.org/10.1371/journ​al.pbio.10020​
41.

	30.	 Kremling A, Geiselmann J, Ropers D, de Jong H. Understanding carbon 
catabolite repression in Escherichia coli using quantitative models. Trends 
Microbiol. 2015;23(2):99–109. https​://doi.org/10.1016/j.tim.2014.11.002.

	31.	 Deutscher J. The mechanisms of carbon catabolite repression in bac-
teria. Curr Opin Microbiol. 2008;11(2):87–93. https​://doi.org/10.1016/j.
mib.2008.02.007.

	32.	 Chu DF. In silico evolution of diauxic growth. BMC Evol Biol. 2015;15:211. 
https​://doi.org/10.1186/s1286​2-015-0492-0.

	33.	 Görke B, Stülke J. Carbon catabolite repression in bacteria: many ways 
to make the most out of nutrients. Nat Rev Microbiol. 2008;6(8):613–24. 
https​://doi.org/10.1038/nrmic​ro193​2.

	34.	 Shen N, Zhang F, Song XN, Wang YS, Zeng RJ. Why is the ratio of H2/ace-
tate over 2 in glucose fermentation by Caldicellulosiruptor saccharolyticus? 
Int J Hydrogen Energy. 2013;38(26):11241–7. https​://doi.org/10.1016/j.
ijhyd​ene.2013.06.091.

	35.	 Tartakovsky B, Mu SJ, Zeng Y, Lou SJ, Guiot SR, Wu P. Anaerobic Digestion 
Model No. 1-based distributed parameter model of an anaerobic reactor: 
II. Model validation. Bioresour Technol. 2008;99(9):3676–84. https​://doi.
org/10.1016/j.biort​ech.2007.07.061.

	36.	 Willquist K. Physiology of Caldicellulosiruptor saccharolyticus: a hydrogen 
cell factory. Ph.D. thesis, Lund University, Sweden. 2010.

	37.	 Song HS, Liu C. Dynamic metabolic modeling of denitrifying bacterial 
growth: the cybernetic approach. Ind Eng Chem Res. 2015;54(42):10221–
7. https​://doi.org/10.1021/acs.iecr.5b016​15.

https://doi.org/10.1111/j.1574-6968.1994.tb07043.x
https://doi.org/10.1111/j.1574-6968.1994.tb07043.x
https://doi.org/10.1128/AEM.00968-08
https://doi.org/10.1128/AEM.00968-08
https://doi.org/10.1128/AEM.01959-09
https://doi.org/10.1128/AEM.01959-09
https://doi.org/10.1186/1754-6834-4-31
https://doi.org/10.1186/s13068-016-0681-0
https://doi.org/10.1186/s13068-016-0681-0
https://doi.org/10.1002/bit.260280715
https://doi.org/10.1002/bit.260280715
https://doi.org/10.1371/journal.pone.0047393
https://doi.org/10.1371/journal.pone.0047393
https://doi.org/10.1016/j.ijhydene.2011.12.055
https://doi.org/10.1016/j.ijhydene.2011.12.055
https://doi.org/10.1016/j.ijhydene.2009.11.082
https://doi.org/10.1016/j.ijhydene.2009.11.082
https://doi.org/10.1016/j.ijfoodmicro.2004.01.006
https://doi.org/10.1007/bf00547132
https://doi.org/10.1007/bf00547132
https://doi.org/10.1016/j.watres.2014.12.026
https://doi.org/10.1016/j.ijhydene.2013.05.075
https://doi.org/10.1016/j.ijhydene.2013.05.075
https://doi.org/10.1038/nature16938
https://doi.org/10.1038/nature16938
https://doi.org/10.1371/journal.pbio.1002041
https://doi.org/10.1371/journal.pbio.1002041
https://doi.org/10.1016/j.tim.2014.11.002
https://doi.org/10.1016/j.mib.2008.02.007
https://doi.org/10.1016/j.mib.2008.02.007
https://doi.org/10.1186/s12862-015-0492-0
https://doi.org/10.1038/nrmicro1932
https://doi.org/10.1016/j.ijhydene.2013.06.091
https://doi.org/10.1016/j.ijhydene.2013.06.091
https://doi.org/10.1016/j.biortech.2007.07.061
https://doi.org/10.1016/j.biortech.2007.07.061
https://doi.org/10.1021/acs.iecr.5b01615

	A non-linear model of hydrogen production by Caldicellulosiruptor saccharolyticus for diauxic-like consumption of lignocellulosic sugar mixtures
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Strains and cultivation medium
	Fermentor setup
	Analytical methods
	Mathematical model description
	Model inputs and initial conditions
	Mass balances for biomass growth, substrate consumption, and product formation in the liquid phase
	Acid–base reactions
	Liquid-to-gas mass transfer and mass balances for product formation

	Sensitivity analysis
	Model calibration

	Results and discussion
	Growth profiles on the various sugars
	Determination of conversion yields
	Sensitivity analysis
	Parameter calibration
	Model prediction

	Conclusions
	Authors’ contributions
	References




